e-print http://www.gnm.fh-koeln.de/ciopwebpub/Konel7a.d/TR-GBG.pdf

The GBG Class Interface Tutorial:
General Board Game Playing and Learning

Wolfgang Konen

Computer Science Institute,
TH Ka&In,
Cologne University of Applied Sciences,
Germany

wolfgang.konen@th-koeln.de
June 2017

Abstract

This technical report introduces GBG, the general board game playing
and learning framework. It is a tutorial that describes the set of interfaces,
abstract and non-abstract classes which help to standardize and imple-
ment those parts of board game playing and learning that otherwise would
be tedious and repetitive parts in coding. GBG is suitable for arbitrary 1-
player, 2-player and n-player board games. It provides a set of agents
(Al's) which can be applied to any such game. This document describes
the main classes and design principles in GBG. GBG is written in Java.

http://www.gm.fh-koeln.de/ciopwebpub/Kone17a.d/TR-GBG.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone17a.d/TR-GBG.pdf
mailto:wolfgang.konen@th-koeln.de

Contents

1

Introduction
1.1 Motivation
1.2 RelatedWork

Class and Interface Overview

Classes in Detail

3.1 Interface StateObservation
3.2 Interface PlayAgent and class AgentBase
3.3 Some Remarks onthe Game Score
3.4 Difference between Game Score and Game Value
3.5 |Interface Feature,
3.6 Interface XNTupleFuncs,
3.7 Interface GameBoard
3.8 Human interaction with the board and with Arena
3.9 Abstract Class Evaluator
3.10 Abstract Class Arena
3.11 Abstract Class ArenaTrain

Use Cases and FAQs
4.1 | have implemented game XYZ and want to use Al agents from

42 Howtotrainanagentandsaveit.
4.3 Which Al’s are currently implemented for GBG?
4.4 How to write a new agent (for allgames)?
4.5 How to specialize the TD agentto a new game?
4.6 How to write a new TDNTupleAgt agent for a specific game?

Open Issues

Appendix: Interface Summary

A.1 Interface StateObservation
A.2 Interface GameBoard
A3 Interface PlayAgent
A.4 Interface Feature
A5 Interface XNTupleFuncs
A.6 Abstractclass Evaluator
A.7 AbstractclassArena
A.8 Abstractclass ArenaTrain

17

17
18
19
19
20

.21

23

B Appendix: Other Game Value Functions 29

C Appendix: N-Tuples 30
C.1 BoardCellNumbering. 30
C.2 N-Tuple Creation 31
C.3 N-Tuple Training and Prediction. 32

1 Introduction

1.1 Motivation

General board game (GBG) playing and learning is a fascinating area in the
intersection of machine learning, artificial intelligence and game playing. It is
about how computers can learn to play games not by being programmed but by
gathering experience and learning by themselves (self-play). The learning algo-
rithms are often called Al agents or just ,Al’s (Al = artificial intelligence). There
is a great variety of learning algorithms around, e.g. reinforcement learning al-
gorithms like TD(\), Monte Carlo tree search (MCTS), different neural network
algorithms, Minimayx, ... to name only a few.

Even if we restrict ourselves to board games, as we do in this paper (and
do not consider other games like video games), there is a plethora of possi-
ble board games where an agent might be active in. The term ,General” in
GBG refers to the fact that we want to have in the end agents or Als which
perform well on a large variety of games. There are quite different games:
1-person games (like Solitaire, 2048, ...), 2-person games (like Tic-Tac-Toe,
Othello, Chess, ...), many-person games (like Settlers of Catan, Poker, ...). The
game environment may be deterministic or it may contain some elements of
chance (like rolling the dices, ...).

A common problem in GBG is the fact, that each time a new game is tack-
led, the Al developer has to undergo the frustrating and tedious procedure to
write adaptations of this game for all agent algorithms. Often he/she has to
reprogram many aspects of the agent logic, only because the game logic is
slightly different to previous games. Or a new algorithm or Al is invented and in
order to use this Al in different games, the developer has to program instantia-
tions of this Al for each game.

Wouldn't it be nice if we had a framework consisting of classes and inter-
faces which abstracts the common processes in GBG playing and learning? If
someone programs a new game, he/she has just to follow certain interfaces de-
scribed in the GBG framework, and then can easily use and test on that game
all Als in the GBG library.

Likewise, if an Al developer introduces a new learning algorithm which can
learn to play games, she has only to follow the interface for agents laid down in
the GBG framework. Then she can test this new agent on all games of GBG.
Once the interface is implemented she can directly train her agent, inspect its
move decisions in each game, test it against other agents, run competitions,
enter game leagues, log games and so on.

The rest of this document introduces the class concept of GBG. GBG is

written in Java. After a short (and probably incomprehensive) summary of re-
lated work in Sec. 1.2, Sec. 2 gives an overview of the relevant classes and
Sec. 3 discusses them in detail. Sec. 4 discusses some use cases and FAQs
for the GBG class framework. Appendix A lists the methods of the important
classes and interfaces.

1.2 Related Work

Epstein [2001] presented with Hoyle an early general board game playing pro-
gram. It learned to play 18 diverse board games, where its strategic principles
are general and not game specific. The software implementation of Hoyle is
not further described in Epstein [2001].

There is the discipline General Game Playing (GGP) (Genesereth and
Thielscher [2014], Mandziuk and Swiechowski [2012]) which has a long tradi-
tion in artificial intelligence: A GGP competition organized by the Stanford Logic
Group is held annually at the AAAI conferences since 2005 (Genesereth et al.
[2005]). Given the game rules written in the so-called Game Description Lan-
guage (GDL, Love et al. [2008]), several Als enter one or several competitions.
As an example for GGP-related research, Mandziuk and Swiechowski [2012]
propose a universal method for constructing a heuristic evaluation function for
any game playable within the GGP framework. Méhat and Cazenave [2010]
show a study of single player games in the GGP context where they use vari-
ants of Monte Carlo Tree Search. The program is based on Ary, which is written
in C with a Prolog interface engine. The program was tested on 22 single player
games. Michulke and Thielscher [2009] proposes a GGP learning framework
where the Al’s learn from experience with TD()\) reinforcement learning.

Why then do we need GBG if we have GGP already? — GGP usually solves
a tougher task, each agent is a Tabula Rasa, i. e. no game specific features are
known to the Al's at compile time. But then GGP is usually only concerned with
rather simple games or — if it tackles more complex games like Connect Four
or Othello — it reaches only a very modest playing strength on them. Another
restriction is that GGP can only deal with deterministic games. We aim with
GBG at a slightly different goal: A framework where the game or Al implementer
has the freedom to define features or symmetries at compile time which she
believes to be useful for her game, but where the learning of the game tactics
(when to perform which action) is completely left to the Als (e. g. learning
through self-play). Yet the features are embedded in a generic interface, so
that the agents are general and can be applied to any game. We then aim at
developing Al’'s which learn to play perfectly on simple games and which exhibit
a decent playing strength on games of larger complexity. We include in GBG

explicitly non-deterministic games with stochastic elements as well.

Other work which is somewhat related to GBG: OpenAl Gym (Brockman
et al. [2016]) is a toolkit for reinforcement learning research which has also a
board games environment supporting a (small) set of games. General Video
Game Playing (GVGP, Levine et al. [2013]) is a related field which does not
tackle board games as in GGP or GBG, but instead video games.

We define a board game as such a game being played with a known num-
ber of players n, usually on a game board, but the game board may be the table
as well. The game proceeds through actions (moves) of each player. This dif-
ferentiates board games from video games where usually each player can take
an action at any point in time. Note that this definition of board games includes
(trick-taking) card games (like Poker, Skat, ...) as well.

To summarize we propose with GBG a framework which differs from existing
frameworks in the following aspects:

e ltis written in Java and thus available on most OS platforms.

e |t allows the user to define game specific features (see Sec. 3.5) and
symmetries (see Sec. 3.6) which are embedded into the agent framework
in a generic way.

o |t allows to tackle non-deterministic games.

e It offers an n-tuple based TD(\) agent (see Sec. 3.6, Sec. 4.6 and Ap-
pendix C).

¢ It allows agent-agent competitions and human-agent play.

2 Class and Interface Overview

Interface StateObservation is the main interface a game developer has to im-
plement once he/she wants to introduce a new game. A class derived from
StateObservation observes a game state, it can infer from it the available ac-
tions, knows when the game is over, can advance a state into a new legal state
given one of the available actions. If a random ingredient from the game en-
vironment is necessary for the next action (of the next player), the advance
function will add it.

The second interface a game developer has to implement is the interface
GameBoard, which realizes the board GUI and the interaction with the board. If
one or more humans play in the game, they enter their moves via GameBoard.

The interface an Al developer has to implement is the interface PlayAgent
It represents an ,Al” or agent capable of playing games. If necessary, it can be
trained by self-play. Once trained, it has methods for deciding about the best
next action to take in a game state StateObservation and getting the agent’s
estimate of the score or value of a certain game state.

The heart of GBG are the abstract classes Arena and ArenaTrain. In the
Arena all agents meet: They can be loaded from disk, they play a certain game,
there can be competitions. In ArenaTrain, which is a class derived from Arena,
there are additional options to parametrize, train, inspect, evaluate and save
agents.

The helper classes Feature, XNTupleFuncs, and Evaluator support the ab-
straction in the classes Arena and ArenaTrain.

3 Classes in Detail

3.1 Interface StateObservation

Interface StateObservation observes the current state of the game, it has utility
functions for

e returning the available actions (getAvailableActions()),
e advancing the state of the game with a specific action (advance ()),
e copying the current state

e getting the score of the current state
(getScore(), getScore(StateObservation referingState))

e signaling end and winner of the game

If a game has random elements (like rolling the dices in a dice game or placing
a new tile in 2048), advance() is additionally responsible for invoking such
random actions and reporting the results back in the new state. Examples:

e For a dice-rolling game: the game state is the board & the dice number.

e For 2048: the game state is just the board (with the random tile added).

Implementing classes: StateObserverTTT, StateObserver2048, ...

As an example, StateObserverTTT is a state observer for the game Tic-
TacToe: It has constructors with game-specific parameters (int [1[]1 table,
int Player). It has access functions getTable() and getPlayer(). The
latter returns the Player who has to move in the current state.

7

3.2

Interface PlayAgent and class AgentBase

Interface PlayAgent has all the functionality that an Al (= game playing agent)
needs. The most important methods are:

getNextAction(sob,...): given the current game state sob, return the
best next action.

double getScore(sob): the score (agent’s estimate of final reward) for
the current game state sob.

trainAgent(sob,...): train agent for one episode’ starting from state
sob.

Some more methods, e.g. setters and getters, have their defaults imple-
mented in class AgentBase.? It might be useful to design a new agent class
with the signature ... extends AgentBase implements PlayAgent.

There is an additional method double estimateGameValue(sob) which
has the default implementation getScore(sob) in AgentBase. This method
is called when a training game is stopped prematurely because the maximum
number of moves in an episode ('Episode length’) is reached.® See Sec. 3.3
and 3.4 for more details on game score and game value.

Classes implementing interface PlayAgent and derived from AgentBase:

RandomAgent: an agent acting completely randomly
HumanPlayer: an agent waiting for user interaction

MinimaxAgent: a simple tree search (max-tree for 1-player games, min-
max-tree for 2-player games)*

MCTSAgent: Monte-Carlo Tree Search agent
MCAgent: Monte-Carlo agent (no tree)

TDAgent: general TD(\) agent (temporal difference reinforcement learn-
ing) with neural network value function (see Sec. 4.5 for more details).
This agent requires a Feature object in constructor, see Sec. 3.5.

'An episode is one specific game playout.

2AgentBase does not implement all methods of the interface PlayAgent, so it has no ...
implements PlayAgent.

80r, for agents MCTS or MC, when the maximum rollout depth ('Rollout depth’) is reached.

“Note that Minimax in this simple implementation may not be appropriate for games with
random elements, because Minimax follows in each tree step only one path of the possible
successors that advance () may produce.

e TDNTupleAgt: TD(\) agent (temporal difference reinforcement learning)
using n-tuple sets as features (see Sec. 4.6 and Appendix C for more
details). This agent requires an object of class XNTupleFuncs in con-
structor, see Sec. 3.6.

Each agent has an AgentState member, which is either RAW, INIT or
TRAINED.

More details on TD(\) (temporal difference learning, reinforcement learning
for games, eligibility traces) can be found in the technical report Konen [2015].

Some of the agents (RandomAgent, HumanAgent, MinimaxAgent, MCT-
SAgent, MCAgent) are directly after construction in a TRAINED state, i.e. they
are ready-to-use. Minimax, MCTS and MC make their observations on-the-fly,
starting from the given state. Some other classes (TDAgent, TDNTupleAgt, ...)
require training, they are after construction in state INIT.

Classes derived from PlayAgent should implement the Serializable in-
terface. This is needed for loading and saving agents. Agent members which
should be not included in the serialization process have to be flagged with
keyword transient. Agent members which are user-defined classes should
implement the Serializable interface as well.

3.3 Some Remarks on the Game Score

Although the game score (the final result of a game, e. g. ,X wins" or ,O wins
with that many points“) seems to be a pretty simple and obvious concept, it be-
comes a bit more confusing if one wants to define the game score consistently
for a broader class of states, not just for a terminal state. We use the following
conventions:

e StateObservation.getGameScore() returns the sum of rewards for the
player who has to move in the current state. Most 2-player games will
give the reward only in the end (win/tie/loss), so that for those games
getGameScore () is usually 0 as long as the game state is non-terminal.
If the game state is terminal, a negative reward will be returned if the
player loses and a positive reward if the player wins. For other games
there might be also rewards during the game.

e If a state is terminal (e. g. X wins®) then the ,player who moves® has
changed a last time (i. e. to player O, although the game is over.). Thus
the score will be -1 (,O loses”). This seems a bit awkward at first sight,
but it is the only way to guarantee in a succession of actions for 2-player

X > X > X | X ||+ XX ||| X]| X|X
@) O

O to move X to move O to move X to move 'O to move’
sA sB sC

Figure 1: A succession of states in TicTacToe: If O makes in state sA the losing
move leading to sB, then sB is a clear win for X, so terminal state sC should
be a clear loss for O to be consistent. The game score for sC is —1. The game
values (see Sec. 3.4) for sB and sC are +1 and —1, resp.

games that the current score is always the negative of the next state’s
score (negamax principle). Fig. 1 shows an example.

e Example: A 2-player game like TicTacToe is terminal when X makes a
winning move. On this terminal state O would have to move next (if it
were not terminal). So the game score for this terminal state (sC in Fig. 1)
is a negative reward —1 for player O. It turns out that TicTacToe is always
terminated with either a negative reward or a tie.

o What differentiates sC. getGameScore (StateObservation referingState)
from sC.getGameScore()? — The latter is the plain game score for the
state sC, while the former is the game score of sC viewed from the per-
spective of the player to move in the predecessor state referingState.

In 2-person games this amounts to a factor —1 if the players in sC and
referingState are different, that is:

sC.getGameScore(sC) = -1 = sC.getGameScore();
sC.getGameScore(sB) = +1;

sC.getGameScore(sAd) = -1;

This is advantageous for agents like MC or MCTS which perform rollouts
from referingState. With method sC.getGameScore (referingState)
they get in all settings a quantity which they have to maximize, no matter
which player ends the game.

e StateObservation.getGameWinner () may only be called if the game is
over for the current state (otherwise an assertion fires). It returns an
enum Types.WINNER which may be one out of {PLAYER_WINS, TIE,

10

PLAYER_LOSES]}. The player is always the player who has to move.
The method Types.WINNER.toInt () converts these enums to integers
which correspond to {+1,0, —1}, resp.

StateObservation defines two methods

public double getMinGameScore();
public double getMaxGameScore();

These methods should return the minimum and maximum game score which
can be achieved in a specific game. This is needed since some PlayAgent
(e.g. TDAgent) make predictions of the estimated game score with the help of
a neural network. Since a neural network has often a sigmoid output function
which can emit only values in a certain range (e.g. [0,1]), it is necessary to map
the game scores to that range as well. This can only be done if the minimum
and maximum game score is given.®

3.4 Difference between Game Score and Game Value

There is a subtle distinction between game score and game value. The game
score is the score of a game according to the game laws. For example, Tic-
TacToe has the score 0 for all intermediate states, while a terminal state has
either +1/0/-1 as game score for win/draw/loss of the player to move. In 2048,
the game score is the cumulative sum of all tile merges. Each player usually
wants to maximize the expectation value of ’his’ score at the end of the game.

But the score in an intermediate game state is not a good indicator of the
potential of that state. Two states in 2048 might have the same score, but the
game value of these states can be different. While the first state might be close
to the terminal state, the second one might have a higher mobility and thus ’last’
longer and receive a higher final score. The precise game value of a state is
often not known / not computable, but it is of course desirable to estimate it. An
estimate can be based on a simple heuristic like the weighted piece count in
chess.

The main possibility to deliver a game value is:

e PlayAgent.getScore(StateObservation so) returns the agent’s esti-
mate of the final score for the player who has to move in StateObserva-
tion so — assuming perfect play of that player. That is what we call the
game value of so. The game value for 2-player games is usually +1 if it

®If a precise maximum game score for a certain game is not known, a reasonable ’big’ esti-
mate is usually also sufficient.

11

is expected that the player wins finally, 0 if it is a tie and -1 if he loses. Val-
ues in between characterize expectation values in cases where different
outcomes are possible or likely (or where the agent has not yet gathered
enough information or experience).

There are other methods to deliver a game value
e StateObservation.getGameValue()
e PlayAgent.estimateGameValue(StateObservation so)

but they are only for advanced users and their description is deferred to Ap-
pendix B.

3.5 Interface Feature

Some classes implementing PlayAgent need a game-specific feature vector. As
an example, consider TDAgent, the general TD()\) agent (temporal difference
reinforcement learning) with neural network value function. To make the neural
network predict the value of a certain game state, the network needs some
feature input (e.g. specific board patterns which form threats or opportunities,
number of them, number of pieces and so on). These features are usually
game-specific. We assume here that every feature can be expressed as double
value (neural networks can only digest real numbers as input), so that the whole
feature vector can be expressed as double[].

To create an Feature object within the general Arena-code, the factory
method pattern is used: Arena defines an abstract method

public Feature makeFeatureClass(int featmode);

The argument featmode allows to construct different flavors of Feature objects
and to test and evaluate them.

In all cases where Arena or ArenaTrain needs a Feature object, it will
call this method makeFeatureClass(int). This will take place whenever a
TDAgent object is constructed, because the TDAgent constructor needs a Fea-
ture object as parameter.

Interface Feature has the method

public double[] prepareFeatVector(StateObservation so);

which gets a game state and returns a double vector of features. This vector
may serve as an input for a neural network or other purposes.
Implementing classes: FeatureTTT, Feature2048, ...

12

3.6 Interface XNTupleFuncs

There is one special agent TDNTupleAgt, which realizes TD-learning with n-
tuple features. N-tuple features or n-tuple sets (Lucas [2008], Thill et al. [2014],
Bagheri et al. [2015], Thill [2015]) are another way of generating a large number
of features. An n-tuple is a set of board cells. For every game state StateOb-
servation it can translate the position values present in these cells into a double
score or value. In order to construct such n-tuples, the user has to implement
the interface XNTupleFuncs. See Sec. 4.6 for more details on the member
functions of XNTupleFuncs and Appendix C for more details on n-tuples.

To create an XNTupleFuncs object within the general Arena-code, the fac-
tory method pattern is used: Arena defines an abstract method

public XNTupleFuncs makeXNTupleFuncs();

In all cases where Arena or ArenaTrain needs a XNTupleFuncs object, it
will call this method makeXNTupleFuncs(). This will take place whenever a
TDNTupleAgt object is constructed, because the TDNTupleAgt constructor
needs an XNTupleFuncs object as parameter.

Note: If you do not plan to use TDNTupleAgt in your game, you do not need
to implement a specific version of class XNTupleFuncs. The default implemen-
tation of makeXNTupleFuncs () in Arena will just throw a RuntimeException.

3.7 Interface GameBoard

Interface GameBoard has the game board GUI (usually in a separate JFrame).
It provides functionality for:

e Maintaining its own StateObservation object m_so. This object is after
construction in a default start state (e. g. empty board). The same state
can be reached via clearBoard () or getDefaultStartState() as well.
The associated GUI will show the default start state.

e Showing or updating the current game state (StateObservation) in the
GUI and enabling / disabling the GUI elements (updateBoard(. . .)).

e Human interaction with the board: see Sec. 3.8.
e Returning its current StateObservation object (getStateObs()).

e chooseStartState01(): This method returns randomly one out of a set
of different start states. This is useful when training an agent so that not

13

always the same game episode is played but some variation (exploration)
occurs.

Example for TicTacToe: The implementation in GameBoardTTT returns
with probability 0.5 the default start state (empty board) and with prob-
ability 0.5 one out of the possible next actions (an "X’ in any of the nine
board positions).

Implementing classes: GameBoardTTT, GameBoard2048, ...

3.8 Human interaction with the board and with Arena

During game play: How is the integration between user actions (human moves)
and Al agent actions implemented?

If GameBoard request an action from Arena, then its method isActionReq()
returns true. This causes the selected Al to perform a move. If on the other
hand a human interaction is requested, Arena issues a setActionReq(false)
and this causes isActionReq() to return false as well. GameBoard then
waits for GUI events until a user (human) action is recorded. GameBoard is re-
sponsible for checking whether the human action is legal (isLegalAction()).%
If so, then GameBoard issues an advance(). Method advance () opens the
possibility for invoking random elements from the game environment (e. g.
adding a new tile in 2048), if necessary.

When all this has happened, GameBoard sets its internal state such that
isActionReq() returns true again. Thus it asks Arena for the next action and
the cycle continues. Finally, Arena detects an isGameOver ()-condition and
finishes the game play.

3.9 Abstract Class Evaluator

Class Evaluator evaluates the performance of a PlayAgent. Evaluators are
called in menu item 'Quick Evaluation’, during training and at the end of each
competition in menu item 'Multi-Competition’. It is important to note that Eval-
uator calls have no influence on the training process, they just measure the
(intermediate or final) strength of a PlayAgent.

In the constructor

public Evaluator(PlayAgent e_PlayAgent, int stopEval,
int mode, int verbose);

¢ see method HGameMove (x,y) in GameBoardTTT for an example.

14

the argument mode allows derived classes to create different types of evalua-
tors. These may test different abilities of PlayAgent.”

A normal evaluation is started by calling Evaluator’s method eval which
calls in turn the abstract method

abstract protected boolean eval_Agent();

and counts the consecutive successful returns from that method. The argument
stopEval sets the number of consecutive evaluations that the abstract method
eval_Agent () has to return with true until the evaluator is said to reach its
goal (method goalReached() returns true). This is used in XArenaFunc’s
method train() as a possible condition to stop training prematurely.

Method eval_Agent () needs to be overridden by classes derived from
Evaluator. It returns true or false depending on a user-defined success cri-
terion. In addition, it lets method double getLastResult() return a double
characterizing the evaluation result (e.g. the average success rate of games
played against Minimax player).

Concrete objects of class Evaluator are usually constructed by the factory
method

abstract public Evaluator makeEvaluator(PlayAgent e_PlayAgent,
int stopEval, int mode, int verbose);

in Arena or ArenaTrain.
Implementing classes: EvaluatorTTT, Evaluator2048, ...

3.10 Abstract Class Arena

Class Arena is an abstract class for loading agents and playing games. Why
is it an abstract class? — Arena has to create an object implementing interface
GameBoard, and this object will be game-specific, e. g. a GameBoardTTT
object. To create such an object within the general Arena-code, the factory
method pattern is used: Arena defines the abstract methods

abstract public GameBoard makeGameBoard();
abstract public Evaluator makeEvaluator(...);

"For complex games it is often very difficult or impossible to have a perfect evaluator. Re-
member that (a) that the game tree can be too complex to retrieve the perfect action for a certain
state and that (b) a perfect Evaluator should evaluate the actions of PlayAgent to every possible
state, which would take too long (or is impossible) for games with larger state space complexity.
A partial way out is to have different Evaluator modes which evaluate the agent from different
perspectives.

15

The first method is a factory method for GameBoard objects. The second
method is a factory method for Evaluator objects. Both will be implemented
by classes derived from Arena. That is, a derived class ArenaTTT can be very
thin, it just implements the methods makeGameBoard () and makeEvaluator ()
and lets them return (in the example of TicTacToe) GameBoardTTT and Evalu-
atorTTT objects, resp.

Class Arena has in addition the factory method

public Feature makeFeatureClass(int);

If it is not overridden by derived classes, it will throw a RuntimeException (no
game-tailored Feature object available). If a class derived from Arena wants to
use a trainable agent requiring Feature (e. g. TDAgent) then it has to override
makeFeatureClass.

Class Arena has similarly the factory method

public XNTupleFuncs makeXNTupleFuncs();

which can be used to generate a game-tailored XNTupleFuncs object, if needed
(if agent TDNTupleAgt is used). If not overridden, it will throw a RuntimeException.
Class Arena has the following functionality:

e choice of agents for each player (load)

playing games (Al agents & humans)

inspecting the move choices of an agent

logging of played games (option for later replay or analysis)

a slider during agent-agent game play to control the playing velocity
e (TODO) undo/redo possibilities

e (TODO) game balancing

e (TODO) game leagues, round-robin tournaments, ...

Derived abstract class: ArenaTrain. Derived non-abstract classes: Are-
naTTT, Arena2048, ...

16

3.11 Abstract Class ArenaTrain

Class ArenaTrain is an abstract class derived from Arena which has additional
functionality:

e specifying all parameters for an agent

training an agent (one or multiple times)

evaluating agents, competitions (one or multiple times)

saving agents
e (TODO) replay memory for better training

The helper classes XArenaFuncs, XArenaButtons, XArenaMenu, XArenaTabs
contain functionality needed for Arena and ArenaTrain.
Derived non-abstract classes: ArenaTrainTTT, ArenaTrain2048, ...

4 Use Cases and FAQs

4.1 | have implemented game XYZ and want to use Al agents from
GBG - what do | have to do?

As a game developer you have to implement the following four interfaces for
your game:

e StateObserverXYZ implements StateObservation
e GameBoardXYZ implements GameBoard
e EvaluatorXYZ extends Evaluator

e FeatureXYZ extends Feature (only needed, if the game wants to use
trainable agents like TDAgent).

e XNTupleFuncsXYZ extends XNTupleFuncs (only needed, if the game
wants to use the n-tuple agent TDNTupleAgt).

Once this is done, you only need to write a very ’thin’ class ArenaTrainXYZ
with suitable constructors, which overwrites the abstract methods of class Are-
naTrain with the factory pattern methods

17

public GameBoard makeGameBoard() {
gb = new GameBoardXYZ(this);
return gb;
by
public Evaluator makeEvaluator(PlayAgent pa, GameBoard gb,
int stopEval, int mode, int verbose) {
return new EvaluatorXYZ(pa,gb,stopEval,mode,verbose);

+
If needed, you should overwrite the methods (see Sec. 4.5 and Sec. 4.6)

public Feature makeFeaturClass(int featmode) {
return new FeatureXYZ(featmode);

+

public XNTupleFuncs makeXNTupleFuncs() {
return new XNTupleFuncsXYZ();

+

as well.

If you do not want to use the agents TDAgent and TDNTupleAgt needing
these factory methods, you may just implement stubs throwing suitable excep-
tions:

public Feature makeFeaturClass(int featmode) {
throw new RuntimeException("Feature not implemented for XYZ");
+
public XNTupleFuncs makeXNTupleFuncs() {
throw new RuntimeException("XNTupleFuncs not implemented for XYZ");

by

Finally you need a class with main() to launch ArenaTrain. You may copy
and adapt the example in LaunchTrainTTT.

Then you can use for your game all the functionality laid down in ArenaTrain
and all the wisdom of the Al agents implementing PlayAgent. Cool, isn’t it?
4.2 How to train an agent and save it

1. Create an ArenaTrain object

2. Select an agent and set its parameters

3. Set training-specific parameters:

18

e maxTrainNum: 'Training games’ = number of training episodes,

e numEval: after how many episodes an intermediate evaluation is
done,

e epilength: 'Episode length’ = maximum allowed number of moves
in a training episode. If it is reached, the game is stopped and
PlayAgent.estimateGameValue() is returned (either up-to-now-
reward or estimate of current + future rewards). If the game ter-
minates earlier, the final game score is returned.

4. Train the agent & visualize intermediate evaluations.
5. Optional: Inspect the agent (how it responds to certain board situations).

6. Save the agent

4.3 Which Al's are currently implemented for GBG?
The following Al’'s (agents) are currently implementing interface PlayAgent:
e Class TDAgent (Temporal difference reinforcement learning)
e Class TDNTupleAgt (Temporal difference learning with n-tuples)
e Class MCTS (Monte Carlo Tree Search)
e Class MC (pure Monte Carlo search)
e Class MinimaxAgent (Minimax tree search of prescribed depth)
e Class RandomAgent (an agent acting completely randomly)

e Class HumanAgent (an agent waiting for human input on the game board)

4.4 How to write a new agent (for all games)?

Of course your new agent NewAgent has to implement the interface PlayAgent.
You may want to derive your new agent from AgentBase to have a few basic
functions already with their default implementations. These functions can be
overridden if necessary.

The new agent should as well implement the interface Serializable (java.io)
to be loadable and savable.

There are a few places in the code where the new agent has to be regis-
tered:

19

Types.GUI_AGENT_LIST: Add a suitable agent nickname "nick". This is
how the agent will appear in the agent choice boxes.

XArenaFuncs.constructAgent (): Add a suitable clause
if (sAgent.equals("nick"))

XArenaFuncs.fetchtAgent (): Add a suitable clause
if (sAgent.equals("nick"))

XArenalMenu.loadAgent (): Add a suitable clause
if (td instanceof NewAgent)

LoadSaveTD.loadTDAgent (): Add a suitable clause
if (obj instanceof NewAgent)

4.5 How to specialize the TD agent to a new game?

Suppose you have implemented a new game XYZ and want to write a TD agent
(temporal difference agent) which learns this game. What do you have to do?
— Luckily, you can re-use most of the functionality laid down in class TDAgent
(see Sec. 3.2).

1. Write a new Feature class
public class FeatureXYZ implements Feature, Serializable

This is the only point where some code needs to be written: Think about
what features are useful for your game. In the simplest case this might
be the raw board positions, but these features may characterize the win-
or loose-probability for a state only rather indirectly. Other patterns may
characterize the value (or the danger) of a state more directly. For exam-
ple, in the game TicTacToe any two-in-a-line opponent pieces accompa-
nied by a third empty position pose an immanent threat. A typical feature
may be the count of those threats. N-tuple sets (Lucas [2008], Thill et al.
[2014], Bagheri et al. [2015], Thill [2015]) are another way of generat-
ing a large number of features in a generic way (but they are not part of
TDAgent, see Sec. 4.6, Appendix C and TDNTupleAgt instead).

2. Add to ArenaXYZ and ArenaTrainXYZ the overriding method

public Feature makeFeatureClass(int featmode) {
return new FeatureXYZ(featmode);

}

20

TDAgent will generate by reinforcement learning a mapping from feature
vector to game value (estimates of the final score, see Sec. 3.4) for all relevant
game states.

The class ArenaTrainTTT (together with FeatureTTT) may be inspected to
view a specific example for the game TicTacToe.

4.6 How to write a new TDNTupleAgt agent for a specific game?

Suppose you have implemented a new game XYZ and want to write a TD (tem-
poral difference) agent using n-tuples which learns this game. What do you
have to do? — Luckily, you can re-use most of the functionality laid down in
class TDNTupleAgt (see Sec. 3.2). As a game implementer you have to do the
following:

1. Write a new XNTupleFuncs class (Sec. 3.6)

public class XNTupleFuncsXYZ
implements XNTupleFuncs, Serializable

Here you have to code some rather simple things like the number of board
cells in your game (getNumCells()) and the number of position values
(getNumPositionValues()) that can appear in each cell. This is for ex-
ample 9 and 3 (O/empty/X) in the game TicTacToe.

Next you implement
int[] getBoardVector(so)

which transforms a game state so into an int[]1 board vector (length:
getNumCells()). See Appendix C.1 for board cell numbering and a spe-
cific example.

If your game has symmetries (the game TicTacToe has for example eight
symmetries, 4 rotations x 2 mirror reflections), the function

int[]1[] symmetryVectors(int[] boardVector)
should return for a given board vector all symmetric board vectors (in-

cluding itself). If the game has no symmetries, it returns just the board
vector itself.

The method

21

HashSet adjacencySet(int iCell)

returns the set of cells adjacent to the cell with number iCell. Whether
adjacency is a 4-point- or an 8-point-neighborhood or something else is
defined by the user. This function is needed by TDNTupleAgt if the shape
of the n-tuples is to be created by random walk.

Finally you implement
int[J[] fixedNTuples()

a function returning a fixed set of n-tuples suitable for your game. If you
do not need fixed n-tuple sets, you may leave fixedNTuples() unimple-
mented (i. e. let it throw an exception) and chose in the NTPar (n-tuple
params) tab 'Random n-tuple generation’.

2. Add to ArenaXYZ and ArenaTrainXYZ the overriding method

public XNTupleFuncs makeXNTupleFuncs() {
return new XNTupleFuncsXYZ();
}

The class ArenaTrainTTT (together with XNTupleFuncsTTT) may be in-
spected to view a specific example for the game TicTacToe.
TDNTupleAgt offers several possibilities to construct n-tuples:

(a) using a predefined, game-specific set of n-tuples (see fixedNTuples()
above),

(b) random n-tuples generated by random-cell-picking (the cells in an n-tuple
are in general not adjacent), and

(c) random n-tuples generated by random walk (every cell in each n-tuple
has adjacent at least one other cell of this n-tuple; needs method adjacencySet,
see above).

A cell may (and often should) be part of several n-tuples.
See Appendix C for further information on n-tuples.

22

5 Open Issues

The current GBG class framework is still in its test phase. The design of the
classes and interfaces may need further reshaping when more games or agents
are added to the framework. There are a number of items not fully tested or not
yet addressed:

e The GUI for Arena and ArenaTrain is just a quick hack adapted from
earlier programs and may need further refinement.

e The above-mentioned elements for Arena and ArenaTrain and further el-
ements that are planned but not yet implemented:

— Add Arena and ArenaTrain launchers which allow to select between
the different implemented games and then launch the appropriate
derived Arena and ArenaTrain class.

— undo/redo possibilities

— game balancing

— game leagues, round-robin tournaments, ...

— option to enable/disable game value display during game play

— client-server architecture for game play via applet on a game page.
Option for a ’hall of fame’. An example for the game Hexi is found
under http://www.dbai.tuwien.ac.at/proj/ramsey.

— Implement the game Sim (= Hexi) in the Arena and ArenaTrain
framework. A Java code example of the Sim board GUI may be
found under http://www.dbai.tuwien.ac.at/proj/ramsey. Generalize
the number of nodes (not only 6). Later, one may create a 3-player
variant of Sim and test the framework on this.

— Replay memory for better training: This is the idea used by Deep-
Mind in learning Atari video games. Played episodes are stored in
a replay memory pool and used repeatedly for training.

e The extension to n-player games (n > 2) is not fully functional yet. An
example to fully implement and test n-player games can be the 3-player
variant of the game Sim. The cases n = 1 and n = 2, which are fully
functional, need also to be tested on a variety of 1- and 2-player games.

¢ Another 3-player game which could be tested is Skat.

23

http://www.dbai.tuwien.ac.at/proj/ramsey
http://www.dbai.tuwien.ac.at/proj/ramsey

A Appendix: Interface Summary

AA

~

*
*

Clas
it h

<1li>
<1li>
<1li>
<1li>
</ul

¥ O X K X K ¥ X ¥ X

Qaut
*/

Interface StateObservation

s State(Observation observes the current state of the game,
as utility functions for

returning the available actions (getAvailableActions()),

advancing the state of the game with a specific action (advance()),
copying the current state

signaling end, score and winner of the game
>

hor Wolfgang Konen, TH K&ln, Nov’16

public interface State(Observation {

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

by

StateObservation copy();

String stringDescr();

double getGameScore();

double getGameScore(StateObservation referingState);
double getMinGameScore();

double getMaxGameScore();

void advance(ACTIONS action);

boolean isLegalState();

boolean isGameOver();

Types .WINNER getGameWinner();

ArrayList<ACTIONS> getAvailablelctions();

void setAvailableActions();

int getNumAvailableActions();

Types.ACTIONS getAction(int i);

void storeBestActionInfo(ACTIONS actBest, double[] vtable);
int getNumPlayers(); // n

int getPlayer(); // (0,1,...,n-1)

int getPlayerPM(); // (+1,-1) for a 2-player game

24

A.2 Interface GameBoard

VAL
Each class implementing interface GameBoard has the board game GUI.

*
*
* It has an internal object derived from StateObservateion which

* represents the current game state. It can be retrieved (getStateObs()),
* reset and retrieved (getDefaultStartState()) or a random start

* state can be chosen (@link #chooseStartState01()).

* Qauthor Wolfgang Konen, TH Koéln, Nov’16

*/

public interface GameBoard {

public void clearBoard(boolean boardClear, boolean vClear);

public void updateBoard(StateObservation so, boolean showStoredV,
boolean enableOccupiedCells);

public void showGameBoard(ArenaTrain ticGame);

public boolean isActionReq(); // action requested from Arena?

public void setActionReq(boolean actionReq);

public void enableInteraction(boolean enable);

public StateObservation getStatelbs();

public StateObservation getDefaultStartState(); // empty-board state

public StateObservation chooseStartState01();

¥

A.3 Interface PlayAgent

/**
* The abstract interface for the game playing agents.
*
* Q@author Wolfgang Konen, TH Koln, Nov’16
*/
public interface PlayAgent {
public enum AgentState {RAW, INIT, TRAINED};

public Types.ACTIONS getNextAction(StateObservation sob, boolean random,

double[] vtable, boolean silent);
public double getScore(StateObservation sob);

25

public double estimateGameValue(StateObservation sob);
public boolean wasRandomAction(); // was last getNextAction random?
public boolean trainAgent(StateObservation so); // for one episode
public boolean trainAgent(StateObservation so,
int epilength); // with episode length limit
public String printTrainStatus();
public String stringDescr();
public String getName();
public void setName(String name);
public AgentState getAgentState();
public void setAgentState(AgentState aState);
public int getMaxGameNum() ;
public void setMaxGameNum(int num);
public int getGameNum() ;
public void setGameNum(int num);

A.4 Interface Feature

VESS

Interface Feature translates game states into feature vectors.

%
*
* Method prepareFeatVector(so) returns the feature vector
* for state so. Child classes have usually constructors accepting a
* gingle argument ’featmode’. The argument ’featmode’ allows to
* construct different flavors of Feature objects.
* The acceptable values for ’featmode’ in a certain child class
* are retrieved with getAvailFeatmode().
*/
public interface Feature {
public double[] prepareFeatVector(StateObservation so);
public String stringRepr(double[] featVec);
public int getFeatmode();
public int[] getAvailFeatmode();
public int getInputSize(int featmode);
+

26

A.5 Interface XNTupleFuncs

/ ®%

* Interface XNTupleFuncs contains game-specific functions

* for

*/
public
public
public
public
public
public
public
public
+

using n-tuple sets.

interface XNTupleFuncs {

int getNumCells();

int getNumPositionValues();

int getNumPlayers();

int[] getBoardVector(StateObservation so);
int[1[] symmetryVectors(int[] boardVector);
int[J[] fixedNTuples();

HashSet adjacencySet(int iCell);

A.6 Abstract class Evaluator

VELS

* Evaluates the performance of a PlayAgent in a game.

*/

abstract public class Evaluator {
protected PlayAgent m_PlayAgent;
protected int verbose=1;

public
public
public
public
public
public
public
public

Evaluator(PlayAgent e_PlayAgent, int stopEval);
Evaluator(PlayAgent e_PlayAgent, int stopEval, int verbose);
boolean eval();

boolean goalReached(int gameNum);

boolean setState(boolean stateE);

boolean getState();

String getMsg();

String getMsg(int gameNum);

abstract protected boolean eval_Agent();
abstract public double getLastResult();

+

27

A.7 Abstract class Arena

* This class contains the GUI and the task dispatcher for the game.
* The GUI for buttons and choice boxes is in {@link XArenaButtons}.
*
* Run this class from the {@code main} in {@link LaunchArenaTTT})
* for the TicTacToe game.
*
* Qauthor Wolfgang Konen, TH Koln, Nov’16
*/
abstract public class Arena extends JPanel implements Runnable
{
public enum Task {PARAM, TRAIN, MULTTRN, PLAY, INSPECTV
, COMPETE, SWAPCMP, MULTCMP, IDLE };
protected GameBoard gb;
public Task taskState;
public Arena();
public Arena(JFrame);
public void init();
public void run();
public void PlayGame();
public void enableButtons(boolean state);
public void setStatusMessage(String msg);
public StatusBar getStatusBar();
public Feature makeFeatureClass(int featmode);
public XNTupleFuncs makeXNTupleFuncs();
abstract public String getGameName() ;
abstract public GameBoard makeGameBoard();
abstract public Evaluator makeEvaluator(PlayAgent pa, GameBoard gb,
int stopEval, int mode, int verbose);
abstract public void performArenaDerivedTasks();

+

A.8 Abstract class ArenaTrain

/**

28

* This class contains the GUI for the arena with train capabilities.

* It extends the task dispatcher of Arena with method

* performArenaDerivedTasks() which contains tasks to trigger functions
* for agent learning, parameterization, inspection and so on.
*
*

Qauthor Wolfgang Konen, TH K&ln, Nov’16
*/
abstract public class ArenaTrain extends Arena
{
public ArenaTrain();
public ArenaTrain(JFrame frame);
public void performArenaDerivedTasks(); // extend task dispatcher
protected void InspectGame(); // inspect agent X on game positions

¥

B Appendix: Other Game Value Functions

Sec. 3.2 and 3.4 have introduced with PlayAgent . getScore (StateObservation
so) the main function to retrieve a game value. There are two other functions
delivering a game value; they are only required for more advanced needs:

e Interface StateObservation delivers with getGameValue () a game-specific
(and hard-coded) version of a game value heuristic. For example, the
game of chess has a heuristic based on weighted piece counts which
delivers a rough estimate of the game value. If a good heuristic is known,
this option is simple to implement. & If such a heuristic is not known,
getGameValue () might simply return getGameScore().

e Interface PlayAgent delivers with estimateGameValue (sob) a more flex-
ible approach: Such a function can be made trainable / adjustable from
previous experiences that the agent has made. For example, a class im-
plementing PlayAgent might learn the game value function from self-play
(via trainable weights or via a neural net). The weights have of course to
operate on something, therefore a set of features extractable from Sta-
teObservation is necessary.® These features, normally represented by

81t is of course a bit against the idea of general game playing, since knowledge about the
game tactics is in one way or the other implicitly coded in such a heuristic. But the same argu-
ment applies to feature construction as well.

®The raw state could be used as feature in principle, but it will be in most cases too difficult to
establish a mapping from raw features to game value.

29

an object implementing Feature, can be something like number and kind
of pieces, number of empty cells and so on. See Sec. 3.5 for more infor-
mation about interface Feature.

A potential use of sob.getGameValue() or pa.estimateGameValue (sob)
is to compute in MC or MCTS the final value of a random rollout in cases where
the rollout did not reach a terminal game state (since the episode lasts longer
than the ’Rollout depth’ as it is for example in 2048 often the case).

It is dependent on the class implementing PlayAgent what

estimateGameValue (sob)

actually returns. If it is too complicated to train a value function (or if it is simply

not needed, because for a game like TicTacToe we come always to an end dur-

ing rollout), then estimateGameValue (sob) may simply return sob.getGameValue ()
or sob.getGameScore().

If we integrate a trainable game value estimation into a class implement-
ing PlayAgent, then agents that formerly did not need training (Minimax, MC,
MCTS, ...) will require training. They should be after construction in AgentState
INIT. How the training is actually done depends fully on the implementing agent.

Is there a need to distinguish between an PlayAgent’s pa.getScore(sob)
and pa.estimateGameValue(sob)? — Yes, it is! For a PlayAgent that uses
estimateGameValue(sob) inside getScore(sob) (as it may be the case for
Minimax, MCTS and MC), it is necessary to override its method

estimateGameValue (sob)

in such a way that it does not make a call to getScore(sob). Otherwise an
infinite loop would result.

C Appendix: N-Tuples

C.1 Board Cell Numbering

Each n-tuple is a list of board cells Lucas [2008]. Board cells are specified by
numbers. The canonical numbering for a rectangular board is row-by-row, from
left to right. For example, a 4 x 4 board would carry the numbers

00 01 02 03
04 05 06 07
08 09 10 11
12 13 14 15

30

-
ursirey

GH;QQ

¢ oos]-

o o oo -

T%@@ o
)

12
s Y
fo S

9
o

(a) (b)

Figure 2: Two examples for n-tuples: (a) 3 n-tuples, (b) 4 n-tuples of varying
length and placement.

Other (irregular) boards may carry other (user-specified) cell numbers. Each
choice of numbering is 0.k., it has only to be used consistently throughout the
game.

Given the board cell numbering, the method

int[] XNTupleFuncs::getBoardVector(StateObservation so)

returns a board vector with the position value for each board cell according to
this numbering. Take for example the canonical board cell numbering and the
game TicTacToe, where the board cells run from 00 to 08. The position values
are 0: O, 1: empty, 2: X. For state sA in Fig. 1 the board vector is

bVec = {1, 1, 0, 1, 2, 2, 1, 1, 13};

C.2 N-Tuple Creation

Fig. 2 shows two examples of 4 x 4 boards with fixed (user-specified) n-tuple
sets. The canonical cell number is obtained from

4 x row_number + col_number

Example (a) would be coded in a class derived from XNTupleFuncs as

31

public int[][] fixedNTuples() {
int nTuple(][]={ {0,1,2,3}, {1,5,6,2}, {0,4,8,9,10,11} };
return nTuple;

+
Example (b) would be coded as

public int[][] fixedNTuples() {
int nTuplel][1={ {4,5,6,7}, {2,6,7,3}, {0,4,8,9,13}, {10,11} 3};
return nTuple;

+

Each n-tuple contains each cell at most once. But different n-tuples may (and
often should) contain the same cell multiple times.

Fixed n-tuples are a user-specified way of creating n-tuples. It is also pos-
sible to let the n-tuple factory build random n-tuples:

1. Random points: Cells are picked at random, no cell twice'®, no topo-
graphical connection. This is often not advantageous because in many
board games the neighborhood of a cell is more important for determining
its value than an arbitrary other more distant cell.

2. Random walks: Cells are picked at random, no cell twice, with adjacency
constraint. That is, each cell of the n-tuple list must be adjacent to at least
one other cell in the n-tuple. What adjacent actually means in a certain
game is specified by the user through the XNTupleFuncs method

/* Return all neighbors of cell number iCell */
public HashSet adjacencySet(int iCell);

C.3 N-Tuple Training and Prediction

How are the n-tuples used to generate features? — Each n-tuple has an asso-
ciated look-up table (LUT) of length P™ where n is the n-tuple length and P is
the number of position values'' each cell might have. Consider the example of
TicTacToe with 3 cell position values {X,-,0} (P = 3) leading for an n-tuple of
length n = 2 to 32 = 9 possible LUT entries

X0, -0, 00

Owithin the same n-tuple
"the number that XNTupleFuncs method getNumPositionValues () returns

32

These are features. Even for a small number of n-tuples this will generate quite
a large number of features. For example in Fig. 2(a), the number of features is
3% + 3% 4+ 35 = 891. On a larger board, a more realistic setting would be, for
example, 40 n-tuples of length 8, resulting in 40 - 3% = 262 440 features.

Each feature ¢ in n-tuple v has an associated weight w, ;. Given a certain
board state, we look first which of those features are active (x,; = 1) or inactive
(z,,; = 0) in that board state. Then the n-tuple network computes its estimate
v (est) of the game value through

m P"—1
ven o (z > w> g

v=1 =0

which is simply a neural net without hidden layer and with a sigmoid function
o(+)."? We compare the estimate generated by this net with the target game
value V prescribed by TD-learning. A J-rule learning step with step-size «
(gradient descent) is made for each weight in order to decrease the perceived
difference 6 = V — V(¢5!) between both game values (Thill et al. [2014], Thill
[2015]).

For complex games it might be necessary to train such a network for several
hundred thousand or even million games in order to reach a good performance.
The so-called eligibility traces are a general technique from TD-learning to
speed up learning. They can be activated in the GBG framework by setting
parameter A > 0 in the TD pars parameter tab. Further details on eligibility
traces are found in Thill et al. [2014].

Once the network is trained, the game value estimate V(¢5Y) is used to
decide about the next action.

To further speed up learning, symmetries may be used: Symmetries are
transformations of the board state which lead to board states with the same
game value. If the weights for symmetric states are trained simultaneously, this
will lead to better generalization of the trained agent. For example in the case of
TicTacToe, there are eight symmetries: the board state itself plus its three 90°
rotations and the mirrored board state with its three 90° rotations. Instead of
performing only one learning step with the board state itself, one can do eight
learning steps with all symmetric states. This may greatly speed up learning,
since more weights can learn on each move and the network generalizes better.

The knowledge of the symmetric states is game-specific. The user has to
code it in XNTupleFuncs method

2In TDNTupleAgt the sigmoid function is always ¢ = tanh (see helper class
NTupleValueFunc), so that V(¢*") ¢ [~1, 1] holds.

33

public int[][] symmetryVectors(int[] boardVector);

See Sec. 3.6 and Sec. 4.6 for further information on this method.

References

S. Bagheri, M. Thill, P. Koch, and W. Konen. Online adaptable learn-
ing rates for the game Connect-4. [EEE Transactions on Computational
Intelligence and Al in Games, 8(1):33-42, 2015. doi: http://dx.doi.
org/10.1109/TCIAILG.2014.2367105. URL http://www.gm.fh-koeln.de/
“konen/Publikationen/Baghlb.pdf. 13, 20

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016. 6

S. L. Epstein. Learning to play expertly: A tutorial on Hoyle. Machines that
learn to play games, pages 153—178, 2001. 5

Michael Genesereth and Michael Thielscher. General game playing. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning, 8(2):1-229,
2014. URL https://wiki.eecs.yorku.ca/course_archive/2014-15/F/
4412/ _media/game_playing.pdf. 5

Michael Genesereth, Nathaniel Love, and Barney Pell. General game
playing: Overview of the aaai competition. Al magazine, 26(2):
62, 2005. URL https://vvvvw.aaai.org/ojs/index.php/aimagazine/
article/download/1813/1711. 5

W. Konen. Reinforcement learning for board games: The temporal difference
algorithm. Technical report, Research Center CIOP (Computational Intelli-
gence, Optimization and Data Mining), Cologne University of Applied Sci-
ences, 2015. URL http://www.gm.fh-koeln.de/ciopwebpub/Konelbc.
d/TR-TDgame_EN.pdf. 9

John Levine, Clare Bates Congdon, Marc Ebner, Graham Kendall, Simon M
Lucas, Risto Miikkulainen, Tom Schaul, and Tommy Thompson. General
video game playing. Technical report, Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2013. 6

Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael
Genesereth. General game playing: Game description language specifica-
tion, 2008. 5

34

http://www.gm.fh-koeln.de/~konen/Publikationen/Bagh15.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/Bagh15.pdf
https://wiki.eecs.yorku.ca/course_archive/2014-15/F/4412/_media/game_playing.pdf
https://wiki.eecs.yorku.ca/course_archive/2014-15/F/4412/_media/game_playing.pdf
https://vvvvw.aaai.org/ojs/index.php/aimagazine/article/download/1813/1711
https://vvvvw.aaai.org/ojs/index.php/aimagazine/article/download/1813/1711
http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf

S. M. Lucas. Learning to play Othello with n-tuple systems. Australian Journal
of Intelligent Information Processing, 4:1-20, 2008. 13, 20, 30

J. Mandziuk and M. Swiechowski. Generic heuristic approach to general game
playing. In International Conference on Current Trends in Theory and Prac-
tice of Computer Science, pages 649-660. Springer, 2012. 5

J. Méhat and T. Cazenave. Combining UCT and nested Monte Carlo search
for single-player general game playing. IEEE Transactions on Computational
Intelligence and Al in Games, 2(4):271-277,2010. 5

D. Michulke and M. Thielscher. Neural networks for state evaluation in gen-
eral game playing. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 95—110. Springer, 2009. 5

M. Thill. Temporal difference learning methods with automatic step-
size adaption for strategic board games: Connect-4 and Dots-and-
Boxes. Master thesis, Cologne University of Applied Sciences, June
2015. URL http://www.gm.fh-koeln.de/ konen/research/PaperPDF/
MT-Thill2015-final.pdf. 13, 20, 33

M. Thill, S. Bagheri, P. Koch, and W. Konen. Temporal difference learning
with eligibility traces for the game Connect-4. In Mike Preuss and Giinther
Rudolph, editors, CIG’2014, International Conference on Computational In-
telligence in Games, Dortmund, 2014. URL http://www.gm.fh-koeln.de/
“konen/Publikationen/Thill1CIG2014.pdf. 13, 20, 33

35

http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf
http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/ThillCIG2014.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/ThillCIG2014.pdf

	Introduction
	Motivation
	Related Work

	Class and Interface Overview
	Classes in Detail
	Interface StateObservation
	Interface PlayAgent and class AgentBase
	Some Remarks on the Game Score
	Difference between Game Score and Game Value
	Interface Feature
	Interface XNTupleFuncs
	Interface GameBoard
	Human interaction with the board and with Arena
	Abstract Class Evaluator
	Abstract Class Arena
	Abstract Class ArenaTrain

	Use Cases and FAQs
	I have implemented game XYZ and want to use AI agents from GBG – what do I have to do?
	How to train an agent and save it
	Which AI's are currently implemented for GBG?
	How to write a new agent (for all games)?
	How to specialize the TD agent to a new game?
	How to write a new TDNTupleAgt agent for a specific game?

	Open Issues
	Appendix: Interface Summary
	Interface StateObservation
	Interface GameBoard
	Interface PlayAgent
	Interface Feature
	Interface XNTupleFuncs
	Abstract class Evaluator
	Abstract class Arena
	Abstract class ArenaTrain

	Appendix: Other Game Value Functions
	Appendix: N-Tuples
	Board Cell Numbering
	N-Tuple Creation
	N-Tuple Training and Prediction

