

Time Series Encodings with Temporal Convolutional Networks

Unsupervised Representation Learning & Anomaly Detection

<u>Markus Thill</u>, Wolfgang Konen, and Thomas Bäck <u>{markus.thill, wolfgang.konen}@th-koeln.de</u>, <u>t.h.w.baeck@liacs.leidenuniv.nl</u>

Introduction

Motivation & introductory Example

Motivation: Anomaly Detection in Time Series

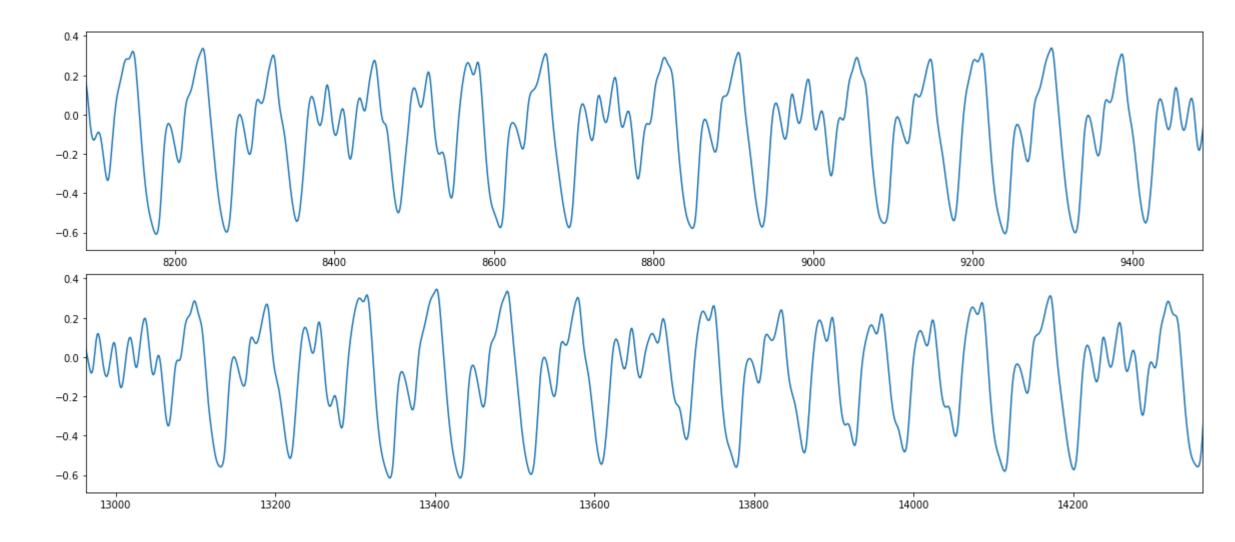
What is an Anomaly?

- An event that deviates from what ist standard, normal or expected
 - Context-based/Temporal Anomaly: value is unusual given the current temporal context
 - Concept Change: statistical properties of certain (target-) variables change over time

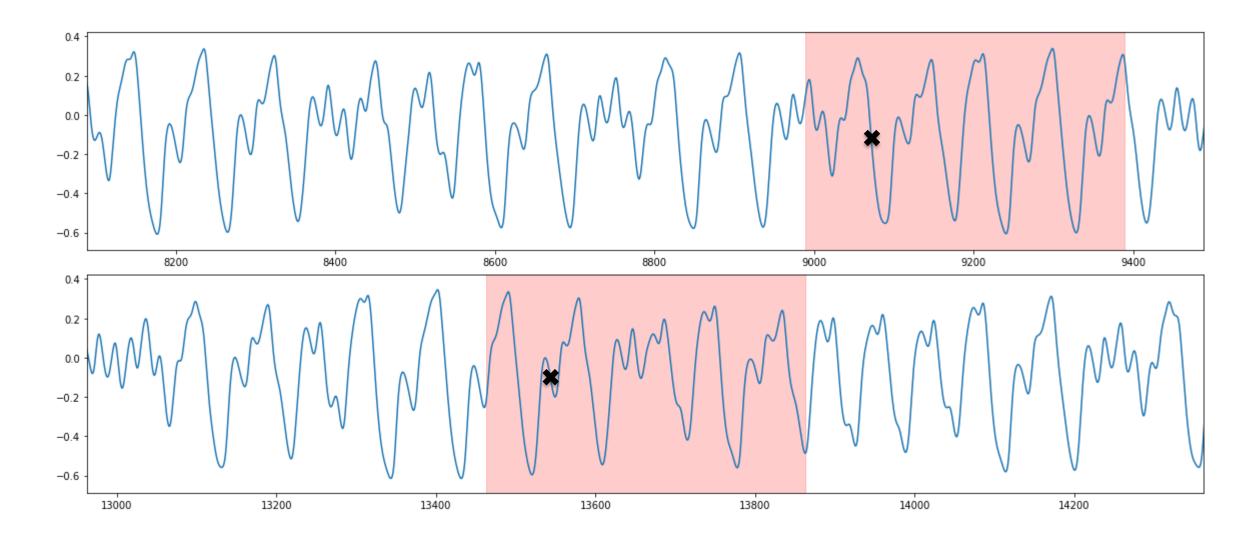
Application of Anomaly Detection Algorithms

- Fraud Detection, E-Commerce, Process Industry, Network Monitoring Tasks,
- Predictive Maintenance, Fault Detection
- Electrocardiogram Readings (ECG)

Motivation



Motivation



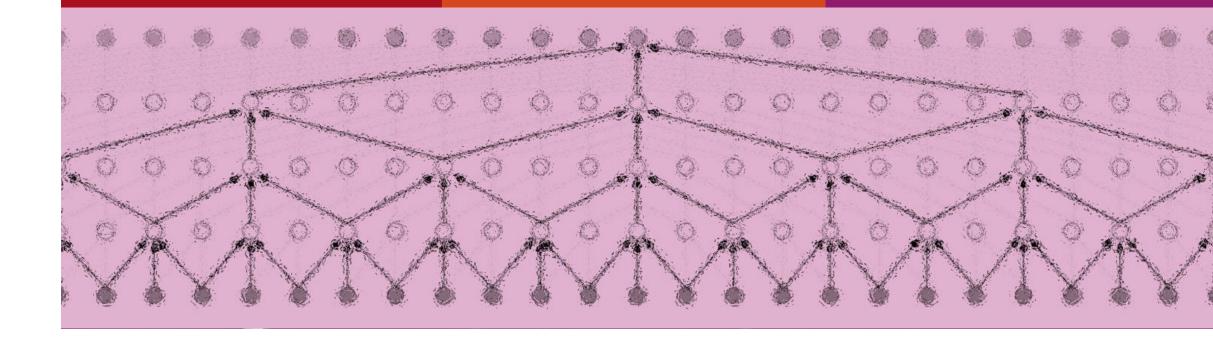
Contributions of the Paper

Temporal Convolutional Autoencoder (TCN-AE)

- An Autoencoder for time series (sequences) based on TCNs
- Applications for time series:
 - Representation learning
 - Unsupervised anomaly detection

Mackey-Glass Anomaly Benchmark (MGAB)

- Synthetic benchmark based on chaotic Mackey-Glass time series
- Well defined, but non-trivial anomalies
- Steerable parameters to generate customized benchmarks



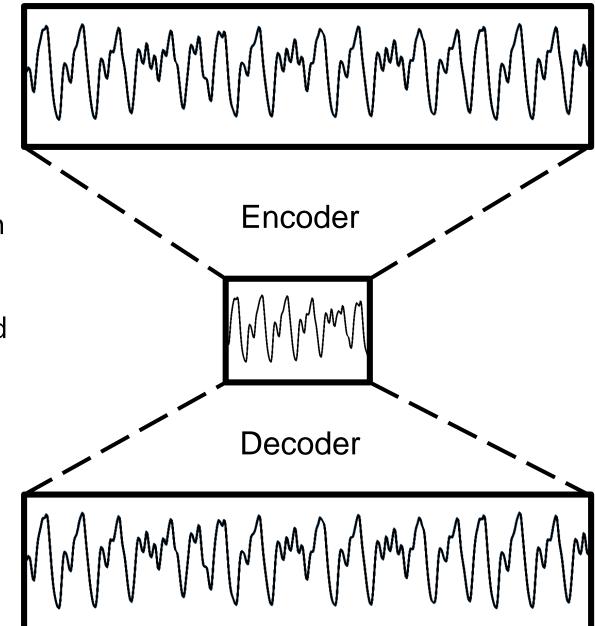
The Temporal Convolutional Autoencoder

An Autoencoder for sequential / Time Series Data

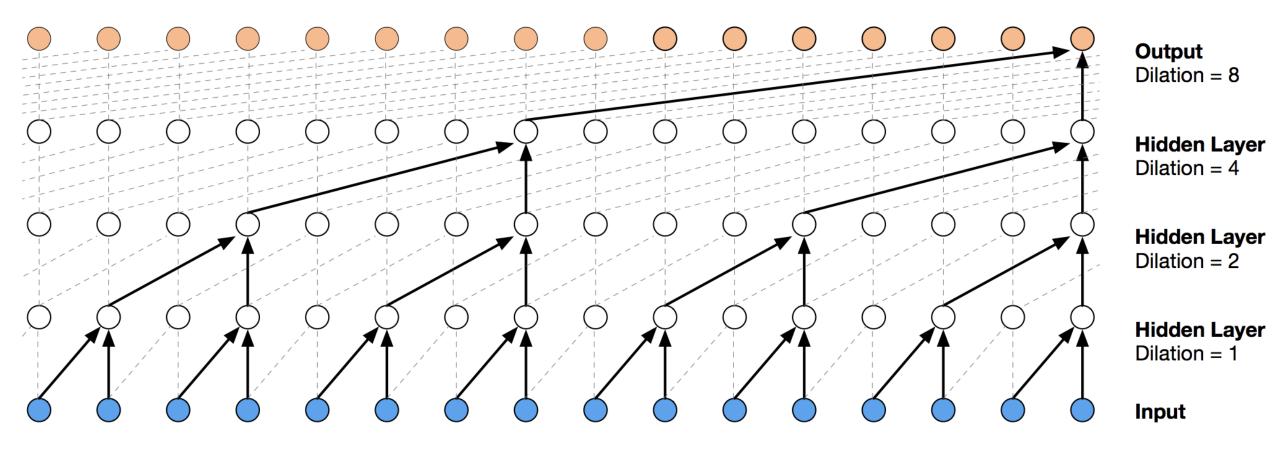
TCN-AE: Intuition

General Idea of TCN-AE Architecture

- Encode a sequence of length T into a significantly shorter sequence of length T/k
- Subsequently, reconstruct (decode) the original sequence from the compressed sequence
- Reconstruction error as indicator for anomalous behavior
- Approach similar to classical (dense) Autoencoder
- *But*: Uses dilated convolutional layers
 - more flexible w.r.t. input size
 - Large receptive field due to dilated filters



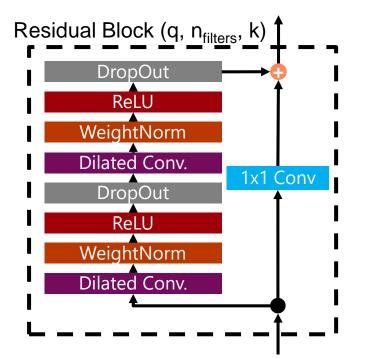
TCN-AE: Dilated Convolutions



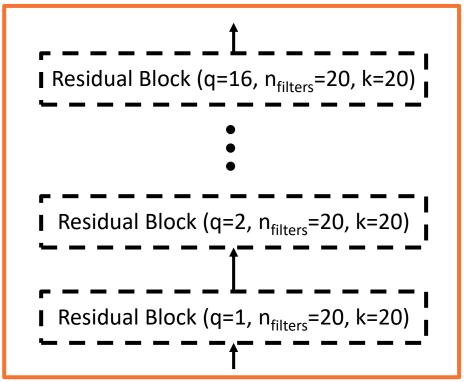
Oord, A. et al.: "WaveNet: A Generative Model for Raw Audio". arXiv:1609.03499 [cs], 2016. http://arxiv.org/abs/1609.03499.

Temporal Convolutional Networks (TCNs)

- TCN: Dilated Convolutions + Residual Connections + Weight Norm. + Dropout
- Mainly described by:
 - A list of dilation rates (q), e.g. (1,2,4,8,16)
 - The number of filters (n_{filters})
 - The kernel size (k)



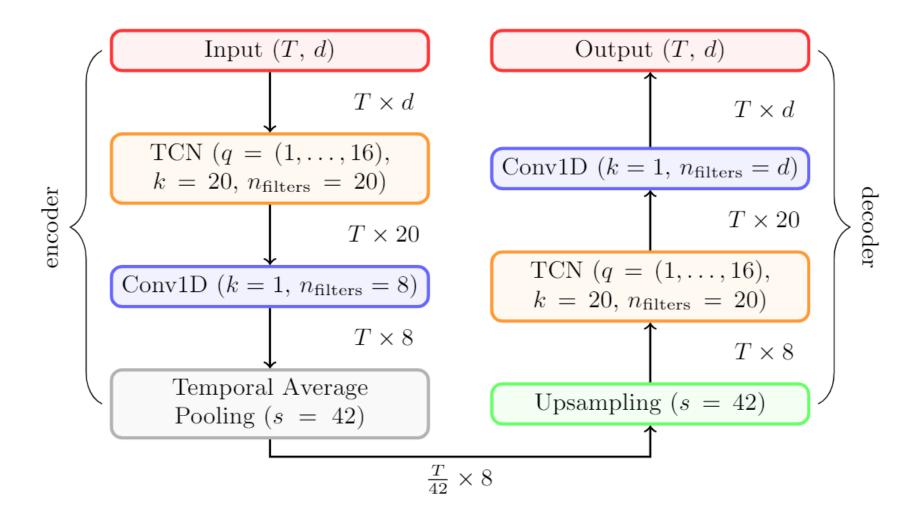
TCN Architecture in this Work



Bai, Shaojie, J. Zico Kolter, und Vladlen Koltun. "An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling". arXiv:1803.01271

BIOMA 2020: Time Series Encodings with Temporal Convolutional Networks | Markus Thill, Wolfgang Konen, Thomas Bäck

The TCN Autoencoder (TCN-AE)



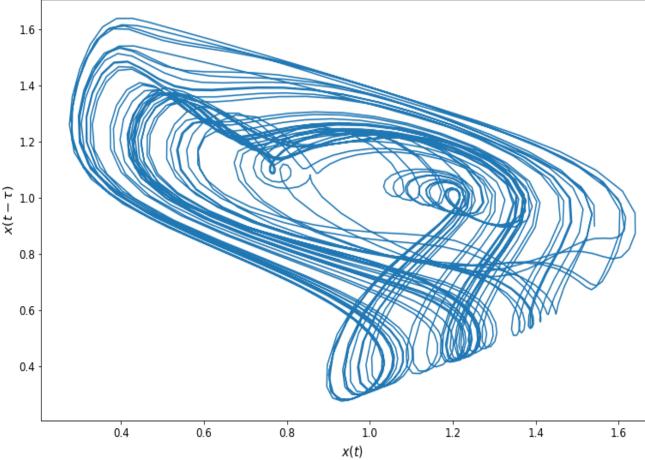
The Mackey-Glass Anomaly Benchmark

The Mackey-Glass Equation

 The Mackey-Glass equation: a so-called non-linear time delay differential equation (DDE), which is defined as:

$$\frac{dx}{dt} = \beta \cdot \frac{x(t-\tau)}{1+x(t-\tau)^n} - \gamma x(t)$$

- exhibits various patterns of chaotic and periodic dynamics
- Time delay embedding to visualize chaos
- Maximum Lyapunov Exponent:
 - Value of $\lambda_{mle} > 0$ indicates chaotic behavior
- Integrate with JiTCDDE package for Python



Mackey-Glass Anomaly Benchmark (MGAB)

Anomaly Insertion Process (Rough Sketch)

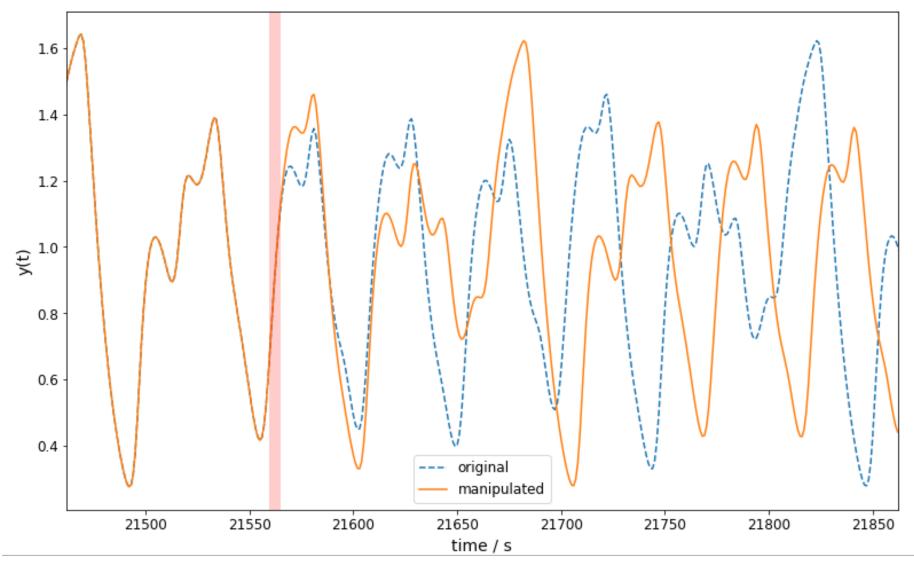
- 1. Create sufficiently long MG time series x(t)
- 2. Compute first 3 derivatives $\dot{x}(t)$, $\ddot{x}(t)$, $\ddot{x}(t)$, $\ddot{x}(t)$
- 3. Randomly select a time t_i
- 4. Now find t_m , such that

$$m = \arg \min_{i+T < k < i+T+M} \left\| \begin{pmatrix} x(t_i) \\ \dot{x}(t_i) \\ \ddot{x}(t_i) \\ \ddot{x}(t_i) \end{pmatrix} - \begin{pmatrix} x(t_k) \\ \dot{x}(t_k) \\ \ddot{x}(t_k) \\ \ddot{x}(t_k) \end{pmatrix} \right\|$$

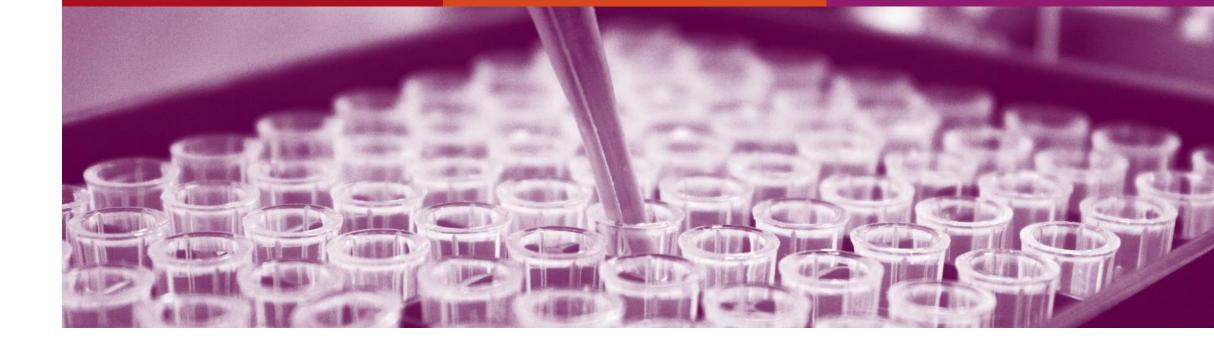
- 5. Remove the segment between t_i and t_m and stick both ends back together
- 6. Go to 3. Repeat until enough anomalies are inserted

GitHub: <u>https://github.com/MarkusThill/MGAB</u>

Mackey-Glass Anomaly Benchmark (MGAB): Insertion Process



BIOMA 2020: Time Series Encodings with Temporal Convolutional Networks | Markus Thill, Wolfgang Konen, Thomas Bäck



Experiments

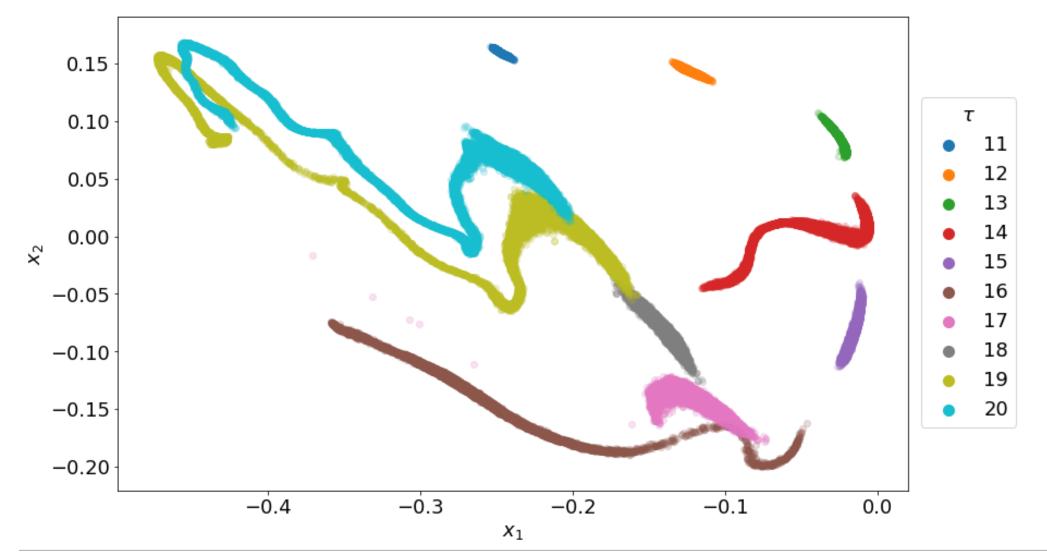
Learning Time Series Representations & Anomaly Detection

TCN-AE: Learning Time Series Representations

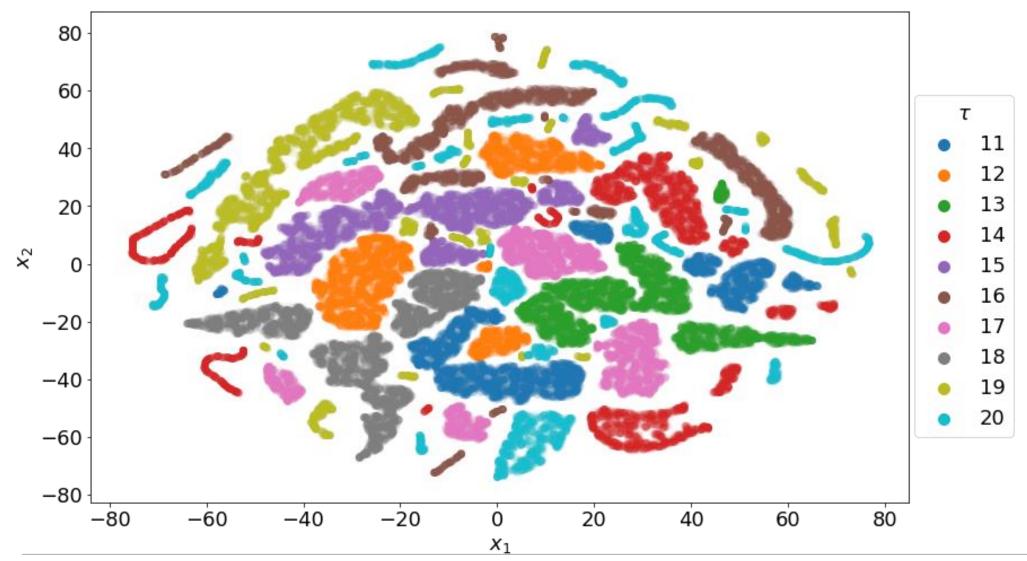
- Assess the capabilities of the TCN-AE architecture in learning representations of time series
- Train a TCN-AE model using many different MG time series with a varying time delay parameter τ
- 10^5 different Mackey-Glass time series (10^4 for each τ in the range of $\tau = 11 \dots 20$
- Each time series of length 256 is encoded into a 2-dimensional compressed representation
- compression rate of 128

BIOMA 2020: Time Series Encodings with Temporal Convolutional Networks

Learning Time Series Representations Results: TCN-AE



TCN-AE: Learning Time Series Representations Results: Comparison with t-SNE



Anomaly Detection Task: Experimental Setup

Benchmark

- 10+1 MG time series of length 100 000 with 10 anomalies each (Σ 100+10 anomalies)
- Parameters: τ =18, n=10, β =0.25, γ =0.1, h=0.9
- Train on 1 time series, test on 10 others
- Select anomaly threshold based on 10% of the anomaly labels (similarly to CV)

Algorithms

- TCN-AE: This work
- NuPIC [2]: Based on Numenta's HTM algorithm
- DNN-AE [3]: Based on a Deep Autoencoder
- LSTM-ED [4]: Encoder-Decoder Model
- LSTM-AD [5]: Our Previous Work

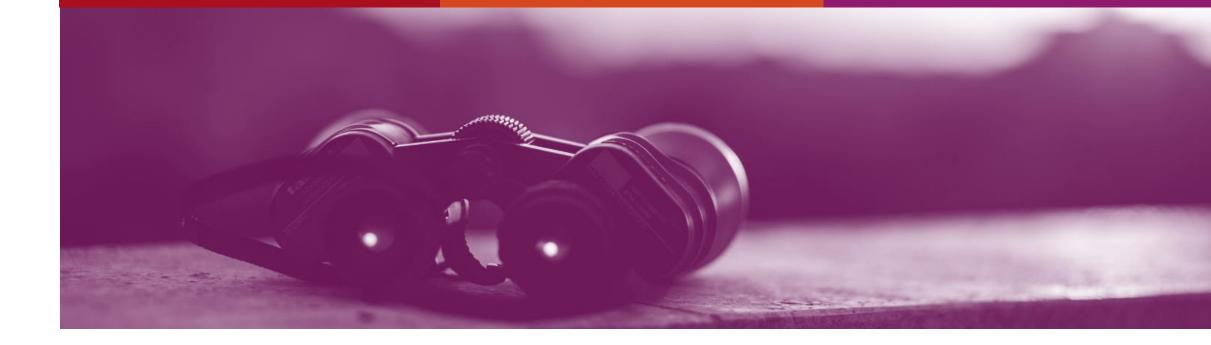
Table 1: Number of Trainable Weights foreach Algorithm

Algorithm	Trainable Weights
NuPIC	-
TCN-AE (This Work)	164,451
LSTM-ED	244,101
DNN-AE	241,526
LSTM-AD	464,537

Anomaly Detection Task: Results for MGAB

Table 2: The results shown here (mean and standard deviation of 10 runs and 10 sub-sequences, are for the sum of TP, FN and FP over all 10 time series.

	ТР	FN	FP	Precision	Recall	F ₁ -Score
Algorithm						
NuPIC [2]	3.00 ± 0.00	97.00 ± 0.00	132 ± 0.00	0.02 ± 0.00	0.03 ± 0.00	0.03 ± 0.00
LSTM-ED [4]	14.60 ± 5.86	85.40 ± 5.86	57.00 <u>+</u> 20.43	0.21 ± 0.08	0.15 ± 0.06	0.17 ± 0.06
DNN-AE [3]	91.79 ± 1.22	8.21 ± 1.22	62.58 ± 13.65	0.60 ± 0.06	0.92 ± 0.01	0.72 ± 0.04
LSTM-AD [5]	88.80 ± 2.59	11.20 ± 2.59	0.62 ± 0.61	0.99 ± 0.01	0.89 ± 0.03	0.94 ± 0.01
TCN-AE [this work]	$\textbf{90.54} \pm \textbf{1.72}$	$\textbf{9.46} \pm \textbf{1.72}$	0.20 ± 0.47	1.00 ± 0.01	0.91 ± 0.02	0.95 ± 0.01



Conclusion & Outlook

Summarizing Remarks and Future Work

Conclusion and Future Work

Summary

- We proposed temporal autoencoder Architecture TCN-AE
- Evaluation of TCN-AE on two tasks:
 - Representation Learning
 - Anomaly Detection (unsupervised)
- Introduction of the Mackey-Glass Anomaly Benchmark (MGAB)
 - Synthetic benchmark with non-trivial anomalies
 - Steerable generation of custom time series

Future Work

- Gain more insights from the representations learnt by the TCN-AE
- Enhancements of the TCN-AE architecture, for example:
 - Reduce sensitivity towards dilation rate (Feature Reuse)
 - Investigate other types of bottlenecks than plain down-sampling
- Real-world anomaly detection tasks, e.g. ECG signals or industrial monitoring tasks

Thank You!