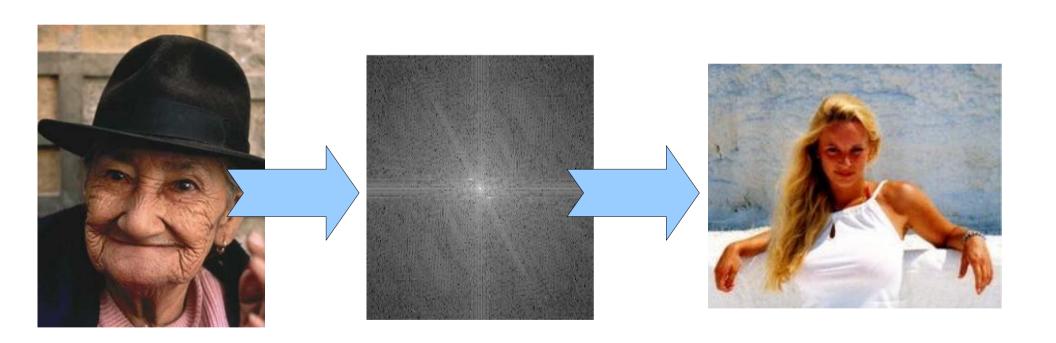
Fouriertransformation

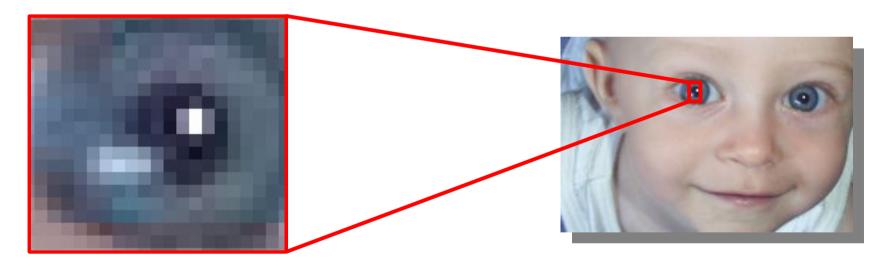
Radix2 fast fourier transform nach Cooley/Tukey



- Mathematische Grundlagen: Komplexe Zahlen und Einheitswurzeln
- Die diskrete Fouriertransformation
- Der Radix2-Algorithmus nach Cooley-Tukey
- Weiterführende Performanceüberlegungen
- Quellen und Literatur

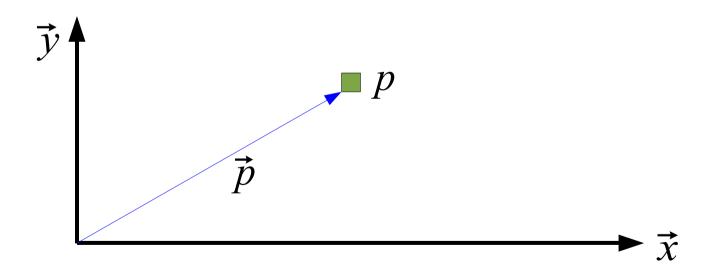
Ortsraum und Vektordarstellung

- Bilder werden im Allgemeinen als Kombination einzelner Pixel verstanden
- Jeder Pixel hat einen ihm zugeordneten Farbwert (z.B. RGB)
- Jeder Pixel hat eine Koordinate (x und y)



Ortsraum und Vektordarstellung (2)

- Idee: Jeder Bildpunkt kann als Einzelbild angesehen werden
- Ein Bild der Größe n*m besteht dann aus n*m Einzelbildern
- Die Position jedes Bildpixels wird über einen Vektor im zweidimensionalen Raum bestimmt:



Ortsraum und Vektordarstellung (3)

- Der so definierte Vektorraum wird als Ortsraum definiert
- Es ist leicht vorstellbar, ein Bild in einen anderen Raum zu übertragen, z.B. in einen 3-dimensionalen Vektorraum
- Viele Arten, ein Bild darzustellen, sind denkbar, aber nur wenige Darstellungen bieten Vorteile.
- Die Fouriertransformation überträgt ein Bild in den Frequenzraum. Hier ergeben sich große Vorteile in der Bildund Signalverarbeitung.

- Kurz zur Grundlage:
 - Komplexe Zahlen erweitern den Zahlenraum der reellen Zahlen
 - Komplexe Zahlen erlauben Lösungen für die Wurzeln negativer Zahlen
 - Einführung der Einheit i als Lösung der Gleichung

$$x^2 = 1$$

Einheitswurzeln

- Zahlen, deren n-te Potenz 1 ergibt, werden als n-te Einheitswurzeln bezeichnet.
- ω ist n-te Einheitswurzel, wenn gilt: $\omega^n = 1$
- Es gilt (ohne Beweis):

$$\omega = \cos(k \cdot 2\pi/n) + i \cdot \sin(k \cdot 2\pi/n)$$

für
$$k = 0 ... n-1$$

Einheitswurzeln (2)

- Zahlen, deren n-te Potenz 1 ergibt, werden als n-te Einheitswurzeln bezeichnet.
- ω ist die primitive n-te Einheitswurzel, wenn gilt:

$$\omega^n = 1$$
, aber: $\omega^k \neq 1$ für $k \in \{1..n-1\}$

Beispiel: Sei n = 4, dann ist i die 4. primitive Einheitswurzel

$$i^0 = 1, i^1 = i, i^2 = -1, i^3 = -i$$

Jean Baptiste Fourier

- Französischer Mathematiker
- ◆ Lebte von 1768 1830
- Wird oft als Genie verstanden: Im Alter von 14 Jahren hatte er bereits die Standardwerke der Mathematik studiert

"Yesterday was my 21st birthday, at that age Newton and Pascal had already acquired many claims to immortality."

Fourier Analyse

 Fouriers Idee: Jede periodische Funktion lässt sich durch sinusund cosinus-Funktionen unterschiedlicher Frequenzen darstellen:

Fourier Analyse (2)

$$3\sin(x)$$

$$+\sin(3x)$$

$$+0.8\sin(5x)$$

$$+0.4\sin(7x)$$

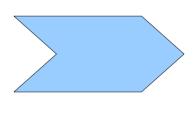
Transformation von Bildern

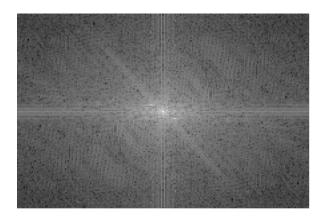
- Periodische Signale lassen sich somit einfach in sinus- und cosinus-Anteile zerlegen
- Bilder sind aber in aller Regel nicht periodisch
- Idee: Nicht periodische Bereiche einer Funktion lassen sich durch Aneinanderreihung von Kopien periodisieren

Ein Bild ist eine Matrix nicht-periodischer Funktionen

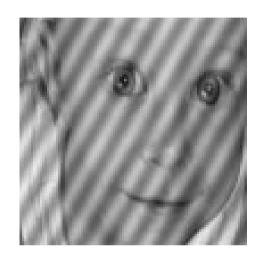
Die Fouriertransformation

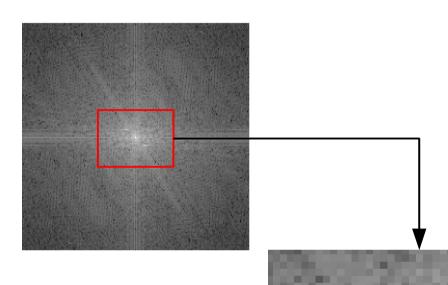
 Bislang wurde die Darstellung von Bildern im Ortsraum betrachtet – jetzt: Frequenzraum





- Auf den ersten Blick ist im Frequenzraum rein garnichts zu erkennen
- Die Übertragung in den Frequenzraum hat jedoch viele Vorteile, z.B.:
 - Viele Filteroperationen (z.B. Mittelwertfilter) können deutlich schneller durchgeführt werden
 - Periodische Störungen im Signal können beseitigt werden





- Summe der Pixelwerte
- Periodische Störungen

- Überträgt man ein Bild mit einer periodischen Störung in den Frequenzraum, so wird die Störung als heller Punkt in der Nähe des Bildmittelpunktes sichtbar
- Eine horizontale Störung liegt dann z.B. rechts und links neben dem Mittelpunkt (da sich die Störung in beide Richtungen unendlich fortpflanzt)
- Die Entfernung vom Mittelpunkt gibt die Frequenz der Störung an: 10 Pixel entsprechen z.B. 10 Schwingungen innerhalb des Bildes

- Werden nun diese Störungspixel aus dem Bild entfernt und das Bild anschließend zurücktransformiert, so ist die Störung vollständig verschwunden, ohne das die eigentliche Information verloren geht
- Der helle Punkt in der Mitte entspricht der Summe aller Bildpixel, daher ist der Mittelpunkt immer klar als hellster (weißer) Punkt zu erkennen

Diskrete Fouriertransformation

 Die Übertragung eines Signals in den Frequenzraum erfolgt mit Hilfe der folgenden Formel:

$$f_{(u)} = \sum_{r=0}^{N-1} G_r \cdot e^{\frac{-i2\pi}{N} \cdot ru}$$

- Für jeden Wert x des Signals G müssen alle N Werte des Signals durchlaufen werden
- Der Exponent der e-Funktion ist komplex

Diskrete Fouriertransformation (2)

 Bilder sind nicht als eindimensionales Signal darstellbar, daher wird hier die Formel nochmals komplexer:

$$f_{(u,v)} = \frac{1}{N} \sum_{c=0}^{N-1} \sum_{r=0}^{N-1} G_{rc} \cdot e^{\frac{-i2\pi}{N} \cdot (ur + vc)}$$

Bei N Pixeln in einem Bild müssen danach N² komplexe
 Exponenten zu e berechnet werden

Diskrete Fouriertransformation (3)

Die komplexe e-Funktion

$$e^{rac{-i2\pi}{N}\cdot ru}$$

lässt sich dank der eulerschen Identität

$$e^{i\cdot\alpha} = \cos(\alpha) + i\cdot\sin(\alpha)$$

in eine komplexe Zahl umwandeln, deren Realteil durch die Sinus- und deren Imaginärteil durch die Cosinusfunktion bestimmt wird.

Diskrete Fouriertransformation (4)

Unser α ist in diesem Falle

$$\alpha = \frac{-2\pi ur}{N}$$

Damit lässt sich die e-Funktion darstellen als

$$e^{\frac{-i2\pi}{N}\cdot ru} = \cos\left(\frac{-2\pi ur}{N}\right) + i\cdot\sin\left(\frac{-2\pi ur}{N}\right)$$

Diskrete Fouriertransformation (5)

Vergleichen wir nun den Term

$$\cos\left(\frac{-2\pi ur}{N}\right) + i \cdot \sin\left(\frac{-2\pi ur}{N}\right)$$

mit der bekannten Formel für die Einheitswurzel ω:

$$\omega^{k} = \cos(\frac{2\pi \cdot k}{N}) + i \cdot \sin(\frac{2\pi \cdot k}{N})$$

Diskrete Fouriertransformation (6)

- Die e-Funktion für die Fouriertransformation entspricht somit der Berechnung der Einheitswurzeln
- Idee: Die Werte der e-Funktion (und damit der Einheitswurzeln) können gecached werden, um die Berechnungszeit zu verkürzen.
- Für Signale gleicher Länge N lässt sich die berechneten Werte einfach wiederverwenden

- Die primitive Einheitswurzel bzw. deren Potenzen lassen sich in einer Matrix darstellen, der sogenannten Fouriermatrix
- Soll ein Vektor in den Fourierraum übertragen werden, so genügt eine Multiplikation des Vektors mit der Matrix

$$\omega_{4} = i \qquad F = \begin{bmatrix} w^{0} & w^{0} & w^{0} & w^{0} \\ w^{0} & w^{1} & w^{2} & w^{3} \\ w^{0} & w^{2} & w^{4} & w^{6} \\ w^{0} & w^{3} & w^{6} & w^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

- Die Fouriermatrix entspricht der sogenannten
 Vandermondematrix von ω
- Beispiel:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} - F$$

$$[1 \quad 1 \quad 1 \quad 0] \qquad [3 \quad i \quad 1 \quad -i] \qquad \vec{b} = \vec{a} \cdot F$$

- Eine Eigenschaft der zweidimensionalen DFT ist es, dass sie auch als Konkatenation eindimensionaler DFTs darstellt werden kann.
- Ein Bild wird dann erst zeilenweise, dann spaltenweise transformiert
- Die Zeilen/Spalten eines Bildes haben stets die gleiche Länge
 - hier kann die gleiche Fouriermatrix für alle Zeilen/Spalten angewendet werden.

- Auch bei einer denkbar günstigen Zwischenlagerung der Fouriermatrix bleibt die Laufzeit des Algorithmus bei $O(n^2)$
- Interessant wäre ein divide-and-conquer-Verfahren zur Berechnung, aber: Wie bzw. Wo trennt man das Signal?
 - Eine Trennung in der Hälfte kann nicht funktionieren: Eine periodische Schwingung, die durch das ganze Bild verläuft, könnte so getrennt werden, nicht aber alle übrigen Signalwerte

Der Weg zur FFT (2)

- 1965 veröffentlichten James W Cooley und James W. Tukey ein Verfahren zur Berechung der Fouriertransformation in O(n·log_(n)) Laufzeit
- Der entsprechende Artikel erschien unter dem Titel 'An algorithm for the machine calculation of complex fourier series' und ist im Anhang als PDF enthalten
- Der Algorithmus von Cooley-Tukey war der erste FFT-Algorithmus und machte die FFT für die EDV erst interessant

- Der Cooley-Tukey-Algorithmus ist bis heute der schnellste bekannte FFT-Algorithmus
- Die CTFFT funktioniert lediglich, wenn die Länge des Signals eine Potenz von 2 ist (andere, langsamere Algorithmen können auch mit anderen Signallängen umgehen)
 - => In der Regel ist es notwendig, das Signal zu 'padden', d.h.
 künstlich mit 0 bis zur nächsten vollen 2er-Potenz aufzufüllen
 - Für viele Anwendungsfälle macht das padding die CTFFT wieder uninteressant im Vergleich zu anderen FFTs

- Eine besondere Stärke der Cooley-Tukey-FFT ist, dass kein zusätzlicher Speicherplatz für die Transformation eines Signals verbraucht wird
 - Dieser Aspekt ist grade für die Bildverarbeitung interessant, da der Speicherplatzbedarf bei großen Bildern schnell 'explodiert'
 - Auch sehr große Signale können somit mit relativ geringem
 Verbrauch an Hauptspeicher verarbeitet werden

Cooley-Tukey-FFT - Idee

- Die Idee der CTFFT ist es, die Matrix-Vektor-Multiplikationen in einer bestimmten Reihenfolge auszuführen, die die Wiederverwendung einzelner Zwischenergebnisse erlaubt
- Es können zwei Eigenschaften der Einheitswurzeln dazu ausgenutzt werden:

$$w^{n/2} = -1$$
 [1]

$$w_n^2 = w_{n/2}$$
 [2]

Cooley-Tukey-FFT

Sei b die Fouriertransformierte eines Signalvektors a, d.h.

$$b = a \cdot F$$

▶ Zur Erinnerung: Berechnung der k-ten Komponente des
 Vektors b:

$$b_k = \sum_{i=0}^{n-1} a_i \cdot w^{ik}$$
 für k = 0 .. n-1

• Berechnet werden nun zunächst alle Komponenten von b mit gradem Index: n-1

$$b_k' = b_{2k} = \sum_{i=0}^{n-1} a_i \cdot w^{i2k}$$
 für k = 0 .. n/2-1

c

Cooley-Tukey-FFT (2)

Diese Summe lässt sich problemlos auch in zwei Teile aufspalten:

$$b_{k}' = \sum_{i=0}^{n/2-1} a_{i} \cdot w^{i2k} + \sum_{i=0}^{n/2-1} a_{i+n/2} \cdot w^{(i+n/2)\cdot 2k}$$

Es gilt aber:

$$w^{(i+n/2)\cdot 2k} = w^{i2k+nk} = w^{i2k} \cdot w^{nk} = w^{i2k}$$

da w^{nk} wie schon definiert gleich 1 ist

Cooley-Tukey-FFT (3)

Mit diesem Wissen können wir den Term

$$b_{k}' = \sum_{i=0}^{n/2-1} a_{i} \cdot w^{i2k} + \sum_{i=0}^{n/2-1} a_{i+n/2} \cdot w^{(i+n/2) \cdot 2k}$$

vereinfachen zu

$$b_{k}' = \sum_{i=0}^{n/2-1} (a_{i} + a_{i+n/2}) \cdot w^{i2k}$$

Cooley-Tukey-FFT (4)

• Sei nun m=n/2 und $v=w^2$, so ist v damit nach [2] die m-te primitive Einheitswurzel

$$b_{k}' = \sum_{i=0}^{m-1} (a_{i} + a_{i+m}) \cdot v^{ik}$$

- ▶ Das heißt aber nichts anderes, als dass b_k die k-te Komponente des Vektors (a_i+a_{i+m}) mit i = 0..m-1 ist
- Dieser Vektor hat die Länge m oder besser n/2: Damit wird ein divide-and-conquer-Verfahren möglich!

Cooley-Tukey-FFT (5)

 Nun gilt es, eine entsprechende Berechnung für die Komponenten des Vektors b zu finden, die einen ungraden Index besitzen. Wir beginnen dazu analog mit:

$$b_{k}'' = b_{2k+1} = \sum_{i=0}^{n-1} a_{i} \cdot w^{i \cdot (2k+1)}$$

$$b_{k}'' = \sum_{i=0}^{n/2-1} a_{i} \cdot w^{i \cdot (2k+1)} + \sum_{i=0}^{n/2-1} a_{i+n/2} \cdot w^{(i+n/2) \cdot (2k+1)}$$

Cooley-Tukey-FFT (6)

• Wiederum lässt sich der Exponent der Einheitswurzel im zweiten Summanden vereinfachen:

$$w^{(i+n/2)\cdot(2k+1)} = w^{i2k+i+nk+n/2}$$

◆ da aber gilt $w^{nk} = 1$ und $w^{n/2} = -1$ ergibt sich

$$w^{(i+n/2)\cdot(2k+1)} = -w^i + w^{i2k}$$

Cooley-Tukey-FFT (7)

Damit ist dann

$$b_{k}'' = \sum_{i=0}^{n/2-1} a_{i} \cdot w^{i} \cdot w^{i2k} + \sum_{i=0}^{n/2-1} -a_{i+n/2} \cdot w^{i} \cdot w^{i2k}$$

$$b_{k}'' = \sum_{i=0}^{n/2-1} (a_{i} - a_{i+n/2}) \cdot w^{i} \cdot w^{i2k}$$

Cooley-Tukey-FFT (8)

 Setzen wir nun wieder m=n/2 und v=w², so erhalten wir den Term

$$b_{k}'' = \sum_{i=0}^{m-1} (a_{i} - a_{i+m}) \cdot w^{i} \cdot v^{ik}$$

 Damit ist die k-te Komponente von b nichts anderes als die Fouriertransformierte des Vektors

$$\vec{a}'' = w^i \cdot (a_i - a_i \text{ für})i = 0..\text{m-1}$$

- Die Vektoren a' und a" mit je der Länge m können nun rekursiv berechnet werden
- Die Rekursion terminiert, wenn die Länge m des Vektors a' kleiner als 2 ist (dann muss schließlich nichts mehr transformiert werden)
- Das Ergebnis des Algorithmus besteht aus den Vektoren b' und b", die erst zum Ergebnis zusammengefügt werden müssen
- Für die Vereinigung der beiden Vektoren wendet man ein reißverschlußartiges Verfahren an

- Es ist nun gezeigt worden, dass sich die Berechnung eines Vektors b auf die Berechnung der kleineren Teilvektoren b' und b" abbilden lässt. Offen ist die Frage nach der Laufzeit des Algorithmus:
- Um die Fouriertransformation für einen Vektor a zu berechnen ist es notwendig, einen Vektor a' der Länge m zu berechnen:

$$a_i' = a_i + a_{i+m}$$

$$a_{i+m}' = w^i \cdot (a_i - a_{i+m})$$

- Für die Erstellung des Vektors werden
 - m Additionen,
 - m Subtraktionen sowie
 - ◆ 2*m=n Multiplikationen benötigt (m für die Berechnung des Vektors, m für die Berechnung von wⁱ)
- ▶ Die beiden Ergebnisvektoren b' und b" müssen allerdings noch zu einem neuen Signal zusammengefügt werden – dies ist idealerweise in $o(n) = \frac{3}{2}n$ möglich.

Zeitkomplexität (3)

 Fasst man alle Faktoren zusammen ergibt sich für die CTFFT eine Zeitkomplexität von

$$O(n)=3.5n+2\cdot O(n/2)$$

 $O(1)=1$

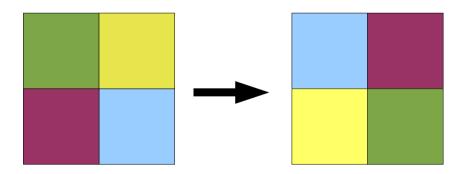
Löst man die Rekursion auf, so ergibt sich

$$O(n) = 3.5 \cdot \log(n) = n \cdot \log(n)$$

- Offen bleibt damit noch die Frage nach der Umkehrung der Fouriertranformation
- Die Inverse FFT berechnet sich analog zur inversen DFT
- Anstatt der nten primitiven Einheitswurzel w wird dann die Inverse der Einheitswurzel w⁻¹ verwendet
- ▶ Die Inverse einer Einheitswurzel ist grade die dazu konjugierte Zahl $w' = w^{-1} = \frac{1}{w}$
- Die Werte des Fouriersignals werden zuvor noch durch n dividiert

- Die Bildverarbeitung ist natürlich nicht der einzige Bereich, in dem der FFT eine große Bedeutung zukommt:
 - Polynommultiplikationen lassen sich mit Hilfe der FFT sehr schnell ausführen
 - Aufgrund der hohen Redundanz eines Signals im Frequenzraum lässt sich eine Kompression verwirklichen
 - In der Spracherkennung wird die FFT zur Bereinigung des Signals verwendet
 - Und vieles mehr...

- Das Ergebnis der Fouriertransformation ist ein komplexes
 Signal eine einfache Darstellung als Bild ist damit nicht
 möglich ==> Darstellung des Betrages der komplexen Zahlen
- Damit sich ein augenfreundliches Frequenzbild ergibt müssen die Sektoren des Bildes geshiftet werden:



- Es existieren zahlreiche weitere FFT-Algorithmen wie das Radix-4-Verfahren oder Algorithmen auf Primzahlbasis. Diese zu erläutern würde aber den Rahmen dieser Arbeit sprengen
- Da der Originalartikel für sich recht schwer zu entziffen ist:
 H.W. Lang's Algorithmen in Java bietet eine hervorragende
 Aufarbeitung des Artikels
- Das Projekt fftw (fastest fourier-transform in the west) bietet eine enorm schnelle Implementation unter der GPL
 - ==> www.fftw.org

- J.W.Cooley & J.W. Tukey: An Algorithm for the Machine Calculation of Complex Fourier Series, Math. Computation, 1965 – Originalartikel zum Thema, ist im Anhang enthalten
- A.V.Aho, J.E.Hopcroft, J.D.Ullman: The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974 – guter und verhältnismäßig menschenlesbarer Überblick über den Algorithmus
- H.W.Lang: Algorithmen in Java, Oldenbourg, 2003 exellente
 Aufarbeitung des Originalartikels mit Pseudocode

- T. Cormen et al.: Introduction to algorithms, 1990 sehr knappe Zusammenfassung, aber interessant im Hinblick auf die Anwedungen zur Polynomberechnung
- B. Jähne: Digitale Bildverarbeitung, 1997 Ansatz zur Verwendung der Fouriertransformation zur Bildverbesserung, leider sehr schlechte und unvollständige Erklärung
- W. Konen: Bildverarbeitung, Vorlesung SS 2005 leicht verständliche Erläuterung zur Verwendung der FFT im Rahmen der Bildverarbeitung

- Wikipedia, 2006 Wiki-Artikel zur CTFFT, lesenswert http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
- Wikipedia, 2006 eher auf Signalverarbeitung ausgerichteter Artikel zur FFT, für den Anwendungsfall Bildverarbeitung eher schlecht. http://en.wikipedia.org/wiki/Fast_Fourier_transform
- Wikipedia, 2006 ebenfalls auf die Signalverarbeitung gerichteter, aber schon deutlich umfassenderer Artikel zur diskreten Fouriertransformation.

http://en.wikipedia.org/wiki/Discrete_Fourier_transform

