Repetition — overview (1/2)

Experimental analysis of algorithms

e Why experimental analysis?

e Methods to analyse an algorithm: ratio-test and power-
test

e What is the difference between the two methods?

Priority Queues

e Definition of a priority queue
e Heap-representation of a priority queue
e binary heap, binomial heap, fibonacci heap
e What are PQs useful for in algorithms?
e Performance-differences between the three heaps

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 1

Repetition — overview (2/2)

Graph-Algorithms

e Basic algorithms
e Depth-first search
e Breadth-first search
¢ Path-finding algorithm
e Dijkstra
¢ Bellman-Ford
¢ Spanning-Tree algorithms
e Kruskal
e Prim

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 2




What you should prepare for Thursday

e Apply the depth-first and the breadth-first algorithm
to a graph

e Apply Dijkstras algorithm to a weighted graph. Pre-
Conditions

e Explain Prims algorithm for Minimum-Cost-Spanning
trees and apply it on paper

e For what are priority queues used in Dijkstras and
Prims algorithms?

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 3

Experimental analysis

What are important steps to prepare, implement and run a
performance experiment?

1. Define the problem exactly. What do you want to find out?
2. Decide and define what you want to measure?

3. Generate test data that fit to the problem.

4. Implement and run the tests.
5

Analyse and visualize the results of the tests.

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 4




The power test

Explain the main idea of the power test.

What do we know about the runtime-function T(n) of the
algorithm?

The polynomial runtime-function T(n) to analyse is unknown!
Give the general form of the runtime-function:

T(n) = bn°®
What is n? What applies to n?

The parameter is the size of the algorithm’s input data: N — oo

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 5

Calculation of T(n)

Gather the values (n, T(n)), N — oo, in a table
Transform the values to (log(n), log(T(n)). Why?

Analyse the log-dataset with linear regression.

P w bR

What can you find out with linear regression analysis?
e Alinear function log, T(n) = c*log,n+b

5. Exponentiate the linear function with the log-basis a

e T(n)=aP*ne

6. Display the results.

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 6




Results of the Power-Tests

Find:
3,5 y=t(n)=bn*

3,0 /fb(/\ Find the exponent by
o / \oJ y'=cx'+b
2,06

J b = 2 (y-intersection)

c =4/3 (slope)
so: y'=(4/3)x'+2

10 i i i It follows: \ \

log-log-transformation

W | B~
e’

1,5

0,0 0,5 1,0 1,5 2 4/3
t(n)=10"-n
Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 7
Fibonacci-Heap
ﬁ Iio

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 8




DeleteMin

)

O

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford

Dijkstra—1/4

Run Dijkstra’s algorithm on the graph below starting at node a.
Your solution should be diagramatic, exactly like the example in

the lecture.

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 10




Dijkstra — 2/4

Randknoten

gewahlte unerreichbare
Knoten Vk Knoten
Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 11

Dijkstra —3/4

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 12




Dijkstra —4/4

Draw the spanning tree of the shortest paths starting with
node a.

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 13

Bellman-Ford

Run the Bellman-Ford algorithm on the graph below. Source is a.
You must apply the relaxation procedure on the edges in the
following order: (b,c), (e,a), (e,b), (e,c), (e,d), (a,b), (a,d), (a,e).
Draw figures for each iteration of the algorithm.

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 14




Bellman-Ford Algorithm

d[s] <0
for each v E V — {s} Initialize the nodes
do d[v] <~ » k-th loop of row 04 — 08
fori<—1to |V| -1 do computes the distance of
the shortest path d[v] with
for each edge (u, v) €EE do I -

if d[v] > d[u] + w(u, v) then
d[v] <= d[u] + w(u, v)
mt[v] < u
for each edge (u, v) €EE
10 do if d[v] > d[u] + w(u, v)
11 then report that a negtive-weight cycle exists.
At the end: d[v] = d(s, v). Zeit: O(VE)

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra 15
& Bellmen-Ford

Relaxe the nodes

O 00 N O L B W IN -

Exercise

Run the Bellman-Ford algorithm on the graph below. Source is
node a. You must apply the relaxation procedure on the edges in
the following order: (b,c), (e,a), (e,b), (e,c), (e,d), (a,b), (a,d), (a,e).
Draw figures for each iteration of the algorithm.

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 16




Exercise—1/6

Relax in this order: (b,c), (e,a), (e,b), (e,c), (e,d), (a,b), (a,d), (a,e)

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 17

Exercise —2/6

Relax in this order: (b,c), (e,a), (e,b), (e,c), (e,d), (a,b), (a,d), (a,e)

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 18




Exercise —3/6

Relax in this order: (b,c), (e,a), (e,b), (e,c), (e,d), (a,b), (a,d), (a,e)

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 19

Exercise —5/6

Relax in this order: (b,c), (e,a), (e,b), (e,c), (e,d), (a,b), (a,d), (a,e)

the marker (e to a) is wrong, the edge
(a to e) should be marked

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 20




Exercise —6/6

Draw the spanning tree of the shortest paths

(@) inteh -ninteljnt

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 21

Dijkstra vs. Bellman-Ford

Why can Bellman-Ford operate with negative edges and
Dijkstra not?

Bellman-Ford relaxes all nodes many times. The algorithm
improves the shortests paths again and agian until all relax-
steps are applied.

Dijkstra never relaxes a node. He is greedy and holds a
shortest path as soon as it is found.

Klocke/27.01.11 repetition: analysis - priority queues - Dijkstra & Bellmen-Ford 22




