

 Brave NUI World

http://dx.doi.org/

Brave NUI World
Designing Natural User Interfaces for

Touch and Gesture

Daniel Wigdor
User Experience Architect, Microsoft Surface

Dennis Wixon
Research Manager, Microsoft Surface

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann Publishers is an imprint of Elsevier

 Acquiring Editor: Rachel Roumeliotis
Development Editor: David Bevans
Project Manager: Andre Cuello
Designer: Joanne Blank

Morgan Kaufmann Publishers is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Copyright © 2011 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our arrangements
with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,
can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge
in evaluating and using any information or methods described herein. In using such information or
methods they should be Mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Wigdor, Daniel.

Brave NUI world : designing natural user interfaces for touch and gesture / Daniel Wigdor,
Dennis Wixon.
  p. cm.
ISBN 978-0-12-382231-4

1. User interfaces (Computer science)  2. Haptic devices.  3. Human-computer interaction.
I. Wixon, Dennis. II. Title.
QA76.9.U83W537 2010
004.019—dc22    	 2010047830

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Printed in the United States of America

11  12  13  14  10  9  8  7  6  5  4  3  2  1

For information on all MK publications visit our website at www.mkp.com

http://dx.doi.org/
http://www.elsevier.com/permissions
http://www.mkp.com

Dedication

This book is dedicated to Jo Anne Bennett and Amy Wigdor, without whose sup-
port and encouragement it would not have been a reality, and to Chia Shen,
who taught Daniel that nothing is truly understood until “you can feel it in your
bones.” This book is a marrow sample drawn from very deep indeed. It is fur-
ther dedicated to the new generation of researchers and practitioners who will
be the inhabitants of the Brave NUI World of human-computer interaction, and
to the professors of engineering, computer science, art, and design who will be
your guides. We hope that this book will serve to help you reach the shores of
this promised land—how that world will be formed will be limited only by your
imagination, creativity, and perseverance.

http://dx.doi.org/

ix

Preface

If you have already purchased this book, thank you. We hope you find it interest-
ing and useful. If you’re planning on building an application or platform for next-
generation input hardware, we hope that this book convinces you of the necessity,
as well as the opportunities and challenges, of creating fundamentally new user
interfaces for that hardware. We hope that our vision of the NUI helps shape your
thinking, and that you take the ideas and guidance contained within and apply and
extend them.

If you haven’t purchased this book yet, then what are you waiting for?
However, regardless of whether you are an owner, a possible purchaser, or a

user, it will be helpful for you to know something about our view of the NUI and
how it evolved.

Decades of cumulative experience in creating interfaces for new technology
led us to two important realizations. First, that new input devices do not, in and
of themselves, facilitate a better user experience—we argue that the iPhone and
Microsoft Surface UIs are highly successful in spite of, rather than because of, the
use of a touchscreen. The second realization is that these input devices, while not
themselves creating a better user experience, could be enablers for the creation of a
UI that is more natural to use, and could fundamentally change the way we interact
with technology. We dub this the natural user interface.

Ironically a natural user interface does not occur naturally. In our view creating
a natural user interface is a design goal. To achieve that goal takes a clear viewpoint,
hard work, careful design, rigorous testing, and some luck. The clear viewpoint
starts with an understanding and vision of what a natural interface is. Our vision is
that a natural user interface is one that provides a clear and enjoyable path to unre-
flective expertise in its use. It makes skilled behavior seem natural in both learn-
ing and expert practice. It makes learning enjoyable and eliminates the drudgery
that distracts from skilled practice. It can make you a skilled practitioner who enjoys
what you are doing. Natural in this sense does not mean raw, primitive, or dumbed
down. The meaning is best captured by the phrase “that person is a natural.” When
we hear a person referred to in that way, we have the sense that their performance
is ideal and that it seems effortless and graceful.

We came to this view over time as a result of painful lessons. This book incor-
porates our learning from those lessons. They are embodied in both the guidance
we provide at the end of each chapter and our discussion of the history and back-
ground that opens each chapter. The book represents not only our learning but also
the learning of the teams at Microsoft that created Microsoft Surface and a slew of
other touch- and gesture-based products. As such, it represents the hard work and
lessons of many. Our acknowledgment of them and their work does not do them
justice; hopefully this volume does.

http://dx.doi.org/

x Preface

Perhaps this preface has convinced you to buy this book. But more importantly
it will have succeeded if it convinces you to use the book as a starting point for your
thinking about and/or building a NUI, as an ongoing reference for your work, and as
a basis for reflection on your particular design and on natural user interfaces in gen-
eral. We challenge you to take the design, development, research, and philosophy
of natural user interfaces to the next stage. After all, you’ve already gotten this far.

Daniel Widgor

Dennis Wixon

xi

Acknowledgments

The team that came together to create the Microsoft Surface product was com-
posed of hundreds of engineers, researchers, designers, marketers, computer
scientists, testers, technicians, planners, artists, and program managers. This team
built the first of a generation of NUI devices and experiences and started to infuse
Microsoft with the spirit of the NUI, which is now spreading across product teams
in every division of the company. Absent the hard work and dedication of any one
member of this team, this book would never have been a reality. A full acknowl-
edgment of everyone’s contributions to our shared vision for NUI would require
a second book. For their support and assistance in ensuring that this title reached
the shelves, we thank August de los Reyes, Lisa Anderson, Brad Carpenter, Panos
Panay, Stuart Ashmun, Pete Thompson, Robbie Bach, Kay Hofmeester, Paul Hoover,
Sarah Williams, Jarrod Lombardo, John Pella, Jennifer McCormick, Steve Seow,
Mike Cronin, Robert Levy, Katie White, Maxim Mazeev, Maxim Oustiougov, Nigel
Keam, Luis Cabrera-Cordon, Gretchen Richter de Medeiros, Nabeeha Mohamed, and
Brett Pearce. We also acknowledge Kristin Alexander, who drove the research that
helped convinced Microsoft to build Surface and name it.

A special thanks to Leslie MacNeil, who, in addition to being chief visual
designer for Surface, also created the illustrations for this book.

Several people at Microsoft Research and Microsoft Hardware’s Adaptive Systems
team have also been instrumental; we thank Hrvoje Benko, Merrie Morris, Andy
Wilson (co-inventor of the first Surface prototype, along with Steven Bathiche), Ken
Hinckley, Paul Dietz, our intern Dustin Freeman (of the University of Toronto), Bill
Buxton, and the gracious support of Eric Horvitz. Team NUI in the Entertainment
and Devices division was also incredibly supportive—we thank Don Coiner, Steve
Kaneko, Steve Herbst, Michael Medlock, Noah Spitzer-Williams, Karon Weber,
Nicole Coddington, and Jenny Rodenhouse.

This book is greatly enhanced by the thoughtful sidebars included alongside
several chapters. We thank Andy Wilson, Patrick Baudisch, Johnny Lee, Gord
Kurtenbach, and Kay Hofmeester for their insights. It is further enhanced by refer-
ences to significant works by significant researchers around the world, and by other
inspiration drawn from the HCI community. In particular, the DiamondSpace and
DiamondTouch teams at Mitsubishi Electric Research Labs, made up of Chia Shen,
Clifton Forlines, Paul Dietz, Darren Leigh, Sam Shipman, Frederic Vernier, Kathy
Ryall, Alan Esenther, and Adam Bogue. Our work has truly been built on the shoul-
ders of giants.

We would also like to thank our editors and the team at Morgan Kaufmann who
helped make this book a reality: Mary James, Rachel Roumeliotis, and David Bevans,
as well as the dozen or so external reviewers who scrutinized and vastly improved
the text. Thank you for your support, and for sharing our vision of this Brave NUI
World.

http://dx.doi.org/

xiii

About the Authors

Daniel Wigdor is an Assistant Professor of computer science at the University of
Toronto. Before joining U of T, he worked at Microsoft in nearly a dozen differ-
ent roles, among them serving as the User Experience Architect of the Microsoft
Surface product and as a cross-company expert in the creation of natural user inter
faces. Before joining Microsoft, he conducted research in advanced user interfaces
and devices at Mitsubishi Electric Research Labs and at the Initiative in Innovative
Computing at Harvard University. He is also co-founder of Iota Wireless, a com-
pany dedicated to the commercialization of NUI technologies for mobile phones.
Daniel’s work has been described in dozens of publications in leading international
conferences, journals, and books. His is the recipient of a Wolfond Fellowship and
multiple ACM Best Paper awards.

Dennis Wixon is currently Discipline Lead for Microsoft US BPD. Prior to this
role he was the head of research for Microsoft Surface, and he has also managed
research teams at Microsoft Game Studies and MSN/Home Products. Before joining
Microsoft, Dennis managed the usability team at Digital Equipment Corporation,
where a number of important usability methods such as usability engineering and
contextual inquiry were developed. Dennis has been an active member of the
user research community for over 25 years. He co-chaired CHI 2002 and served as
Vice President for Conferences for ACM SIGCHI. Dennis has co-authored over 60
articles, book chapters, and presentations on research methods and theory. He is an
adjunct Full Professor in the Human Centered Design and Engineering Department
at University of Washington and co-edited with Dr. Judy Ramey the book Field
Methods Case Book for Software Design. Dennis holds a Ph.D. in Social Psychology
from Clark University.

http://dx.doi.org/

3

CHAPTER

1Introduction

All things will be produced in superior quantity and quality, and with greater ease,
when each man works at a single occupation, in accordance with his natural gifts,
and at the right moment, without meddling with anything else.

—Plato

In the decades since the first digital computers were programmed using mechani-
cal switches and plug boards, computing and the ways in which people interface
with computers have evolved significantly. Some aspects of this evolution have
both been anticipated and withstood the test of time. Moore’s law is an example.
The law states that the number of transistors that can be placed inexpensively on
an integrated circuit will double approximately every two years. The trend that
this law describes has created opportunities for the growth of computing and its
adoption into many aspects of our lives. As computers have increased in power and
decreased in size and cost, new form factors have been created (e.g., smart phones,
PDAs, and digital cameras), new platforms have evolved (e.g., the Internet), new
infrastructures have become widely available (e.g., GPS), new industries have
arisen (e.g., computer games), and new application families (e.g., spreadsheets,
document processing, image creation, modification and sharing) have flourished.
All of these trends have resulted in the democratization of computing as the num-
ber of people directly interacting with computers has steadily increased. This pro-
liferation of computing has transcended national boundaries and permeated nearly
all economic classes. It has changed the way people work, play, and interact with
one another.

While the increase in computing power has been more or less continuous, the
interfaces between human and computers have evolved more discontinuously.
A widely held perspective is that interfaces have passed through phases. These
phases are loosely defined but can be thought of as the phase of typing commands
(the command line), followed by the graphical user interface (GUI). More specifi-
cally, most computers with which people interact regularly are based on the desktop
metaphor (so called because windows are allowed to overlap, like paper atop a desk)

4 CHAPTER 1  Introduction

and rely on a known set of user interface elements, commonly referred to as WIMP:
windows, icons, menus, and pointers.

During that evolution some other contenders for the predominant interface,
such as menu-only systems, did not attain dominance or widespread use. Instead,
they were limited to niche applications, such as ATMs and televisions. A deeper
analysis would show that many popular applications contain elements of each style.
In effect, they are hybrids. For example, typical GUIs make use of menus (pull-
down menus) and forms (dialog boxes and property sheets). In some cases, such as
spreadsheets, the interaction style includes command-like elements, that is, complex
formulas and sophisticated functions. Similarly, another class of successful applica-
tions, document processing, also introduces new concepts such as “what you see is
what you get,” (WYSIWYG) that is, what is on the screen is a reasonably faithful ren-
dition of what will be printed. In both cases, the elements of the GUI are accompa-
nied by particularly useful and appealing aspects that propelled these applications to
wide adoption. It is important to be cognizant of the fact that these approaches are
neither preordained nor task neutral. WYSIWYG, for example, fundamentally shapes
the way people spend their time composing text—simultaneously focusing on both
form and content.

While a thoughtful interpretation of the history of human-computer interaction is
complex and nuanced, certain generalizations are evident. The way in which humans
interact with computers has evolved. That evolution has enabled more people to do
more things with computers. It has led to a vast and rapid increase of the volume,
scope, and diversity of the computer business.

There are many perspectives from which we could view this evolution. Some
are merely tautological. For example, a common view is that more people use
more computation because the barriers have been reduced and the functionality of
the machines has increased. While true, that characterization provides precious
little insight. To provide it some intellectual weight, we need to be clearer with
respect to what barriers have been reduced and which functions have been pro-
vided. It is also useful to examine closely the development of certain computing
“niches,” which thrive in limited but well-defined contexts.

Some of the early analysis of the GUI provided just this kind of deeper insight.
Analysts pointed out that recognizing and choosing were easier than remembering
then typing. In other words, with its menus, dialog boxes, icons, and familiar work
spaces, the WIMP GUI represented a lower barrier for users than a command line
interface. This difference becomes clearer if we consider specific applications. By
and large, it is easier to learn and use a word processor to create simple documents
than to edit in a markup language. In addition, the often-overlooked advantage of
the computer, that is, that it produces revisable work products, was fully realized
with a word processing system.

Functionality gains are also apparent for most users. Before the computer, a
skilled typesetter could produce formatted documents, but the average citizen was
confined to typing final work products in a mono-spaced font, with cumbersome
correction tools. The combination of reduced thresholds for learning, easier recall,

5Introduction

increased functionality for the average user, the reduced cost promised by Moore’s
law, and the widespread capability to revise one’s work without redoing it signaled
the explosive growth of a number of well-featured and -designed applications that
adopted the desktop computer and the subsequent consignment of more traditional
approaches to specialized niches.

When the desktop GUI was first created and made widely available, its ultimate
fate was unclear. It was derided by many experts who coined its current name: the
WIMP interface. Although WIMP stood for windows, icons, menus, and a pointer, it
implied that the users of the GUI were not the manly men who had mastered the pre-
vious, more arcane ways of interacting with computers. Ultimately, those supposedly
more manly folks were consigned to the social position of specialists or hobbyists.
We can see this pattern in many other domains: personal transport, cooking, pen-
manship, and CB radio operators.

Now we stand at the brink of another potential evolution in computing. Natural
user interfaces (NUIs) seem to be in a position similar to that occupied by the GUI
in the early 1980s. Like the desktop GUIs, NUIs promise to reduce the barriers to
computing still further, while simultaneously increasing the power of the user, and
enabling computing to access still further niches of use. But just as GUIs did not sim-
ply make command systems easier, NUIs are not simply a natural veneer over a GUI.
Instead, like GUIs, NUIs have a set of strengths based on what they make easier,
how they make those things easier, how they shape the user’s interaction with tech-
nology, which niches they fit in, and whether or not these niches expand to dwarf
the space occupied by traditional GUIs.

When examining this history and anticipating the future, we should not be dis-
tracted by single instances. Many of these will be failures and will not represent any
overall trend. The failure of makes and models of some cars did not end the phase
of personal transport. The failure of many GUI products and the inevitable consoli-
dation of the marketplace did not impede the overall growth of personal computing
or prevent GUIs from pre-eminence. It is as dangerous to generalize to the future
based on a few examples as it is hard to anticipate the future when looking from
our current perspective.

In this book we do not aim to provide an exhaustive overview of the NUI. We
do not predict the future of human-computer interaction. We do not assume the
predominance of NUI-based designs. We do not provide a complete set of rules for
creating a successful NUI, because NUI is not yet at a state of evolution or standardi-
zation to allow for such a definition.

We can make some relatively safe predictions. NUIs are here to stay. They either
will find a successful niche, like menu system ATMs, or will come to dominate the
computer landscape. If the latter comes to pass, we can still expect GUIs to persist
in specialized environments. The ultimate evolution of the NUI will be determined
not by the analysts and the critics, but by those who step forward and take the risk
to build true NUI applications. Here we offer a way to think about NUIs that is coun-
ter to the predominant metaphor. This perspective on the NUI suggests that NUIs
provide an enjoyable way for novices to move quickly and seemingly effortlessly

6 CHAPTER 1  Introduction

to skilled practitioners. This approach involves more than being “natural” or intui-
tive. It means that the domain of use and the requirements of context are care-
fully assessed. It also means that the conventions of the GUI should be studiously
ignored. It requires careful design and rigorous research. We give some guidance on
how to do those things and how to re-conceptualize the NUI.

We offer a number of essays on the NUI and on methods that can be utilized to
achieve it, written from the perspective of two journeyman user experience experts
who have had the opportunity to immerse themselves in the nitty-gritty of design-
ing, engineering, building, testing, researching, and shipping multiple products
that have come to define the category. Overall, the essays are intended to provide a
nuanced set of perspectives on NUI systems. These perspectives range from specific
descriptions of the syntax and semantics of the NUI to broad analyses of the NUI
in terms of the history of computing. Each essay is composed of the same essential
elements. Each concludes with specific, concrete design guidelines meant to help
take words into action. Those guidelines are divided into three types: must, those
that we believe are necessary conditions to achieving a natural-feeling experience;
should, those elements that, while nonessential, have been found to add greatly to
achieving such an experience; and could, those guidelines that may apply only to
certain contexts or situations.

To frame our collection, we offer a framework that we have evolved for the
general process of the creation of a gesture-based natural user interface. The sec-
tions of this book reflect the phases of this process, and individual chapters provide
thoughts, tools, and methods for implementing it. This framework is an evolution
of classic methods for designing interactive systems, with the addition of elements
unique to the creation of a fundamentally new way of interacting (Figure 1.1).

Different elements of this book will appeal to different pieces of team build-
ing a touch- and gesture-based product. Chapters 2 and 3 will best be consumed
by planners and business managers. Chapters 4–11 will feel most familiar to design-
ers, who think broad thoughts early and whittle toward the final product. Chapters
12–15 might seem most approachable by program managers, who seek quickly to
understand where they are, where they need to be, and the pitfalls along the way.
Chapters 16–21 may seem best suited to software developers and testers, who seek
to carefully define goals and test cases. Chapters 22–26 might, at first glance, be tar-
geted to hardware engineers, who are seeking to find the uses for different sensing
capabilities in the hardware. And Chapters 27–29 might be seen as targeting user
researchers, who seek methods for guiding the design process and goals.

Approaching this text with such a discipline-centric viewpoint, however, would
be a missed opportunity. This book has been lovingly composed by a philosopher-
researcher and a computer scientist-designer who had the opportunity to work
together closely in multidisciplinary teams to create something special. We highly
encourage all members of a team creating a NUI application to deeply engage with
this material, to understand fully our vision for natural user interfaces and our guid-
ance for how to achieve them.

7Introduction

Our broader goal is to move both the consideration of the NUI and the imple-
mentation of NUI systems forward. We hope that other thinkers and practitioners
will take the material here as a starting point for reflection, elaboration, construc-
tion, and, yes, even contradiction. We want to move the conversation of what is a
NUI and how do we create one forward to more sophisticated discussion. We want
to make reflection on the NUI more insightful and sophisticated. We are optimistic
that exciting and popular NUI applications will flourish. More than anything else,
we wish our fellow NUI explorers, researchers, designers, developers, and business
leaders well. Together, you will determine the future history of the NUI approach to
human-computer interaction.

FIGURE 1.1

Our framework for the creation of natural user interfaces (NUIs).

9

CHAPTER

2The Natural User Interface

Free like freedom, not like beer.
—Richard Stallman

DESCRIPTION
The term natural is often understood to mean mimicry of the “real world.” In our
view, it is a design philosophy and a source for metrics enabling an iterative process
to create a product. In this book, we discuss touch and gestural interaction as one
modality enabling the construction of a natural user interface. However, we believe
that a NUI can be created with other input modalities as well. Indeed, one could
imagine following the design guidelines we lay out to create a new kind of inter-
face for the mouse and keyboard, voice commands, in-air gesturing, mobile phones,
and so on. Input and output technologies offer us the opportunity to create a more
natural user interface; they do not, in and of themselves, define or guarantee it. The
natural user interface lies in the UI and experiences we create for use with those
technologies and how we leverage the potential of new technologies to better mir-
ror human capabilities, optimize the path to expert, apply to given contexts and
tasks, and fulfill our needs.

The term natural is a powerful one, in that it quickly evokes a range of imag-
ery in those who hear it. The first, and most important, thing to understand is that
we use it to describe a property that is actually external to the product itself. The
natural element of a natural user interface is not about the interface at all. Quite
the opposite. We see natural as referring to the way users interact with and feel
about the product, or more precisely, what they do and how they feel while they
are using it.

Most of us can only imagine how a major-league pitcher feels while standing
atop the mound. He works the dirt with his foot so that it does exactly what he
expects it to when he moves. He grips the ball in a way so familiar, it feels like part
of his body. He stares down at the catcher’s mitt. He feels at home.

http://dx.doi.org/

10 CHAPTER 2  The Natural User Interface

This is exactly the feeling we want to evoke in our users. Your product must mir-
ror their capabilities, meet their needs, take full advantage of their capacities and fit
their task and context demands. The trick, of course, is in helping them to feel that
way the moment they pick it up, instead of after decades of practice (the UI minor
leagues?).

The introductory quote by Richard Stallman of the free software movement illus-
trates a similar point in the ambiguity in the word free. In the natural user interface,
natural refers to the user’s behavior and feeling during the experience rather than
the interface being the product of some organic process. The production of this
conclusion is the end result of rigorous design, leveraging the potential of modern
technologies to better mirror human capabilities.

Direct, multi-touch devices hold the promise as a natural input modality.
Potentially dozens of degrees of freedom allow a level of expressiveness not pos-
sible with a mouse alone. Work in the field has demonstrated that direct-touch
systems better leverage spatial memory, and multi-touch shows the promise of eas-
ily wielded high-bandwidth input from the user. The goal of those creating a NUI,
therefore, is properly leveraging this potential. It is far too easy to fall into the trap
of simply copying the WIMP GUI, which is designed for mouse-based interaction.
Instead, an all-new interface must be designed with new input actions, new affor-
dances—in short, a new paradigm.

A device that feels truly natural to the user means taking full advantage of the
user’s bandwidth, a device that behaves as a sort of appendage. By designing and
building natural user interfaces, taking advantage of modern input technology, we
stand at the brink of a new era, one in which technology can truly integrate into our
lives, liberating us from the past of frustration and mediocrity.

APPLICATION TO NUI
It is with this understanding that we begin our exploration of natural user inter-
faces. While natural is an emergent property, it can be reliably achieved by follow-
ing the various principles, processes, and examples we will describe in this book.
Achieving the goal of creating a user interface that, to its user, feels natural is NOT
best achieved by mimicry of some other experience, by relying on familiar meta-
phors, or even by directly asking users what kind of experience they would like to
have.

We must design, research, and engineer these user interfaces. This will be a
challenge. Most designers have never had to truly design a user interface. Instead,
they have relied on the designs of others, provided within the connective tissue of
decades of iterative design. Buttons. Scrollbars. Check boxes. Radio buttons. Each of
these comes from this iterative design process, started by Engelbart and English, and
continued by the designers at PARC, Apple, Microsoft, and elsewhere. Creating nat-
ural user interfaces, which leverage new technologies and human capabilities, will
require no less. Similarly, many researchers are familiar with techniques that refine

11Lessons from the Past: The First Apple Pad

or evaluate designs within an existing paradigms. While the techniques of research
may not change in a fundamental way, their goal and their specific application may
change dramatically.

The main point of this chapter is to help designers, researchers, and managers
avoid a dead-end street: the belief that a NUI can be created by simply mimicking
existing experiences. This dead end avoided, we will then examine the many les-
sons that we and others have learned in the process of creating some of the very
early work in natural user interfaces.

LESSONS FROM THE PAST: THE FIRST APPLE PAD
In 1989, Apple Computer began work on a new kind of platform—one that would
provide a device that would fit easily into the user’s lifestyle by, among other things,
recognizing the natural means of output for a human: handwriting. Well, we all
know what happened: the Newton Message Pad was fraught with problems, among
them that the handwriting recognition was insufficiently robust—so bad, in fact,
that it earned a place of honor as the butt of a Doonesbury cartoon (Figure 2.1). The
Newton has been long forgotten, except by those of us who follow the industry. Its
successor, however, found far more success.

In 1997, Jeff Hawkins and his team at US Robotics, gave us the Palm Pilot, and his-
tory seemed ready to repeat itself. Once again, a product promised to fit itself neatly
into our mobile lifestyles and featured handwriting recognition as the method of
entry. Unlike the Newton, however, the Palm Pilot was a critical and popular bonanza.
Millions were sold worldwide, and several versions were produced over many years.

A key difference was that Hawkins and his team recognized the limitations of
their technology. Instead of trying to build a robust recognizer for regular hand-
writing, they developed a special input language, known as Graffiti—a variation of

FIGURE 2.1

When Doonesbury dedicates a strip to your UI, you really want it to be for a good reason.

(From http://images.ucomics.comics/db/1993/db930827.gif.)

http://www.images.ucomics.comics/db/1993/db930827.gif

12 CHAPTER 2  The Natural User Interface

the Unistroke technique invented by David Goldberg of Xerox’s Palo Alto Research
Center (Figure 2.2). Graffiti simplified the input language in a number of ways,
but was similar enough to standard Roman characters that it was easy to learn. By
shifting the burden of learning from the device to the user, the Palm was no less
natural than the Newton. Indeed, because the recognizer worked so well, it
enabled an experience that could be felt to be natural, if only by experts who had
mastered the language. This is one of the goals in creating a NUI—that your system
continues to feel natural to its most expert users, rather than have them feel per-
petually stuck in beginner mode. A NUI requires learning.

It must be understood that this does not give free reign to the engineer to ignore
user needs and prior knowledge. What it does, however, is free us from the poten-
tial pitfall of believing that mimicry of an existing experience or phenomenon will
necessarily yield a natural user interface.

This lesson embodies the key thesis underlying our definition of the natural user
interface: that our goal is a product that creates an experience and context of use
that ultimately leads to the user feeling like the pitcher atop the mound: completely
comfortable, expert, and masterful—a virtuoso of the user experience. The goal is to
achieve this from the very beginning, for complete novices, and to carry this feeling
through as the users become experts. And a product that creates the potential for this
experience at minimal cost in learning time and effort.

space

(•) Heavy dot indicates starting point.

Punctuation Shift = tap once

Extended Shift = Accented Characters Advanced Strokes
Refer to your handbook for details

ShortCuts

Command stroke

Move cursor left

Move cursor right

Next field (Address Edit Screen)

Previous field (Address Edit Screen)

Open record (Address List Screen)

back space return capshift caplock

FIGURE 2.2

The Palm Pilot’s Graffiti text input language.

13Design Guidelines

How this is achieved is the subject of this book. With a deep understanding of
human capabilities, technologies, and unique design processes, you will be armed
to create them.

DESIGN GUIDELINES
The complete design guidelines for NUI are embodied in the various chapters of this
book. For now, it will suffice to understand that the goal is to build a user experi-
ence that is natural to your user, rather than somehow intrinsically natural.

Must
l	 Create an experience that, for expert users, can feel like an extension of their

body.

l	 Create an experience that feels just as natural to a novice as it does to an
expert user.

l	 Create an experience that is authentic to the medium—do not start by trying to
mimic the real world or anything else.

l	 Build a user interface that considers context, including the right metaphors,
visual indications, feedback, and input/output methods for the context.

l	 Avoid falling into the trap of copying existing user interface paradigms.

Should
l	 Forget your understanding of what natural means.

Could
l	 Leverage innate talents and previously learned skills. Making an interface that

mimics some other experience at which your user is already an expert is one
technique for making them feel like a natural—but it’s not the only one.

FIGURE 2.3

Creating this type of experience is the topic of the chapters that follow.

14 CHAPTER 2  The Natural User Interface

SUMMARY
A NUI is not a natural user interface, but rather an interface that makes your user
act and feel like a natural. An easy way of remembering this is to change the way
you say “natural user interface”—it’s not a natural user interface, but rather a
natural user interface (Figure 2.3).

15

CHAPTER

3Ecological Niche:
Computing, the Social
Environment, and
Ways of Working

Adapt or die.
—Anonyomus

DESCRIPTION
There is an interdependency between any system and the environment in which
that system operates. While many would regard this conclusion as obvious, it is all
too often obscured when we look at the history of computing.

Even considering biological evolution, there is no uniform march forward
with new species reliably replacing older species. Some species die. New species
emerge. Some species survive countless years. Cockroaches, horseshoe crabs, and
tube worms live for millions of years as other species die. In addition, some species
change so much that their ancestors would be almost unrecognizable today, eohip-
pus, for example.

It might be more productive to think of species as fitting into a niche and surviv-
ing if their niche endures and if they face “manageable” competition or predation
in that niche. This is very different from a “conventional” view of evolution, which
sees life as becoming ever more “advanced” and “adapted.” We could call this view
the niche view and contrast it with the unidirectional view, that is, more advanced
species uniformly replace less advanced ones.

We can look at the history of computing in a similar way. Conventional wisdom
sees computing as “unidirectional,” that is, with each new “generation” the previ-
ous generation of computing is swept away, like an extinct species. Applying this
viewpoint to hardware platforms, we could conclude that the mainframe was sup-
planted by the minicomputer; the minicomputer was supplanted by the personal
computer in its various forms; and the personal computer will be supplanted by
the smaller connected computers or mobile phones. This is a unidirectional view of
evolution of hardware.

Some data would seem to support this view, for example, a view of the growth
of PC sales in unit numbers and dollar volume in the United States (USA) and the

http://dx.doi.org/

16 CHAPTER 3  Ecological Niche

world (WW) as shown in Figure 3.1—depicts increases of between 4200 and
15,000%!

But did mainframes actually go away? In human-computer interaction (HCI), was
the command language replaced by the graphical user interface (GUI)? Will the GUI
be replaced by the natural user interface (NUI)?

FIGURE 3.1

Sales of PCs.

(From http://www.thefreelibrary.com/ComputerIndustryAlmanac%3A25-YearsPCAnniversary
Statistics%3B...-a0149450229.)

http://www.thefreelibrary.com
http://www.thefreelibrary.com

17Application to NUI

A more careful examination of this history leads to a more nuanced and complex
view. In fact, the various forms of computing morph, adapt, and coexist with new
forms of computing. For example, the mainframe did not go away as the smaller and
more personal computers became popular. Instead, the mainframe continued to exist
in its domain, processing large-scale routine jobs (e.g., payroll). The size of the main-
frame market (measured in revenue) has been surprisingly stable over the years. The
mainframe market and range of its use just seem tiny because they have been dwarfed
by an incredible explosion of smaller and more flexible computers. Factors such as
low cost, wide range of applications, and an ever-increasing ease of use worked in
true synergy to make these personal computers ubiquitous. Ironically, medium-size
computers morphed into server arrays where they connect smaller and cheaper com-
puters into useful networks. So we see great growth in the number of and value of
new hardware platforms that support a wider range of activities.

The same kind of evolution exists in the human-computer interface space.
Command languages continue to exist in the form of programming languages and
command procedures and as a way to execute more specialized and technical opera-
tions. Considered broadly, there are more commands running computers than there
ever were. Every equation in every spreadsheet is a command, and the universality
and power of command systems are surprisingly large. Within spreadsheets, this “com-
mand ecology” coexists with a GUI ecology of pull-down windows, icons, and menus.

The apparent ubiquity of the graphic user interface stems from several sources.
First, the GUI is well suited to office work, where it is ubiquitous and obvious.
Many people labor in cubicles and offices using GUIs and are painfully aware of the
interface they are using to access functionality they need. Interestingly, there is as
much or more computing power and as many hours of use in the population of
gaming consoles as there are in personal computers. Gaming is very widespread.
The consoles are very powerful. Game players spend a lot of time playing games.
We might group the various gaming system interfaces as the fun user interface, or
the FUI. Unlike the GUI, the FUI is mostly invisible to players. They are immersed in
the game. Similarly, almost everyone who uses a computer today interacts with the
World Wide Web in one form or another. The web presents its own unique inter-
face of links that change the content of the display and the available choices (links).
The interactive element links are spread throughout the page and not confined to a
menu bar or button ribbon. We could call this interface the web user interface, or
the WUI. The WUI and the FUI peacefully coexist and in some cases (e.g., World of
Warcraft) work together to the users’ delight.

APPLICATION TO NUI
The historical context outlined above gives us a vantage point from which to
consider any natural user interface.

First, despite the enthusiasm of its proponents, the natural user interface will not
supplant the GUI. The GUI is too well adapted to its ecological (i.e., business and

18 CHAPTER 3  Ecological Niche

social) niche of office work. Keyboards and pointing devices serve the office worker
very effectively. A NUI would be out of place. Imagine typing a long report on a
virtual keyboard. That said, the NUI will create a new “niche” of computing. How
large that niche will be is impossible to say at this time. The NUI is like the GUI in
that both are examples of an underlying driver that is expanding the overall comput-
ing universe in terms of both size and range/diversity. This underlying driver is the
reduction in time and effort that users incur in adopting new ways of interacting
with machines. In other words, as the barriers to functionality contained within, or
the fun enabled by computing, are reduced, the scope of computing is expanded.
Second, the NUI and the GUI will likely coexist, leading both to prosper. For exam-
ple, the NUI is well adapted to the niche of leisure and entertainment. There the
NUI contributes to the fun of viewing content, for example, pictures, or playing
games. At the same time, the content comes from the GUI world of transferring
photos from cameras to computers. The games are developed using GUI and com-
mand systems. Considering NUI in the home, we are likely to see an even tighter
integration, for example, someone browsing the web for pictures, downloading
them, then manipulating them using the NUI.

The NUI itself may well exist in different “flavors,” much as the GUI systems do.
For example, the GUI controls of buttons are readily transferred to control systems
on touchscreens in cars. In contrast, the hierarchy of GUI menus and a separate
pointing control (usually a joystick-like control that employs pushing and twist-
ing) is not well adapted to a driving environment. Similarly, a NUI interface that
works well for horizontal interfaces will be used differently when placed vertically.
Horizontally, it is a table well adapted to games like hockey or bowling. Vertically,
a NUI would be used more like a white board on steroids, for example, moving and
merging content from other sources, or even writing. But we would not expect the
sustained and intense use in the vertical form as we see in the horizontal form. Here
we see a fundamental principle in action—the new interface accommodates to the
traditional use that existed in the “old” environment.

LESSONS FROM THE PAST
As we have seen, the past is often misread by the causal observer and the superficial
historian. A deeper examination leads to the following generalizations:

l	 Hardware platforms and forms of interaction do not replace each other as the
universe of computing grows. They continue to exist in the “niche” in which
they always prospered. Their absolute size (revenue) and range (uses) may be
undiminished in an absolute sense but may seem reduced dramatically as new
ways of computing and interaction emerge and dwarf them.

l	 Types of computing often combine into useful hybrids that borrow interface
elements from each other to form systems that are well adapted to a particular
niche. The spreadsheet, for example, contains command and NUI elements.

19Summary

l	 New types of computing often evolve into subspecies that are well adapted to
one particular environment or another. Horizontal NUIs will be used differently
than vertical ones. This adaptation reflects the constraints of the context and
the possibilities that the new interface and technology bring.

DESIGN GUIDELINES
In the context of an ecological niche, the design guidelines for the NUI are not
different than the design guidelines for any genre of computing. That is, the same
general principles apply.

Must
l	 Consider the context of use and the new possibilities that the interface brings

to interaction in that context.

l	 Do not simply translate from one genre of computing to another. For example,
copying a web application to a NUI will result in an interface that does not
exploit the possibilities of the NUI.

Should
l	 Be aware that in different environments the patterns of use of an interface may

be dramatically different.

Could
l	 If the context demands it, consider a judicious mixing of interface elements

from various styles. This is risky and needs to be done with care.

SUMMARY
The NUI may represent a revolution in computing, not because it replaces existing
ways of interacting with computers, but because it enables computing to expand
into new niches that could be of tremendous size and importance. Like previous
interfaces, the NUI draws its power from reducing interface learning cost. Finally,
the NUI will evolve into subspecies that will be well adapted to given social and
business niches.

23

CHAPTER

4Less Is More

Everything you always wanted in a beer and less.
—Light beer advertising slogan

Small is beautiful.
—E. F. Schumacher

DESCRIPTION
Start simple and look for every opportunity to build on simple interactions to
support more complex tasks.

APPLICATION TO NUI
With each new generation of interfaces, developers and designers are faced with a chal-
lenge—building applications that exploit the advantages that the new interface offers.
A risk in building these new applications is that the designers and developers rely on
concepts and approaches that worked in the past. In the most extreme case, the unin-
tended result is that the new application is merely a transcription of an old application
interface to the new genre. Often clients who have an existing application will directly
ask for a translation. In that case the NUI becomes a GUI with touch. Replacing the
mouse with fingers does not make an interface a NUI and is not likely to work very
well for users. Even when there is no pre-existing interface to copy, the team is likely
to simply not consider the more novel aspects of the new medium and thus is likely to
produce a pedestrian interface embedded in an undistinguished application.

LESSONS FROM THE PAST
While it may seem unbelievable, I have seen GUIs that drew from the program-
mers’ experience with command interfaces. In one particular example the user

24 CHAPTER 4  Less Is More

was expected to select an operation first, which would render objects as selectable.
This proved very confusing to users since it introduced a kind of mini-mode, that
is, when I choose the print function only printable objects are selectable. In fact,
this interface abandoned a fundamental tenet of the GUI: select first then choose an
operation. Needless to say, users found it very confusing.

Given the challenge of building an application in a new genre, teams should start
with the fundamental interactions of a system, perfect them, and then extrapolate
them to more advanced functionality. When considering a family of applications, a
team would be wise to start with small and simple applications, and when those are
perfected, take on more complex applications. Together, these two approaches will
help the team develop insight about designing for a NUI and increase the likelihood
that each application is successful.

Admittedly, we are advocating a very “conservative” approach to developing a
GUI application or a family of such applications. One motive for this approach is that
when other approaches such as copying an existing interface have been tried, the
projects have either failed completely or had to restart with a focus on fundamentals.
However, examining the “definition” we have offered for a NUI application also sug-
gests such a conservative approach. The NUI promises a relatively rapid and enjoyable
progress from novice to skilled practitioner. In addition the NUI “promises” that the
process of developing skills and the interaction itself will be fun. It also promises that
this transition will begin with interaction primitive, a simple action accompanied by
system feedback that is fundamental to interacting with the system, that are derived
from interactions in the real world. Those requirements make the development of
a NUI a daunting task. In contrast, the essential promise of a GUI is that it will use
some fundamental interaction conventions (e.g., menus, dialog boxes, “what you see
is what you get”) to build a system that supports a given set of tasks. From its incep-
tion, the inventor of the GUI did not think of it as a way to create easy-to-use systems
or systems that were “fun” to interact with. Rather, it was a way to “augment” human
capabilities. Analogously, developing a NUI system is more like creating a game. That
is, the interaction should be fun, and should introduce new challenges in a gradual
way. However, game interfaces differ from NUIs in that most games offer a challenge
as part of the game. In contrast, NUI only offers a path to skilled practice. The devel-
opment of skilled practice may be challenging in and of itself. But the NUI promises to
make that transition as progressive and seamless as possible.

The recommendation of starting with the fundamental interactions begs the
question of how does one distinguish fundamental interactions from other required
interactions. There is no simple rule, but there are three good “clues” for identifying
such interactions. The first is what interactions are the most frequent, the second
is what interactions are most likely to be done first, and the third is what interac-
tions can serve as building blocks for more advanced actions. For example, a hypo-
thetical NUI program for landscape design would begin by presenting the user with
a number of possible designs for different contexts. Landscape elements could be
moved only to appropriate places. Goals for the design would such as cost would

25Design Guidelines

be tracked as the design was created. The growth of all the plants used could be
simulated over time so that the designer could see how her design would look 10 or
20 years into the future. Only plants appropriate for a given environment would be
offered on “plant pallets” (e.g., no tropical plants for northern climates).

We have focused on how a team “should” approach the development of NUI appli-
cation or a family of NUI applications. We are not saying that the NUI can only be
applied to relatively simple tasks such as viewing pictures or playing simple games.
Instead, because it removes the additional complexity of describing actions in terms
of a complex language (command systems), or expressing interaction through a rela-
tively artificial but conventional interaction paradigm (GUI), it promises to make com-
plex tasks and rules easier to learn and perform. For example, the design of complex
architectural drawings could be made more accessible by allowing users to manipu-
late the architectural objects directly. Their constraints are expressed in how they
behave, for example, an object that cannot be resized in the real world cannot be
resized in the application. Objects can only be moved to where they logically fit.
Objects will by default do the “right” thing when placed in the proper context.

DESIGN GUIDELINES
The design guidelines for NUIs are similar to those for any new genre or medium.

Must
l	 Forget past interaction styles. Don’t simply transcribe an application rendered

in a traditional medium (web or GUI) as a NUI.

l	 Choose a promising niche for developing a family of NUI apps. Thus far, the
NUI has shown the most success in social and entertainment contexts. Its
application to other domains requires an analysis of the way in which the inter-
action would support and teach the rules of the interaction domain.

l	 When developing a single NUI application, start with the most fundamental
interactions. Perfect them through careful design and testing. Then extrapolate
those designs to more complex regions in an interaction domain.

Should
l	 Test the fundamental mechanics of the primary interactions before building

out the entire interaction. When these are working well (i.e., users enjoy doing
them), build on them.

l	 In building a family of NUI applications, start with simple ones (i.e., those with
few possibilities and a clear and familiar model of interactions) and perfect
them. Apply those learnings to more advanced applications.

26 CHAPTER 4  Less Is More

Could
l	 Study existing NUI applications. Are they fun to use? Do the interactions seem

seamless and intuitive? Did users hate to stop using them? If the answer to all
these questions is yes, then apply what you have learned to your application.

SUMMARY
Creating successful NUI applications requires attention to the mechanics of inter-
action and the constraints of the domain. Imagining a skilled practitioner in the
domain and designing the system to work the way she does is a good approach.

27

CHAPTER

5Contextual Environments

All science is experiential; but all experience must be related back to and derives its
validity from the conditions and context of consciousness in which it arises, i.e., the
totality of our nature.

—Wilhelm Dilthey

DESCRIPTION
In Chapter 2 we provided a definition of the NUI. NUIs are not thoughtless applica-
tions of new modalities of input that either mimic actions in the real world or mimic
existing interface paradigms. Instead, NUIs reframe design and research in terms of
the following questions:

1.	 How can I create an interface in which users quickly become expert while
using actions that feel natural to them and build on and extrapolate from nat-
ural actions? (the design question)

2.	 How can I be sure that I succeeded in creating an interface that feels natural
to the user? (the research question)

In that chapter we used the example of the major league pitcher. To him, stand-
ing on the mound, choosing the pitch, and throwing it are “natural,” that is, they
feel natural and his behavior is natural. The challenge of the NUI is to move users
from clumsy and self-conscious novice performance to accomplished, fluid, and
comfortable performance as quickly as possible. NUIs do this by beginning with
“self-evident” evident actions, for example, defining the ways of propelling a sphere
(underhand or overhand) using only one’s body and shaping these actions quickly
and continuously in the context of skilled performance by the professional.

In Chapter 3, we examined the contextual environment. Drawing on the example
in Chapter 2, pitching is “natural” in baseball. It fits in the context of baseball. The
same action would be unnatural in cricket or American football and illegal in soccer.

http://dx.doi.org/

28 CHAPTER 5  Contextual Environments

Each of these environments is highly artificial and stylized with arcane rules and
traditions. How could the behavior in any of these environments be construed as
“natural”? What natural means to us is not primitive or unrefined. A natural user inter-
face is not one that magically responds to any action, somehow correctly guessing the
user's intent. Instead, a NUI fosters the development of skilled behavior and engen-
ders a feeling of mastery by eliciting appropriate actions from users and shaping them
into skilled behavior smoothly, efficiently, and enjoyably.

But what role do context and environment play in creating a NUI? Practically,
the team creating a NUI is faced with three questions.

1.	 What are the characteristics of contexts in which a touch-based NUI is likely
to be ultimately successful?

2.	 What about the environment is likely to elicit actions that will be initially
successful and that can be shaped and extended to meet the ultimate task
requirements in a way that is quick and fosters a sense of mastery and enjoy-
ment in the user?

3.	 What does skilled and fluid action look like in a given context?

It follows that careful reflection on the context and environment in terms of
how they elicit action that is congruent with the actions of the skilled practitioner
and enjoyable is the key to the success of that particular NUI in terms of gaining
initial acceptance, promoting rapid learning, and achieving skilled performance.

APPLICATION TO NUI
When we look at specific contexts in which touch-based NUIs have shown
promise, they tend to embody some common characteristics. First, they are social
contexts—leisure environments, where people gather to interact, retail environments,
where people meet to transact business, demonstration environments, where the
user employs technology to perform before an audience, and public environments,
where people are enticed to walk up and explore the technology. These latter envi-
ronments are a kind of interactive public art. The NUI enhances those interactions.
So the NUI works well for tightly “coupled” tasks, where multiple people are work-
ing closely together toward a common goal. Playing games, sharing experiences,
and completing a complex transaction are good examples. These environments are
also characterized by intermittent use of indeterminate duration. Again, playing a
game, sharing experiences, and completing complex social/commercial transactions
are good candidates. Some of these are social contexts where groups gather and
dissipate spontaneously and at will. Others are contexts in which people gather to
complete a shared task that involves complex information and multiple possible out-
comes (e.g., buying a product that has multiple alternatives.) They often take place
in public places. The intermittent and indeterminate use of these systems necessi-
tates easy introduction and a quick ascension to “expert” use. The fact that they are

29Application to NUI

mostly voluntary means that the interaction must be fun and rewarding for all. In
many cases the technology will offer enhanced capabilities that make the interac-
tion more enjoyable. Another characteristic of these environments is that users are
focused on content—the representation of the game pieces, the sharing of photos
or other content, or the examination or configuration of products.

In addition to these obvious characteristics of the areas where the touch-based
NUIs seems to work well, there is a more subtle aspect of the contexts in which
NUIs are effective. That is, the deep context of interaction is a relationship between
the two or more parties in which the interface is acting as facilitator not only for the
outcome of the transaction but also for the relationship between the actors.

These contexts contrast sharply with the domain in which the traditional graphi-
cal user interface (the GUI) has been most successful. The typical GUI environment
is one where users are working in isolation, with their interactions occurring not
here and not now. For example, they are sending email to each other or they are
interacting through instant messaging, which has been characterized as “CB radio
for typists.”

At this point we should review the definition of the NUI in relation to our discus-
sion of context. The “leading skilled effortless practice” aspect of the definition of NUI
is in some tension with the “most appropriate for context,” and both of those are in
tension with “social”. Interestingly, “content first” is just another way of saying con-
trols disappear, which is congruent with all the aspects of the NUI definition.

For example, wouldn’t a voice interface for giving commands be more “natural”
in the context of driving a car? The argument would be that typing while driving is
not natural. Few would disagree. Would that make speaking while driving “natural”?
It’s certainly more appropriate to context. You can keep your eyes on the road and
your hands on the wheel. We’ll leave aside the subtlety of where your attention is
focused. (The researchers argue that talking on the phone [or dictating] is almost as
bad as typing, but for some reason listening to the radio or talking with passengers
is not as cognitively demanding as those activities.)

However, the NUI is defined by three elements:

l	 Enjoyable

l	 Leading to skilled practice

l	 Appropriate to context

These elements are joined by “and.” A NUI must have all of these elements in
varying degrees. Games are enjoyable, but many have nothing to do with NUI. Many
training systems (e.g., Mavis Beacon teaches typing) lead to skilled practice, but are
not NUIs. An ATM is appropriate to context but is not a NUI.

This could be seen as an elaborate evasion, but it’s true of most sophisticated
definitions. Chess is not defined by any single attribute but by all its elements in
combination. This is a type of definition that prevents one from falling into intellec-
tual cul-de-sacs. These cul-de-sacs are common with definitions that rely on a single
attribute. For example, “humans are defined by tool making.” Okay, then monkeys,

30 CHAPTER 5  Contextual Environments

Japanese otters, and many birds are also humans since they make and use tools. This
explains why all these species also build cathedrals, create theories of the universe,
and have wars. In fact, if we consider what makes a human a human to be a com-
bination of many characteristics, we can escape such absurdities. The same logic
applies to the definition of the NUI.

LESSONS FROM THE PAST
Thinking from a NUI perspective, how do we elicit behaviors that are likely to be
successful and can form a trajectory of learning that leads to mastery? In creating a
truly natural user interface it’s helpful to consider the original definition of “affor-
dance.” While some recent authors have narrowed that definition, originally it was
conceived quite broadly and was rooted in a spontaneous and holistic relationship
between the actor and the environment, that is, “an affordance is a property of
whatever the person interacts with, but to be in the category of affordances it has
to be a property that interacts with a property of an agent in such a way that an
activity can be supported.” The statement is complex and requires some unpacking.
First, it says that an affordance is a property of the environment or context. Second,
the affordance elicits an action. Third, the action elicited by the environment is sup-
ported by the environment. Stated simply, the user is likely to “do the right thing”
without training. The “right thing” is an action that is successful in the near term
and increases the likelihood that the next action will be successful.

The naturalness of the NUI begins with a symbiotic relationship between the
actor and the acting system (the environment). This symbiosis is the starting point for
design, the touchstone for evaluation, and the determinant of initial success. The NUI
system reacts in such a way as to show the user the next step or foreshadow the final
outcome. For example, cupping one's hands allows one to “pick up” liquids to drink.
The success of retrieving liquids with one hand leads one to try two hands. The way
in which the hands are held is gradually shaped by the way the water reacts.

This symbiosis between the environment and the user leads to several implica-
tions for design and evaluation.

DESIGN GUIDELINES
As we noted, the first step is forget what you know about designing for GUIs or the
web. The GUI is interaction mediated by a mouse (or some other pointing device).
The web interaction is very simple: just point and click. The challenge of web
design is knowing where to click to get the desired result. The NUI designer should
forget all she knows about the these highly successful designs and should instead
begin with a clean sheet. But how do you “fill that paper”?

31Design Guidelines

Must
l	 Begin with what actions are elicited in this environment. For example, a game

can begin with the environment and actions typical of that game. Where to
begin in designing a NUI game of checkers is relatively clear.

l	 Next, consider content. Users focus on content and so should the interface.
Provide the absolute minimal number of interface elements that are required
for the interaction. For some interactions that is no interface beyond the
content.

l	 Third, consider how these interactions might be logically extended so that the
new actions are easily learned and present the expected result.

For example, one of the popular application on Microsoft Surface is a bowling
game. The only interface is the pins, the bowling ball, and the lane. The action is
obvious: roll the ball to knock down the pins. The game is enhanced by the fact
that you can stretch the bowling ball to cover the entire lane. It is also enhanced
by the fact you can knock over pins by hand. (Note: An astute reader will object
that this simple bowling game does not prepare one to be a skilled bowler. That is
true. In this case the game is an end in itself, just as “pong” or Tetris are games that
are ends in themselves: the goal of the NUI in this case is to facilitate playing of this
game, and not of the physical game which it represents).

Should
l	 Interface control elements should not be presented if they are not needed. For

example, if the user is resizing an object, he simply stretches it with by touch-
ing it in two places and moving his fingers apart.

l	 Most interface elements should emerge in response to user action only to com-
municate the state of the system and suggest the next action or the conse-
quence of the current action.

l	 The number of system states should be few, and the gestures required to
invoke them should be obvious.

l	 The system should be judicious about changing state mid-gesture.

Could
l	 Start with the beginning and end state of an application, remove all the inter-

face controls, and imagine how the user would interact with the objects of the
application to move from the start state to the end state.

32 CHAPTER 5  Contextual Environments

SUMMARY
We considered the relationship of environmental context to a gestural NUI. In doing
so we described the characteristics of environments where a gestural NUI would
be successful. We also considered the environment inside the application itself.
What elements would elicit responses from the user? How could we shape those
responses to teach the user the entire system?

FURTHER READING
Gibson’s theory of affordances offers an important and useful alternative to the cognitive per-

spective often assumed by researchers and practitioners in HCI. Its importance and usefulness
derives (in part) from its emphasis on the environment as eliciting behavior. This focus on the
environment steers researchers and designers to look to the visual and interactive design of a
system for incremental improvements and breakthroughs. At the same time, the theory uses
a specialized and somewhat arcane language to describe affordances. The third chapter, “The
Theory of Affordances,” in Perceiving Acting and Knowing (Lawrence Earlbaum, 1977) pro-
vides a good overview of the theory and a perspective on its origins in Gestalt psychology.

For an early and prescient overview of the future of computing, Mark Weiser’s article
“The Computer of the 21st Century,” which appeared in a special issue of Scientific American
in 1991 (Sept. 1991, pp. 94–104), shows considerable insight into the future of touch comput-
ing. It can be read to predict the iPhone (active badge), the iPad (pad), and Microsoft Surface
(live board).

33

CHAPTER

6The Spatial NUI

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is.
I mean, you may think it’s a long way down the road to the drug store, but that’s just
peanuts to space.

—Douglas Adams

DESCRIPTION
Traditional GUI interaction models are flat, planar, and two-dimensional (2-D). You
can use some two-and-a-half dimensional (2.5-D) techniques (such as skewing
planes, adding shadows, and overlapping elements) to make some objects look as if
they have depth. In contrast, in a touch NUI interaction, models go beyond a simple
plane to provide depth, encourage immersion, and make objects appear to have vol-
ume or take on real-world three-dimensional (3-D) behaviors so people can navigate
spatially in all dimensions.

APPLICATION TO NUI
You should not always use 3-D environments. Sometimes, 3-D environments are disori-
enting and overly complex, but your application’s behaviors, transitions, and navigation
should always consider the z-axis. For example, photos and videos in the Photos appli-
cation on Microsoft’s Surface are inherently resting on a flat canvas, but they rise to the
surface when users touch them to give the feeling of depth and realism.

Experiences can represent objects volumetrically and leverage a user’s depth per-
ception and spatial memory. Environments can extend well off screen, and users can
drag the environment around to relocate content. Objects can be stacked in 3-D space,

http://dx.doi.org/

34 CHAPTER 6  The Spatial NUI

using depth to sort, distribute, or focus on content. As long as users can use gestures to
navigate the environment and orient themselves, they can create a mental model of the
space, its content, and the gestures that they need to access that content without need-
ing to see it all on-screen. Users naturally develop associations between what they want
to do (for example, play a game) and where they do it (for example, in a game applica-
tion) from memory-triggered context.

LESSONS FROM THE PAST
For many users the GUI was their first experience of “space” on a computer. The
desktop and the icon view of folders allowed them to use two-dimensional space to
organize objects. In addition, the WYSIWYG elements of a new generation of appli-
cations (word processors, drawing programs) allowed them to use space in input.
Previous editors used markup languages to format text; as a result, the text was just
a series of commands and text objects. The commands controlled layout and appear-
ance and thus manipulated the output space. GUIs and the generation of applications
associated with them changed that. Users could now interact with documents in the
same two dimensions (horizontal and vertical) that the document would be rendered
in. The same was true (more or less) of drawing programs.

Systems that used 3-D representations of objects have been tested in experi-
ments. The results have been encouraging, even though these interfaces used a
traditional mouse and keyboard.

DESIGN GUIDELINES
Support Using 2-D Planar Space
Depending on your application’s scenarios and context, the viewable space might be
constrained. In some cases, the canvas is fixed, with a limited content presentation.
In other cases, the canvas is flexible, enabling users to zoom in and out. Use spatial
memory in situations where the canvas is larger than what appears in the screen.
In either case, backgrounds, objects, and controls must consider the z-axis for their
behaviors and movements.

Must
l	 Create an environment that is optimized for touch in its layout, feedback, meta-

phors, and behaviors. Any item that responds to users’ touch must be at least
15 mm in size in all directions, and there must be at least 5 mm between mini-
mally sized touch targets.

Should
l	 Leverage spatial memory by enabling users to change the screen layout them-

selves, and consistently position content and controls within your application.

35Design Guidelines

In situations with large canvases, make sure that the spatial relationship of
objects is clear and consistent.

l	 Consider the meaning of spatial relationships. Geographical and other naturally
spatial content lends itself well to spatial relationship. For nonphysical informa-
tion, consider carefully how the spatial relationship between elements is con-
sidered and remembered. (For example, an organizational hierarchy’s levels are
strictly hierarchical, because the physical distance between elements has no
meaning. However, viewers tend to associate vertical position with power, so the
relative position of two equally “ranked” individuals should be the same, and not
necessarily moved up because one person reports to a more senior leader.)

l	 In a multi-user system do not allow one user to shift the views of all users,
unless the task is highly coupled. In loosely coupled or uncoupled tasks, users
are disrupted if the entire canvas moves because of one user’s actions.

Could
l	 Use spatial navigation (flat and wide) in place of hierarchical navigation (that is,

menus).

l	 Make sure that the application does not become too cluttered or too sparse.
Enable users to quickly and dynamically repopulate the screen with an optimal
information density for the task that they are performing (for example, if users are
viewing hierarchical data visualizations, provide preferred views of the data and
note important information such as organizational or educational boundaries).

Adhere to Principles of 3-D Space Utilization (the z-Axis)
Users can clearly see and recognize objects, content, and other elements from a dis-
tance. When users view them at a closer distance, they see more detail, such as addi-
tional information, subtle textures, or hints of reflected light. When users interact
with interface elements, they reveal an even finer level of detail through sound, visual
feedback, and movement. For example, icons in Launcher transform into applica-
tion previews when they are touched, and then they change into the live application
when they are touched again. These actions all provide progressively more detail with
deeper interactions. As users zoom in closer to objects, the objects should reveal unex-
pected visual or audible details.

Must
l	 For all movable and free-form elements, use visual feedback (depth) to acknowl-

edge objects or controls that users successfully touch by moving the item
toward the user along the z-axis. (The exception to this guideline is when the
z-axis is already being used for another purpose, or where precise placement is
required.)

l	 Adhere to the standard gesture for moving forward and back in the z-axis.

36 CHAPTER 6  The Spatial NUI

Should
l	 Use an appropriate 3-D projection. A standard perspective projection does not

work because users can approach a display from any side.

l	 Use 3-D space in a semantic way, so that the relative z-axis position of each ele-
ment has meaning to the user.

l	 Make the structure of every element feel like it has volume. The experience
must feel exploratory and invite users to navigate through the volume as if it is
their own world.

Could
l	 Use the zoom gesture to move the view in and out, rather than to change the

size of content. The functional difference is that all elements move toward the
viewer, rather than a single element growing larger relative to the others.

l	 Give 3-D behaviors to 2-D elements, so that, for example, users can turn over
flat elements and interact with the other side.

l	 Remember that the potential volume of interactive space can be larger than
what users can view on the screen at any given moment. Allow users to under-
stand that volume can be a vast 2-D canvas and also a fully 3-D volume in which
content is located and activities occur.

SUMMARY
The use of effective 3-D space can significantly enhance the experience with a NUI.
Some of these benefits could also be present in GUI interfaces also if it was decided
to use them. However, in addition to the fact that the use of 3-D space aids in find-
ing documents for the NUI, they are even more significant. NUI systems make users
comfortable by providing environments similar to the real world. This ability moves
the NUI beyond the traditional desktop.

FURTHER READING
 Three-dimensional interfaces can provide a wide variety of benefits regardless of where

they are realized on a NUI or a GUI. These benefits are well documented in two papers
by George Robertson et al. See Data Mountain: Using Spatial Memory for Document
Management, G. Robertson and M. Czerwinski, UIST, San Francisco, 1998; http://delivery.
acm.org /10 .1145/290000/288596/p153 - rober t son .pd f ?key1288596&key2
3134091821&collACM&dlACM&CFID98229772&CFTOKEN82307336; and The Task
Gallery: A 3D Window Manager, G. Robertson, M. van Dantzich, et al., CHI 2000, The Hague,
Amsterdam; http://delivery.acm.org/10.1145/340000/332482/p494-robertson.pdf?key1332482
&key24114091821&collACM&dlACM&CFID98229772&CFTOKEN82307336.

 A projection is the mathematical mechanism by which 3-D images are mapped onto a 2-D plane,
usually in such a way that the images appear to be in 3-D.

37

CHAPTER

7The Social NUI

A dream you dream alone is only a dream. A dream you dream together is reality.
—John Lennon

DESCRIPTION
In standard GUIs, social barriers occur because of the input and output system.
For example, experiences are inherently single-person when users have only one
mouse, one keyboard, and no touchscreen. The standard GUI supports a classic
view of the information worker; she is alone in her office working on various docu-
ments (e.g., spreadsheets, reports) or analyzing data. In contrast, many modern
NUIs are designed for multi-person input, so multiple users can gather around the
display and interact with it. For example, they can play the same instance of a game
at the same time. In this way they elevate the activity from a solitary experience to a
social experience.

The social experience is not limited to the interactions between people and
the user interface. For a “social interface,” the less communication that happens
between an individual and the UI, the better. The more communication that
happens between the people around it, the better. People focus more on each
other than the computer, so the computer becomes secondary to the group
using it.

In the video game industry, competitive and cooperative games rival tradi-
tional single-player games as the exciting games in the market. Console games have
increasingly become the mediator for social interaction that occurs between people
who are engaged in a game. These cooperative and competitive games occur in two
forms: “shoulder to shoulder,” where people play side by side, or mediated, where
people are distant from each other in space or time or both.

You can reuse cooperative techniques from video game design to make other
NUI applications more engaging, fun, and social.

http://dx.doi.org/

38 CHAPTER 7  The Social NUI

APPLICATION TO NUI
Not all NUI interfaces are designed for shoulder-to-shoulder social interaction. Some
use NUI principles and approaches to facilitate solitary consumption of content
such as electronic books or movies online. Other NUI devices are designed to sim-
plify tasks in specific environments, such as using a touchscreen or issuing voice
commands while driving. Conversely, much of social computing does not involve
the use of a NUI. Often social computing systems use a classic GUI to provide shar-
ing of information and enable collaborative working with other members of a work
team who are displaced in space or time or both. In this chapter we focus on NUIs
that are intended to support shoulder-to-shoulder social interaction.

In order to succeed, the designer of this type of NUI, the social NUI, needs to sup-
plement her NUI design principles with some “social design” principles. Similarly,
the researcher needs to evaluate the system using pairs or groups of people. Below,
we list some of these principles for testing and designing social NUI.

LESSONS FROM THE PAST
Considering the history of HCI since the early 1980s, some consistent themes are
breaking down the barriers between humans and technology and breaking down
the barriers between people. An overall trend in interface design has been to move
away from interfaces that require people to express their requests in a specific,
detailed, precise syntax and an arcane semantics that closely mirrors the way the
system operates. Instead, the trend in interface design has been toward systems that
allow for more immediate and natural communication.

For example, early programming consisted of plugging wires in patch panels of
circuits. As such, it required the programmers to express themselves in the “lan-
guage” of current flow. A great step forward occurred with command languages,
which allowed people to express their desires in a symbolic way using arbitrary
and precise command languages that the user mastered over time. Initially these
languages were often awkward to use—they were logical, with regular syntax and
systematic semantics—and complete—they covered a domain of work/action. They
were often intended for specific domains of human activity as reflected in their
names, for example, COBOL (COmmon Business Oriented Language) and FORTRAN
(FORmula TRANslation). Command languages for operating systems, for example,
UNIX and VMS, had similar properties. Most importantly for our purposes here, it
should be noted that they reflected a “relationship” between a single user and a
machine (others were involved only peripherally). In addition, interaction was often
temporally displaced, for example, the user input a long series of commands (a pro-
gram or command file) and the system responded with voluminous output.

With the modern GUI the gulf between the user and the computer decreased.
With menus and dialog boxes, the GUI eliminated syntax and simplified semantics.
The user did not have to memorize and recall commands but could recognize menu

39Inter-User Task Coupling

items. The syntax of commands was totally eliminated or effectively subsumed in a
dialog box. Combined with the personal computer and its WYSIWYG (what you see
is what you get) environment, the user could see the immediate effects of her inter-
action. With the introduction of “undo,” the cost of experimentation was greatly
reduced. However, the GUI was no more “social” than the command systems that
preceded it.

Computing became more social with the broad adoption of the Internet and
Ethernet technology. Providing a relatively fault tolerant and standard way for com-
puters to share information naturally resulted in people being able to share infor-
mation. The architecture and its protocols were particularly suited to sharing by
people who were separated by space and time (not here, not now). Applications
such as mail (anywhere, anytime) and IM messaging (anywhere, now) exploited
this technology and were widely adopted. While these developments represented
a significant advance in bringing people together, they involved a mediated and dis-
placed kind of sharing.

The advent of touch computing and relatively large sharable screens combined
to produce systems that are not limited to relatively specific and routinized transac-
tions (like grocery check out). This enables a new kind of computing: the social
NUI, where people can share experiences in the here and now and use the com-
puter simply as a supporting mechanism.

The field of supporting multiple users on a single screen is known as single dis-
play groupware, a term coined by James Stewart and his colleagues. Of particular
interest is a piece of work done by Mark Hancock and his colleagues, who where
investigating how to give audio feedback to multiple users simultaneously. Their
paper provides a variety of recommendations and some surprising findings worth
reading more about. Another issue of particular interest is known as “inter-user task
coupling,” which is of critical importance whenever an application is intended to
be used by more than one user simultaneously.

INTER-USER TASK COUPLING
A critical element of social computing is considering the issue of task coupling. At
any given time, multiple users who are working around a multi-user device might be
engaged in multiple levels of task coupling. There are three distinctive levels of task
coupling:

l	 Highly coupled tasks: Users help each other accomplish the same task. For
example, two users touch two portions of the same object to perform a mani-
pulation, or two users look for the same album in a large collection.

l	 Lightly coupled tasks: Two users try to achieve a result that depends on them
both, but they are engaged in different tasks to achieve it (sometimes called
divide and conquer). For example, one user searches for an album in a large
collection while the other user searches for album art to apply to it. Another

40 CHAPTER 7  The Social NUI

example is when the Chief of Fire and Chief of Police can manage different ele-
ments of a crisis.

l	 Uncoupled tasks: Users share the same space, but they are engaged in separate
tasks. For example, two users search through the same collection of photo-
graphs, but each user is looking for different pictures, or one user is searching
for photographs, while the other user is checking his e-mail.

How well your system supports these different levels of inter-user task coupling
will affect how successful it will be as a social NUI.

DESIGN GUIDELINES
Must

l	 Test designs with multiple users simultaneously interacting.

l	 Consider how you want to support different levels of coupling in the tasks, and
how to support varying levels of coupling within the same application. Consider
how multiple users will utilize your application. Will it be on a mobile device that
is passed around? Will it be on a single screen that multiple users will view shoul-
der to shoulder? Will it be on a table where users will sit across from one another?

Should
l	 Create an experience that comes alive with several users, so that the experi-

ence is more fun or efficient when many hands are working simultaneously.

l	 Enable a single user to enjoy the experience without requiring other users.

l	 Enable new users to join, so that the approval of additional users allows them
to easily engage with your application, without disrupting other users already
present.

l	 Be able to continue with fewer users, allowing one user to leave without dis-
rupting all others’ experience.

l	 Support multiple coupling levels by enabling users to perform tasks together to
varying degrees. Do not segment the space into areas for particular functions
(for example, this side is for performing task A, and the other side is for task B).
Allow any function to be performed in any space.

l	 Enable many users to simultaneously use content and controls. Do not block
progress by requiring all users to use a common set of controls. Instead, allow
users to break up portions of the task by dividing up the controls.

l	 Do not break from the paradigm of direct-touch input when users are per-
forming highly coupled or lightly coupled tasks because direct manipulations

41Design Guidelines

beneficially create consequential communication. For example, if users are
searching through objects by physically moving them, their progress is clear
by the speed of their movement and its location on the screen, and can be seen
effortlessly by other users through peripheral vision. Changing this to a virtual
device removes this communication.

l	 Support consequential communication by making system changes clear to all
users. For example, when a person uses two hands to zoom in on a map, any
observer can clearly see how and why the zoom changed.

l	 Avoid the use of ambiguous audio feedback by making sure that the success
or error of a touch is not tied to an audio cue. There is no mechanism to help
users distinguish the cause of two simultaneous audio cues.

l	 Do not provide multiple system modes for input touches. For example, in a GUI
application, when a user selects a property to apply to an object, the mouse
pointer changes mode (such as turning into a paint brush). This concept does
not work with any multi-touch system: which of the 52 contacts should become
a paint brush? This is an important, fundamental difference between single-
touch and multi-touch systems. This problem is worse in multi-user applications,
because one user who puts the system into a particular mode can significantly
disrupt all other users.

l	 Do not attach shared controls to one side of the display, because users will be
forced to reach uncomfortably close to another participant to use the control.
Instead, enable users to move controls and share them or to dedicate the control
to a particular user while he performs some lightly coupled or uncoupled task.

l	 Communicate ownership through the location of content. If new content is
“owned” by a particular user, place it in front of that user. If the group shares
ownership, place the content in the center.

Could
l	 Enable users to divide up their tasks and to decide for themselves whether they

will be engaged in a shared-display, single-user session, or in a truly multi-user
session.

l	 Provide methods of dividing up a task with various levels of coupling so that
users can work in parallel. For example, enable users to define interaction
areas that they can dedicate to a particular function, by specifying what is per-
formed in a particular region of the screen.

l	 Provide modal spaces that allow input to change modes based on the location
of the touch. For example, if you want users to be able to paint and annotate
an object, provide regions of the screen where they can drag the object and
where touches are then mapped to either paint or annotate. Make sure that
users can also move these regions to enable users to divide their task.

42 CHAPTER 7  The Social NUI

FURTHER READING
Stewart, J., Bederson, B., and Druin, A. Single display groupware: A model for co-present collabora-

tion. Proceedings of Human Factors in Computing Systems (CHI 99). ACM Press, 286–293. In
this work, Stewart et al. define the term single display groupware, discuss the model, and com-
pare it to traditional computer collaboration with remote participants. They also describe the
requirements that SDG places on computer technology, and their understanding of the benefits
and costs of such systems. They also present the results of tests run with 60 elementary school
children using their technology.

Hancock, M. S., Shen, C., Forlines, C., and Ryall, K. Exploring non-speech auditory feedback at an
interactive multi-user tabletop. Proceedings of Graphics Interface 2005, 41–50. In this work,
Hancock et al. point out the inherent ambiguity of giving audio feedback to multiple users
simultaneously. They examine various methods of personalizing the audio feedback to reduce
cross-talk.

Consequential communication occurs when the behavior of users who are interacting with the
system also provides another user with information about that interaction.

43

CHAPTER

8Seamlessness

There are unknown forces in nature; when we give ourselves wholly to her, without
reserve, she lends them to us; she shows us these forms, which our watching eyes
do not see, which our intelligence does not understand or suspect.

—Auguste Rodin

DESCRIPTION
Seamless experiences enable users to be immersed so they embrace new experi-
ences. You can create seamless experiences by creating an environment that leads
users to suspend their sense of disbelief, no longer comparing their actions to a
defined pattern, and experience a direct connection between their actions and the
objects and operations of the system.

LESSONS FROM THE PAST
Seamless experiences are those in which users are cognitively and emotionally
immersed so that they embrace these new experiences and rapidly progress to skilled
practice. You can create seamless experiences by designing a system that leads users
to suspend their users’ sense of disbelief.

The suspension of disbelief refers to a person's willingness to accept something
as true or sufficiently real even if it is fantastic or impossible in the real world. The
combination of the suspension of disbelief and interactivity makes video games
appealing and makes them seem even closer to real life. For many years, the game
industry has focused on building immersive worlds that simulate a living, breathing
environment in an emotionally engaging and approachable way.

A second element of a seamless experience is that the self-monitoring that is
often part of learning new skills has disappeared. The actor no longer monitors her

http://dx.doi.org/

44 CHAPTER 8  Seamlessness

actions, comparing them to an idealized template. New learners often approach new
skills with a strategy of “objectifying” themselves and monitoring their actions on a
moment-by-moment basis. (They may also develop strategies—verbal formulas that
“trick” them into skilled performance.) In contrast, experts act as if there is a direct
connection between their actions, any tools that they are using, and the resulting
effect. Their actions are fluid and whole rather than halting and particularized.

APPLICATION TO THE NUI
One way to suspend disbelief and encourage fluid action is by mimicking real-world
objects and using virtual-world capabilities to extend the objects beyond what is
possible in the real world. Imagine an object that initially appears as a globe that
you can spin by flicking it with your finger. You touch a location on the globe to
zoom in closer. Each touch zooms in further until you see points of interest that you
touch to create a personalized itinerary. The object is not a spinning globe that can
create itineraries, but disbelief is suspended when the virtual object mimics its real-
world counterpart.

To suspend disbelief successfully, erase the line between the physical and vir-
tual worlds in a way that is seamless and in which the performance of the technol-
ogy is flawless. A NUI experience must respond continuously to fingers and physical
objects that are placed on it and must immerse users in a better-than-life experience.
For example, exploring a virtual database of treasured objects is both real (these are
representations of real objects) and magical (I can control them in exciting ways).
These actions themselves enhance any experience.

When users directly manipulate objects on-screen and with their fingers the
experience can quickly feel seamless and thrilling. The representation of physical
objects makes the experience feel seamless between the physical and virtual worlds
and between one’s self and one’s actions. To perpetuate the suspension of disbelief,
the system must respond continuously to fingers and by displaying information on
the screen in expected ways.

A final word about seamlessness—it is fragile. Any seemingly small disturbance
and the entire illusion is broken and the experience is now disjointed. If the system
is slow, or if it responds in an unexpected way, then the experience is no longer
seamless. The same principle applies in the real world. To use our baseball meta-
phor, a bat that is too heavy or too light leads to a feeling of clumsiness and inhib-
its both performance and the experience of seamlessness. Ironically, highly skilled
practitioners may be more sensitive to subtle differences in the tools or instruments
they use. In a way their senses are more attuned.

Must
l	 Respond to every contact. Feedback shows that the system is responding, and

people will not wonder whether the object is broken or malfunctioning.

45Summary

l	 Respond immediately to every contact. This immediate response blurs the line
between the real and the virtual.

l	 Make every transition fluid. Every object and visible property change must
smoothly animate and transition into and out of existence, or between changes.
Nothing should abruptly appear or disappear.

Should
l	 Make feedback whimsical, magical, and either expected or/and informative. By

expected we mean that it should make sense to the user. Moving an object by
touching and dragging is a good example. Informative means in a subtle but
effective way show the users what they should do next. That kind of feedback/
feedforward makes learning seamless.

l	 Create transition animations that communicate state and relationship changes
and contribute to a consistent interaction paradigm. This ultimately provides
the personality of the application.

l	 Mimic the real world in your transitions by using notions such as mass, accel-
eration, friction, viscosity, and gravity.

l	 Make sure the controls for starting and ending and for major state changes are
always visible. This visibility is in contrast to systems that embed major func-
tions within menus.

l	 Break from real-world behavior to match user intent. All interaction metaphors
start with physical manipulation, and then extend it. (For more information,
see Chapters 9, Super Real, and 10, Scaffolding.)

Could
l	 Play with physical reactions. Users accept a lot of reinterpretations of reality

when they are interacting with virtual objects. You can modify the physical
responses to meet the needs of your application.

SUMMARY
Seamlessness is one of the necessary characteristics of the NUI. An interface with
obvious discontinuity or one the breaks the user’s sense of connection to the
objects and her own behavior cannot be a NUI. While any interface can become
seamless, with practice NUIs are designed to migrate the user quickly and with plea-
sure to skilled practice. Making seamlessness a goal of the design is a path to the
NUI. We have outlined several techniques to design a seamless interface. However,
perception of seamlessness is in the hands of the user, so seamlessness must be
tested with users.

46 CHAPTER 8  Seamlessness

FURTHER READING
Seamlessness is easy to grasp but difficult to fully explain. One reason is that once one starts to

explain seamlessness, it becomes a construct and loses its essence. One of the early attempts
to characterize the broad implications of seamlessness was a narrative written by a philoso-
pher who studied archery in an attempt to better understand Zen philosophy: Zen in the Art of
Archery, by Eugen Herrigel, Pantheon Books, 1953. The book is short and easy to read, but its
meaning can be difficult to grasp.

47

CHAPTER

9Super Real

Any sufficiently advanced technology is indistinguishable from magic.
—Arthur C. Clarke

DESCRIPTION
Because touch is inherently physical, it creates a sense of direct interaction with and
control of technology. You can create more fluid, natural experiences by mimick-
ing real-world physical interactions and augmenting them beyond what is possible
in the real world. Super realism pushes beyond what is physically natural so that
experiences do more than is possible in the real world. At the same time, super
real is an intuitive extension of the real. Super interactions are both grounded and
magical.

For example, on the iPhone one can contract or expand an image by touching it
with two fingers and then moving one’s fingers together (contract) or apart (expand)
(Figure 9.1). It is as if the image were made of rubber and can be stretched. This
ability to zoom in and out by just touching represents a kind of naive physics and is
delightful to users

In other applications such as the URP (Urban and Rural Planning system), one can
use actual physical models to simulate an urban environment. One can simply pick up
buildings and place them on the screen. The system enhances the experience by allow-
ing the user to simulate and change the angle and intensity of sunlight (for example)
as the day progresses. One can also inspect the model from different viewpoints, for
example, pedestrian vs. birds-eye view. Similarly, one can change the building material
by touching the virtual building with a material wand.

These examples and many others illustrate the power of the super real. The
system works as we might expect it to because it mimics the way objects work in
the world, that is, it’s real. At the same time, we can interact with these objects in
extraordinary ways (the super) that do not require an abstract language with arcane
syntax or a series of interactions with cumbersome controls.

http://dx.doi.org/

48 CHAPTER 9  Super Real

To create natural interactions, create the base of the interactions in the real
world and then extend them in intuitive ways. To create super real interactions,
leverage the possibilities of virtual objects in digital environments to exceed what is
possible in the real world.

LESSONS FROM THE PAST
It has been a well-established tradition to design systems that draw from people’s
knowledge and experience but extrapolate that knowledge and experience in
desirable ways. More “traditional” systems like the GUI follow work practice but
extend it in ways made possible by technology. These systems and products are also
enticing to users because they greatly increase the rate of productivity, create new
possibilities for work/creativity, can provide an immediate and positive emotional
experience, or some combination of the three.

The GUI and its associated generation of applications were more likely to
increase productivity and create new possibilities for work than to excite users.
More precisely, experiencing the “thrill” of using a typical GUI application involved
learning a new way of working. Admittedly, many GUIs drew on some elements of
the user's prior experience and eliminated the need to memorize and correctly type
arcane commands with prescriptive syntax. They also capitalized on our knowledge
of the electromechanical world. For example, they had buttons that one pressed
to activate functions. Even the names of these types of controls drew on analogies
from the physical world. For example, “radio buttons” mimicked the action and
logic of buttons on electromechanical radios. That is, you push one button and the
others are “deactivated” as the station is changed.

However, this approach, while very powerful, creates its own challenges. For
example, I no longer have to remember commands; I just have to recognize them.

FIGURE 9.1

A user scales a photo by using a two-finger gesture.

49Application to the NUI

But I do need to remember where they were in a large maze of menu choices. Even
more subtly, the commands often change the user's understanding of their work
products. For example, on an electric typewriter the user could hit a return key and
simply move the paper up and the point of typing down. In contrast, hitting the
return key in a full-screen editor inserts “invisible” characters (carriage return and
line feed) that also serve to mark the end of paragraphs. Use of the tab key was even
more confusing to the new user.

As the interface and implicit model of a text editor were learned, one could
experience the joys of spell-checking, search and replace, and revisable documents.
Even more thrilling was the new possibility of creating professional-appearing docu-
ments by using fonts, inserting figures, and creating styles.

A NUI promises to shorten the learning curve by replacing a maze of controls
and menus with simple actions, gestures, affordances, and feedback. It also prom-
ises to keep the interaction fun by making the interaction itself fun. You don’t need
to wait for a final work product to feel the joy.

But all these goals are easy to discuss and hard to achieve. Below is a set of prin-
ciples to help the development team create an interface worthy of the NUI title.

APPLICATION TO THE NUI
Must

l	 Create immediate responses to all user input that will receive a response. Pre-
buffer content, provide a transition, or use other mechanisms to make sure that
every touch receives an immediate and meaningful response. An application
without immediate responses detracts significantly from the user experience.

l	 Enable single-finger drag and flick movements on movable content. You must
always define a single-finger drag and flick to make sure that users can always
apply these basic manipulations to all content.

l	 Enable inertia on objects and content that users can move about the screen.
Inertia contributes significantly to the sense of a natural environment.

l	 Do not use time-based gestures on content. Time-based activations introduce
mandatory delays for expert users, and they also detract from the sense of a
natural environment.

l	 Enable users to manipulate content directly, rather than through user interface
controls. For example, use a scale manipulation instead of a zoom button.

Should
l	 Begin the experience with a familiar environment and behaviors, so users

quickly feel comfortable in performing explorations. For example, to create

50 CHAPTER 9  Super Real

this type of experience, mimic the metaphors of Surface Shell or the natural
environment around the Microsoft Surface unit.

l	 Enable quick discovery of delightful interactions, so users can quickly accom-
plish simple tasks or simply play with the system. Early success creates famil-
iarity, confidence, and a willingness to explore.

l	 Consistently use transitions and make sure the application does not slow the
processor unit. Lagging due to processor saturation makes the screen and input
display seem to suffer from random movements.

l	 Make the experience feel user-driven by ensuring that each state change is
clearly in response to user actions. For example, if a user prefers a particular
orientation of content, do not "snap" to that orientation. Instead, use a slowing
technique that does not employ a step function.

l	 Do not innovate for the sake of novelty. All interactions in your application
should be based on the foundations in the toolkit you are using including both
the manipulation and inertia processors or should be natural extensions of the
interactions that your users perform.

l	 Always show signs of life, even when the user is not interacting. For exam-
ple, the Water attract on Microsoft Surface was designed to be constantly in
motion, but it is never distracting.

l	 In creating this feeling of life, make sure that the behavior is subtle to avoid
being annoying or distracting. Do not cause the application's state to actually
change; instead, change only background and graphical elements.

Could
l	 Consider what advanced, expert functionality you want to enable in addition

to natural interactions. Provide a mechanism that extends natural behavior
to transition the user from a novice to an expert. For more information, see
Chapter 10, Scaffolding.

l	 Provide continued delight and discovery over time, in minutes, hours, days, or
months. For example, the Water attract application begins with gentle ripples
to entice users, responds to every touch to give them success, and ultimately
draws their attention to the access points to enable deeper engagement.

l	 Provide a path to transition novices to experts. If the same user will use your
application for an extended period of time, create distinct usage patterns and
methods for novices and experts, so experts can interact more efficiently.
Enable novices to become experts without instructions so they use the applica-
tion for the long term.

51Further Reading

SUMMARY
One part of the promise of the NUI is to make interaction with technology seem
like magic. Magic is delightful. The magician makes the impossible seem easy and
wondrous. Her magic often is an extension of the real that seems impossible but
that we might extrapolate. It is a kind of “plausible impossible.” When cartoon char-
acters run off a cliff but do not fall because they have not realized they have passed
the cliff edge, they are making the impossible seem plausible (you won’t fall if you
don’t realize you are in space). The extension of the joke is that the protagonist can
“compensate” by running back to the cliff edge quickly and thereby delay the fall
just long enough to grab the edge of the cliff before falling.

The same principles apply to our interaction with NUI technology. It works in
delightful ways that we might hope and expect. But then when we try something
that is plausible but impossible, we discover to our delight that that works, too.

That’s easy to say and hard to achieve. But by applying the principles above,
being creative, testing your interface, and being fortunate, it can be done.

FURTHER READING
The paper Reality-Based Interaction: A Framework for Post-WIMP Interfaces, CHI 2008

Proceedings, April 5–10, Florence Italy, pp. 201–210, by Jacob et al., provides an excellent dis-
cussion of the super real. The authors analyze the ways in which an interaction can be reality
based, for example, use naive physics to employ body awareness, and build off skills and the
like. It also compares these aspects of reality-based interfaces to the enhanced capabilities that
technology typically brings, such as expressive power and efficiency. Often these are thought of
as being in opposition. What is natural cannot also be powerful. The concept of the super real
invites design teams to try to synthesize both ends of the polarity. It promises that an interface
can be both intuitive and powerful.

53

CHAPTER

10Scaffolding

When one puts up a building one makes an elaborate scaffold to get everything into
its proper place. But when one takes the scaffold down, the building must stand by
itself with no trace of the means by which it was erected. That is how a musician
should work.

—Andres Segovia

DESCRIPTION
Scaffolding is the creation of a design that promotes autonomous learning by
employing actions that encourage users to develop their own cognitive, affective,
and psychomotor skills.

APPLICATION TO NUI
Our vision of NUIs is relatively simple to state in principle, but can be very hard to
achieve in practice. That vision is that the user moves from “novice” to “expert”
quickly and with pleasure. By novice we simply mean someone who uses the sys-
tem for the first time. By expert we mean someone who uses the system in the way
that the designers intended, feels pleasure in those activities, and has achieved that
level of competence without the slow and tortuous learning that is typical of mas-
tering many new interfaces. We also imply that the intended use is not a trivial one,
for example, using an ATM, where the functions are very limited and the user is led
through the interaction step by step and only needs to push the “correct” button.
(Note: We don’t mean to minimize the importance and challenge of creating and
testing effective designs for these types of interfaces; they are just not NUIs.)

One good way to achieve this vision is to use scaffolding. Scaffolding is a
teaching method that breaks down bigger challenges (such as “How does this

http://dx.doi.org/

54 CHAPTER 10  Scaffolding

whole system work?” or “What are all the possibilities of this system?”) and focuses
on smaller problem-solving challenges (such as “How do I initiate this one action?”
or “What can I do next?”). These small problems are addressed through specific
prompts, hints, and leading questions. Scaffolding provides supportive structures and
situations that encourage active exploration. It differs dramatically from approaches
that use memorization and repetition (the “drill and kill” approach). Scaffolding also
eschews the use of reference information in favor of immediate and simple cues that
lead the user to the next action. In other words, when done well, scaffolding inte-
grates learning and doing. The user is rewarded by performing successfully through-
out the learning process. Using scaffolding requires deconstructing tasks into small,
self-evident steps that minimize trial and error and preclude the cul-de-sacs typical of
learning functionally rich computer systems.

As part of scaffolding, present users with only the fewest reasonable choices at
a given moment. Those few choices should be supported by affordances to lead the
user’s next action. The action can then be reinforced by confirmation and/or the
next affordance. With a relative few and obvious choices, this approach simplifies
decision making, discloses information or required choices over time, and simplifies
a user’s decision making and action. As a result, the system is easier to use and enjoy.

However, simplicity need never mean simplistic; simple processes and tasks can
be incredibly rich and powerful.

LESSONS FROM THE PAST
Many of the effective ways of learning to use interfaces can be characterized as scaf-
folding. For example, the use of familiar metaphors at either the macro or micro
level can be thought of as scaffolding. A macro example is the use of columns and
rows in a spreadsheet. This representation builds on the ledger book, which also
used columns and rows of figures and which was familiar to the existing popula-
tion of financial analysts. At the micro level, the typical GUI contains scaffolded ele-
ments, such as buttons. The virtual buttons look like physical buttons and elicit the
intended behavior (pressing) from the user.

Another scaffolding concept is the idea of presenting limited options to the learner.
That approach is also characterized as “training wheels.” The system prevents the user
from “falling” into the deeper complexities of a system’s full capabilities. New con-
cepts are introduced when the user has mastered more basic functions and is ready to
learn new things. In other words, the training wheels are slowly removed.

This approach contrasts sharply with some traditional approaches in which the
user is exposed to a full system model via “reference documentation.” It also differs
dramatically from many overly simplistic help systems that simply restate the terms
already used in the interface, for example, “Use the file menu to save documents.”
Finally, this approach diverges from video instruction. Video instruction requires
users to stop what they are doing, watch a video, and then transfer that knowledge
to their task at hand. While the video may make the transfer more straightforward, it
still requires that the user switch out of context.

55Design Guidelines

DESIGN GUIDELINES
Must

l	 Ensure that all likely actions lead to either prompting for the next step in the
action sequence or foreshadowing of the state of the system/object when the
action is finished.

l	 At the appropriate time, show users affordances that guide users to access the
unseen content or functionality. For example, animate a list of songs when it
appears. Users should see the additional content beyond the last song title, for
example, a song title partially displayed. This implies that more songs are listed
below; in other words, the shown list is incomplete. If the user touches the
content, then it should move slightly to show that it can be scrolled.

l	 Require explicit and intentional user input to activate destructive functions or
to cause larger changes or transitions. This input is especially important for
transitions that affect more than one user, and even more so when users are
engaged in tasks that are not highly coupled. For example, to launch an appli-
cation, users must touch the application once to see the application preview,
and then touch it again to open the application.

l	 Foreshadow upcoming results so that users can reverse their actions. For
example, during the resize of an image, if the image is about to jump to full
screen (obscuring other images), show an outline of the image or a transparent
version of the image at full-screen size. Then the user can either reverse and
negate that action (the image will not jump to full size) or remove her fingers
so that the image becomes full size.

Should
l	 Reduce the number of features in your applications. Additional features add

both power and complexity. Instead, provide a premium experience in the pri-
mary task that the application offers. Once the primary experience is working
well, that is, you have tested it with the intended audience, then judiciously
add new features, testing as you go.

l	 Make sure that the set of features is focused on the particular task. Many appli-
cations provide lots of functionality that enables many separate tasks. Make
sure that your application’s task is clear and that its features focus on perform-
ing that task well.

l	 Provide a clear path from novice to expert so users can move from the initial
view of the application to where you ultimately want them to go. For example,
if the novice users are individuals who are working on highly coupled tasks,
and you want them to perform different loosely coupled tasks, you should visu-
ally divide your application with tools to support each task on separate sides of
a rectilinear interface.

56 CHAPTER 10  Scaffolding

l	 Make sure essential features are immediately discoverable, so that users can
begin using the system without rote learning. For example, if your application
is about creating a document, provide a blank document for creating content
immediately. Do not require the user to access a menu to create the blank
document or to access the most common tools for document editing. Do not
explain saving files and folders until the user has something to save.

l	 Encourage discovery through exploration, so that further functionality is
revealed as users continue through the experience. For example, in a music-
browsing application, make album covers become controls, so users can touch
them and flip them over to reveal the contents of the album.

l	 Use consistent interaction metaphors within your application. For example, if
you use the flipping technique that is described in the preceding item, make all
objects use the flipping technique, providing additional interaction capabilities
on the back of each object.

l	 Hint at deeper possibilities, without taking the focus away from the content.
For example, when users first launch a music application, have the albums
appear on the display and a few flip over to demonstrate the functionality.

l	 Make sure visual indications of touch are accurate so that the users are never
misled as to what is touchable. For example, disabled buttons must be visually
distinct from enabled buttons.

l	 Make sure feedback contributes to a better understanding of the system and its
state. For example, when users touch a control, it moves to the front, grows,
and displays a drop shadow, indicating a change in its position along the z-axis
and reinforcing its position and demonstrating that it is on top of the content.

l	 Put users in control, so that they can always understand the state of the appli-
cation and how to proceed. Do not provide too many automated actions. Keep
controls enabled and logical at all times.

Could
l	 Reduce the number of available paths and choices, so that the next step and

available options are always available to users. Achieve the correct balance
between the number of choices and paths to ensure that your application
meets the functionality needs of its users. The balance is often apparent only
by conducting user testing.

l	 Consider how multiple users will learn together. Users, especially children,
invite others to explain the use of the system.

l	 Provide instructions within the flow of the application, instead of requiring
users to break their concentration and search through a help system.

57Further Reading

l	 Make all content touchable, so that some visual response is provided no matter
where the user touches on the screen.

l	 Clarify errors, so that when the users touch the application, they can distin-
guish between hardware errors (the system did not detect the touch), state
errors (the touch was detected, but the touched item is not in a state where
it responds the way that they expected, such as being disabled), and semantic
errors (the touch was detected, the application is in the state they expected,
but the application’s response to that touch is not what they expected). You
can clarify these errors by providing clear visual feedback with information
about all of these levels.

SUMMARY
Scaffolding is a powerful approach for creating rich NUI applications that are a
pleasure to learn and use. Like many powerful approaches, it requires a deft design
touch and a sophisticated understanding. It involves an in-depth understanding of
the context of use and of users’ expectations. It also necessitates a clear vision of
skilled performance. The temptation to put reference information in the help sys-
tem or use video or extensive tutorials should be resisted. By focusing on learning
by doing and using a step-by-step approach, users can attain skilled performance
enjoyably and feel a sense of accomplishment throughout the learning process.

FURTHER READING
In the 1950s Jerome Bruner introduced the scaffolding approach to describe language learning.

This work was based on the seminal thinking of the famous psychologist Vygotsky. A defini-
tion of scaffolding and a review of the history of the concept is provided by Susanne Lajoie in
Extending the Scaffolding Metaphor in Instructional Science (2005), 33, 541–557.

Richard Catrambone and John Carroll provide the first description of a training wheels approach
to learning a system in Learning a Word Processing System with Training Wheels and Guided
Exploration in CHI  GI 1987, Proceeding of the CHI Conference, 1987, 169–174. Available through
the ACM Digital Library, http://delivery.acm.org/10.1145/280000/275625/p169-catrambone.pdf?key
1275625&key24722813821&collACM&dlACM&CFID99878216&CFTOKEN71839147.

59

CHAPTER

11User Differentiation

Know thy user, for they are not YOU.
—Ancient usability proverb

DESCRIPTION
The classic dictum in HCI, “know your users,” has broader implications than is gener-
ally realized. Users don’t exist in isolation. They live and work in contexts. They have
roles, responsibilities, and tasks. All these elements—users themselves, their contexts,
their responsibilities, and their goals—shape both the design possibilities and con-
straints of not only applications but also the rendering of any new interface paradigm.

APPLICATION TO NUI
Working from our definition of the NUI, we can see that it means different things
to different people in different ecological, social, and business contexts. A NUI
that responds to in-air gestures would make no sense in a car. For most people, the
evolved interface for automobiles requires one or two hands and one or two feet to
drive. Thus many NUIs in autos employ voice input or rely on simple touchscreens
not far away from the common sight lines. This simple example illustrates the inter-
dependence of context, user capabilities, and task goals. Our discussion here is lim-
ited to the touch- and gesture-based NUIs offered on an increasing array of products.

LESSONS FROM THE PAST
NUIs that enable touch, gesture, and object recognition are well suited to contexts
where users will walk up and use the system and where an interaction with the
system is intended to be enjoyable in and of itself. There are many walk up and

http://dx.doi.org/

60 CHAPTER 11  User Differentiation

use interfaces where the interaction is intended to be simply functional. Examples
include parking meters, ATMs, and automated airport check-in systems. All of these
are purely functional. The user is therefore a result and woe betide the overzealous
designer who attempts to incorporate progressive difficulty or arcane mechanics
into such a system.

In contrast, the walk up and use NUI needs to be attractive in approach and
engaging in use. That is in part because its use is often discretionary, and in many
cases its sole goal is to provide engaging diversion while the user waits for some-
thing or someone. This engaged waiting state often serves a larger business strategy.
For example, for leisure and entertainment businesses, keeping the user amused is
an important business goal.

In other environments such as retail stores, the NUI provides a simple and intui-
tive interface of mutual interaction by two or more users. Thus a customer and
salesperson can interact in a natural way much as they would across a desk. But in
this case, the “desk” is enhanced by computer technology that allows both users to
interact with the content on a equal basis.

In these environments there are different kinds of differentiation and numerous
mechanisms to differentiate users when that is required in the interaction. There
may also be contexts where user differentiation is not required or even desirable.

l	 Differentiation by flexible role assignment. This is most readily demonstrated
in game interfaces, which are common in leisure and entertainment environ-
ments. Here user roles are flexible at the beginning of the game and are often
assigned by agreement or simple physical position. The system does not need
to identify a specific person.

l	 Fixed role definition. Sales environments are typical examples. By definition
there is a seller and a buyer. They interact across a table. While their task is
tightly coupled, their interaction is fluid. The system may or may not need to
identify a specific person or role. The buyer and the seller interact with the
system in the same way. For those systems that provide information, individual
identification is not needed. The further the system moves into the typical busi-
ness transaction, the more requirement there is for personal identification. The
system may need to identify the seller so that he or she can be credited for
engaging the customer and making the sale. If the system is designed to com-
plete the transaction, then in most cases the seller and the buyer (or more pre-
cisely the payee and the payment source) need to be individuated.

l	 Personal identification. In this case, the unique user must be indentified at an
early stage in the transaction because the nature of the transaction depends on
knowing who the user is. A typical example is a loyalty card. Identification of
the person cues the system to provide customized options based on who the
user is. In some cases, the user may be identified not as an individual but as a
member of a class of people, for example, people who bring in a circular or
special offer coupon. They are unique only in being part of a class; high rollers
are another example.

61Design Guidelines

l	 Identifying a user for the duration of the interaction. In this case, the user is
uniquely identified in relation to the system, for example, this is the user on
the “north” side of the system. This capability allows for role-differentiated
interactions. For example, the person on the north side will be the goalie in a
tabletop hockey game.

l	 Differentiated roles. All the role differentiation we have discussed so far applies
to end users. Any NUI system will also need to identify users in relation to roles
with respect to the unit itself. These include end users, system managers, and
support and maintenance staff. The system managers need access to tools and
capabilities that are barred to end users.

DESIGN GUIDELINES
The class into which users and their actions fall is determined by the type of identifi-
cation used and in many cases the method of identification.

Must
l	 Don’t attempt to identify users if you don’t need to. Except in widely accepted

contexts (for example, ATM systems), users prefer to remain anonymous. They
are highly suspicious when asked to identify themselves for a system.

l	 If users are asked to identify themselves, they must see a clear benefit and be
assured that there will be no negative consequences to identifying themselves.
For example, users readily accept the need to identify themselves when they
make a purchase. However, they are reluctant to identify themselves to an
automated system early in the shopping process.

Should
l	 When users are asked to identify themselves, the process should be easy,

private, and secure.

l	 For users with system management roles, user identification can use more
traditional methods.

Could
l	 In some cases, mixing modalities of interaction may be the best way to

approach the problem of identifying a specific person. For example, the inter-
face may read a credit card that was supplied as the payment source and key
into a database of customers indexed by that card number.

62 CHAPTER 11  User Differentiation

SUMMARY
The challenge of identifying users in the NUI is made more complex by the follow-
ing facts:

l	 The system with the NUI is often in a public place.

l	 The systems with NUIs are relatively novel and therefore don’t benefit from
traditional social conventions.

l	 For NUIs to use their native technology, for example, optical recognition, that
technology needs to be sufficiently developed to read objects such as credit, ID
cards or biometric elements.

65

CHAPTER

12The State-Transition Model
of Input

So Midas, king of Lydia, swelled at first with pride when he found he could
transform everything he touched to gold; but when he beheld his food grow rigid and
his drink harden into golden ice then he understood that this gift was a bane and in
his loathing for gold, cursed his prayer.

—Claudian, In Rufinum

DESCRIPTION
Input devices come in a staggering array of shapes, sizes, degrees of freedom, and
capabilities. But all can be modeled using a very simple tool: the state model of
input devices. By understanding this way of thinking, you will immediately transi-
tion from thinking about devices in isolation to thinking about them holistically,
and will quickly realize that most input devices, while staggeringly different, can
all be thought of as fitting into a rather small number of categories. To understand
these categories, you will first need to start building some intuition about the state-
transition model. First, consider a typical direct-touch input device, like the iPhone.
When the user is not touching it, it is sitting idle—it has no idea where the user’s
fingers are. Even when the fingers are hovering just a fraction of an inch above
the screen, it still has no idea. We think of this state as the idle state. Using a state-
transition diagram, we model this state as a simple circle with a label.

FIGURE 12.1

Beginning to model the state/transition diagram of a typical direct-touch input device.

66 CHAPTER 12  The State-Transition Model of Input

Now, we’re missing just one element: modeling user movement within each
state that does not yield a change to another state (e.g., the user moves her hand
while touching the screen—this is a change that the system might pick up, but it
doesn’t actually change the state). We model this movement using transition arrows
that reference back to the original state.

FIGURE 12.2

A more complete model of the state/transition diagram of a typical direct-touch input device.

FIGURE 12.3

A complete model of the state/transition diagram of a typical direct-touch input device.

Of course, this isn’t the only state. When a user touches the device, suddenly
it becomes aware of the position of the fingers. We add this engaged state to the
model, along with arrows, denoting the transitions, between each of the two states.

State-transition diagrams are a simple tool that allows us to abstract simple but
important elements of the behavior of the input device. If you have done develop-
ment work, you might begin to note interesting things about the above diagram,
such as the fact that each transition arrow (with one exception) corresponds to
events in a typical touch input system. We will expand upon this further by using
this tool to model the mode and flow of a gesture system in a later chapter. For
now, though, you now have a basic understanding of its use for a touch system.
Let’s start to play with it.

67Lessons from the Past

The states of an input device fundamentally affects the design space of gestural
systems. Mice and tablets have the luxury of a tracking state, which is used a great
deal in the underlying applications. Typical gestural systems do not, as you may
have noted in the above figure. Using a model of the states and transitions between
states of the input device, and the system’s responses, the designer can better
understand two things: first, how systems driven by touch input must behave funda-
mentally differently from those that are driven by other input devices with different
state-transition models, and second, how all input devices, from mice to tablets to
touch to in-air gesture systems, all share common properties, and how the sophisti-
cated designer can approach them similarly.

APPLICATION TO NUI
The classic WIMP (windows icons menus pointers) GUI is based on not only a
set of metaphors (buttons, sliders, check boxes, etc.), but also a particular input
device: the mouse. Understanding the states of a mouse will provide an application
designer with great insights into how those states map (directly!) onto the states of
the graphical user interface. Further, understanding how touch and gestural devices
differ in their states will allow a deeper understanding of fundamental issues that
require different design.

LESSONS FROM THE PAST
Mouse and Touch: How They’re the Same and How They’re Different
Much of this book is dedicated to helping the reader break out of the mindset that
touch interfaces are the same as mouse interfaces. This chapter is different. Our
intention is to help you to place touch input on a spectrum of input devices defined
by the number and nature of the states they support. To understand this, let’s con-
sider the state-transition model for a one-button mouse. Like the touch device we
describe above, it includes both an out of range and an engaged state. But it also
includes another state: tracking.

The difference between tracking and engaged is a simple one: the mouse
is tracking when it’s on the table and in the user’s hand. As the mouse is moved
around, tracking data are sent to the operating system and to the active application.
When the user pushes down on the button, the mouse transitions from tracking to
engaged; when the user releases the button, the mouse transitions back to tracking.
In old WIMP parlance, tracking is the “pointing,” and the transition from tracking
to engaged is the “click.” The out of range state of the mouse is more important
than it appears at first glance: think about how often you lift the mouse in the air to
move it somewhere else on the table. You probably do this so often it has become
automatic.

68 CHAPTER 12  The State-Transition Model of Input

As you begin to place input devices on the spectrum, you can begin to think of
touch input as equivalent to a mouse that lacks a tracking state. Put in this context, you
can begin to see how input devices are really quite similar to one another in terms of
their fundamental affordances. This is how touch and mouse input are the same.

How touch and mouse input are different from one another is also obviated by
the above figures: most touch devices lack the tracking state present in a mouse.
A question worth asking is “Does this matter?” At first glance, it looks like it might
not: after all, the purpose of the tracking state is to show you where your disem-
bodied virtual finger (that is, the mouse pointer) is in the system. Direct touch, in
contrast, has the user’s own actual, embodied (hopefully) finger to serve as a visual
representation of itself. But deeper examination reveals that the WIMP GUI has
actually been designed with an engrained assumption of the presence of a track-
ing state. In the Mac OS X, icons grow and shrink as the mouse passes over them.
In Windows, buttons are highlighted when the pointer is over them. Hover long
enough, and a tooltip pops up to tell the user just what will happen when she tran-
sitions to the engaged state. Further, hovering over menu headings, once any one
menu is open, causes them to expand to show more options. In all flavors of Linux,
the mouse pointer itself serves as a preview of not just the target object, but also the
actual pixel that will be selected when the user depresses the button. All of these
examples (and many others) point to a generalized definition of the use of the track-
ing state: it serves as a preview to help guide the user toward successful activation.

So here we are, trying to build a natural user interface, which means we want
to make our users feel like naturals, which means we need to guide them toward
success—and we’re giving away one of the most important guides that our users
rely on today to be successful. We can think of this as the “Midas touch” problem.

King Midas discovered that his blessing was really a curse when he tried to
lift his food to his mouth and got only gold. What he needed was a way to have
two types of touches—those that transmorphed objects and those that simply

FIGURE 12.4

The state-transition model for a one-button mouse.

69Design Guidelines

manipulated them and those that didn’t. Touch input suffers from precisely the
same problem. Every touch counts, and this leads to a whole host of complexity not
present in mouse-based WIMPs, which can (and, it turns out, do) rely rather heav-
ily on the tracking state of the mouse. Our design guidelines, therefore, address the
lack of this state and point out the importance of designing software well despite its
absence. This is also taken up in Chapter 17, when we describe the need for new
primitives, and again in Chapter 21, when we will model the mode and flow of the
gesture language, again using state-transition diagrams as a tool.

DESIGN GUIDELINES
Our design guidelines generally fall into two categories: how to recreate a de facto
(or logical) tracking state despite the input device’s inability to differentiate one,
and that it’s actually a better idea to design fundamentally new UI that does not rely
on a state not actually provided by the input device.

Emulating a Tracking State
As we have seen, touch lacks a tracking state. A lingering question in your mind
may be, if touch lacks a tracking state, why is it that the trackpad on my laptop
seems to have one? The answer, of course, is that it doesn’t actually have one. But
someone has done a pretty good job (in hardware, software, or both) of making
you think it does. A trackpad emulates a three-state input device (such as a mouse)
in software; the transitions between the tracking and engaged states are managed
entirely by the OS. This can be done with a physical button beside the trackpad
(common), or operated by a gesture performed on the pad (tapping the pad is
the most common). It can also be done by putting the whole pad atop a pressure
switch, as has been done on recent Apple laptops, but this obviously works only for
single and not for multi-touch.

So, can we do the same thing for direct touch? Clearly, it’s trickier, since
adding a button to the side of a direct-touch input device makes it, well, less direct.
One previously explored trick lies in being creative in how states of the various
touchpoints are mapped onto mouse states in software. The naive approach is to
simply overlay the touch model atop the mouse one. This model is the most direct,
because system events will continue to happen immediately beneath the finger. It is
not the best, however, because it omits the tracking state and is imprecise.

The DT Mouse project from Mitsubishi Electric Research Labs is the best exam-
ple of a good mapping between physical contact and virtual mouse states. Built for
the popular DiamondTouch multi-user tables, DT Mouse was developed over the
course of several years and was entirely user-centrically designed, with tweaks done
in real time. It is highly tuned, and includes many features. The most basic is that
it has the ability to emulate a tracking state—this is done by putting two fingers
down on the screen. When this is done, the pointer is put into a tracking state, and

70 CHAPTER 12  The State-Transition Model of Input

positioned between the fingers. The engaged state is entered by tapping a third fin-
ger on the screen. An advanced user does this by putting down her thumb and mid-
dle finger, and then tapping with the index finger (Figure 12.5).

A project from AutoDesk research explored a plethora of methods for emulating
mouse input using multi-touch. Suffice it to say, there are a lot of them, and each
has advantages and disadvantages, but most add a logical tracking state. So there are
sophisticated ways of doing mouse emulation with touch. But this has to lead you to
ask the following question: if all I’m using touch for is mouse emulation, why not
just use the mouse?

Designing for an Impoverished Input Device
So, touch input is impoverished in terms of the number of states supported by the
input device. Of course, this is just one point of view. Many designers of touch
software make this mistake. They begin by designing for the mouse, find their new
device to be impoverished, and then tweak their software to compensate. In order
to be successful, designers of systems for multi-touch applications should start by
applying rules about touch and assigning state changes to those events that are eas-
ily generated using a touch system, designing fundamentally new interaction meth-
ods in the process.

States and transitions in a touch system include the contact state information we
have shown above. In a multi-touch system, we can start to think about combining
the state and location of multiple contacts, and mapping events onto those. This
requires a fundamental rethinking of the graphical user interface.

By now you should have picked up a main message of the book, which is that
to achieve a natural user interface we are going to require a new kind of graphical
user interface. There is no contradiction here: Users feel the most like a natural with
your software when they have affordances to lead them and feedback to guide them.
The trick is to build a graphical user interface that properly takes advantage of and
is designed for your hardware. In the case of touch input, that means designing for
a two-state input device. The balance of this book will serve as a series of lessons in
how to do this. Take this chapter as a cautionary note about the importance of fun-
damentally new UI design.

FIGURE 12.5

Left: The pointer is displayed between the middle finger and thumb. Right: the transition from
tracking to engaged is simulated when the index finger is touched to the display.

71Further Reading

Must
l	 Understand the limitations of your input device and realize that touch input

deprives you of a tool that the WIMP GUI relies on heavily. Design your soft-
ware so that it does not assume the presence of a tracking state in order for the
user to be successful. Use the balance of this book as a guide to do this well.

Should
l	 Go a step further, and design your UI from the ground up for touch, rather

than thinking of it simply as an impoverished mouse.

Could
l	 Emulate a three-state (or more!) input device in software using multi-touch

input. But do this with great care. Simply emulating one input device using
another is a recipe for disaster.

SUMMARY
The state-transition model of input devices provides an extremely useful tool to
help you to understand the true utility of your input device, how it is the same as a
mouse, and how it’s different from a mouse. Embracing these similarities and differ-
ences not only makes you a better designer of touch and gestural software, but also
will equip you to become a designer of software for all manner of hardware.

FURTHER READING
Matejka, J., Grossman, T., Lo, J., and Fitzmaurice, G., The design and evaluation of multi-finger

mouse emulation techniques. CHI 2009 Conference Proceedings, pp. 1073–1082. In this paper,
Matejka et al. examine several mappings of multi-touch input to emulating a mouse. This is
worth reading, as it thoroughly explores the space. Do so with the important caveat that the
goal of this book is to break you from the habit of thinking of mouse input (and its associated
GUI) as the starting point for all software design.

Buxton, W., A Three-State Model of Graphical Input. In D. Diaper et al. (Eds.), Human-Computer
Interaction—INTERACT ‘90. Amsterdam: Elsevier Science Publishers B.V. (North-Holland),
pp. 449–456. This chapter draws heavily from Buxton’s definitions of the state model of graphi-
cal input. Our recasting it as the state-transition model is meant to highlight the importance of
transitions.

73

CHAPTER

13Fat Fingers

The fingers you have used to dial are too fat. To obtain a special dialing wand,
please mash the keypad with your palm now.

—The Simpsons (“King Size Homer”)

DESCRIPTION
The mouse is a tool that easily supports movements that are both precise and rapid.
A single pixel among millions can easily be selected with a mouse, meaning that
graphical user interface elements can be as small as a single pixel in size. Indeed,
some such elements in modern GUIs are almost that small—for example, the han-
dles that allow resizing of windows in both of the most popular operating systems
are no larger than 4 pixels in size. This is a small target to select with a mouse—and
a nearly impossible one for a touch UI.

The “fat finger” problem is actually a mix of two issues. First, when the user
touches her finger to the device, a relatively large area of the finger comes into con-
tact with it. All currently existing touch platforms, however, including the iPhone
and Microsoft Surface, use only a single point within this area to do their hit testing.
The consequence is that a user can be in physical contact with the item she wishes
to target, but the system believes she is not (Figure 13.1).

In and of itself, this wouldn’t be such a big deal—after all, the mouse is an object
even larger than the finger and is represented as a particular pixel (the tip of the
mouse pointer). This brings us to the second portion of the fat finger problem: that
because the user’s finger is in the way, she can’t see the pixel that is being targeted—
and because most devices can’t sense the finger until it’s touching, the pixel can’t be
shown to the user before it’s being occluded.

http://dx.doi.org/

74 CHAPTER 13  Fat Fingers

APPLICATION TO NUI
Designing around this problem, at first, seems relatively straightforward: Make
everything in the UI large enough that the user can select it with confidence.
Indeed, design guidelines for touch platforms typically include a minimum size that
an element can occupy. We see quickly, however, that this does not scale—if every-
thing needs to be a of a minimum physical size, this means we must either severely
limit on-screen elements or have very large screens. Further, it ignores the very real
possibility that every single pixel, such as on a map, is equally targetable. So, we
need to enable precise interaction—and we need to solve the fat finger problem.

LESSONS FROM THE PAST
A problem similar to the fat finger problem has actually reared its head before, but in
a totally different context. This came when the producers of the game Halo tried to
move the incredibly popular first-person shooter (FPS) genre from the PC to the con-
sole. In so doing, they faced a significant challenge: In an FPS, the user must quickly
select objects and click on them (that is, shoot them). Rapidly selecting objects is
exactly what the mouse was designed for, so this is a genre that lived quite well on
the PC. In contrast, when the Halo team attempted to move to the console, they were
attempting to move a UI idea from one input device (the mouse) to another (the joy-
stick). And the joystick is a terrible pointing device. Where the mouse is meant to
control position (x/y), a joystick is a rate control device: It controls orientation and
speed. Anyone who has a laptop with a little eraser head controller on it understands
the pain that these designers were about to inflict on their users. The common wis-
dom was that first-person shooters could never make it onto the console, because a
joystick could never be used to control the position of the crosshairs.

Undeterred, the designers set about their task. They quickly realized that they
had an advantage over the eraser-head-to-control-the-mouse-pointer problem. Unlike

FIGURE 13.1

Left: The area of the user’s finger which is in contact with the display is rather large. Right: The
Contact Visualizer, described in detail in Chapter 14, shows the user this contact area when they
lift their finger.

75Design Guidelines

the designers of that device, they knew exactly where on the screen the user was
likely to want to point the crosshairs: at the enemy!

With this in mind, they did two things. First, they expanded the area where the user
could point their gun and still hit the enemy (in the game, this shows up as the shrap-
nel flying at the enemy in an arced path, with a “heat seeker”-like quality). Second, they
modified the movement of the crosshair as it slides across the screen: When the gun is
pointing in the direction of an enemy, the speed of movement slows down, so that the
player has a little bit of time to let go of the stick and leave it still pointing at the baddie.

The exact amount that these two tweaks were applied was adjusted through
dozens of rounds of play testing. The goal, of course, was to make sure that the
users felt like they were the ones pointing their weapons at the bad guys—to make
the users feel like a natural.

Of course, we all know how this turned out: Halo turned out to be a flagship
game for the Xbox platform, helping to sell millions of consoles.

How this lesson applies to the fat finger problem is clear: Precise selection with
a joystick is hard, so the developers of the experience adjusted the physics of their
world to make it easier. Touch UI requires no less refinement.

DESIGN GUIDELINES
A lot of work that has attempted to address this problem, and it generally falls into
one of two categories. The first is to design the UI in such a way that the fat finger
problem is irrelevant. The second is to provide a mechanism to allow users to vary
their precision: quick movements for large targets, but add a tool to allow them to
select things more precisely.

Make Stuff Bigger
The first, and easiest, guideline is to always make stuff in your UI big enough to touch.
As we saw above, you can’t base the size of your controls on pixels, since displays
vary widely in terms of the density of pixels. Instead, you must determine the physical
size of your screen, and design controls and objects to a minimum size. In our testing,
we have found that for large touchscreens, where users will be moving their entire
arms, a target size of 1.6 cm is the minimum that they can hit reliably. On smaller
touchscreens that users hold in their hand, and thus move only their fingers or thumb
to make a selection, a smaller target size of 0.9 cm is sufficient.

Consider User Perception to Adjust the Touch Point
Smaller on-screen objects can be selected if you take into consideration the user’s
perception of the precise touch point under the user’s finger. In one extreme, a pair
of researchers at the Hasso Plattner Institute in Berlin used fingerprint scanners to
carefully model that perception, taking into account the roll, pitch, and yaw of the

76 CHAPTER 13  Fat Fingers

finger to decide on the touch point. A more simplistic version can be seen as part of
the Microsoft Surface platform. When the user touches the device, the entire con-
tact area is sensed. Rather than taking the simple center of the contact area to be
the point, the point is pushed out toward the tip of the user’s finger.

You can do something similar by asking users to come and perform basic tasks
on your device. Provide objects on the screen that you ask your user to select, and
record the point that your system reports for the touch. After several users, you will
have a reliable data set to give you a good understanding of where the users believe
they are touching versus where your system believes they are touching. Using this
data, you can easily compute a calibration that you can apply to your device to
make its reported touch point more closely mimic users’ expectations. Holtz and
Baudisch’s data collection technique can be applied generically to your device.

Iceberg Targets
Also worth considering is the use of the iceberg targets technique: making the on-
screen object that the user is asked to touch smaller than the actual area that will
result in it being selected. The extreme version of this would be to compute the
object closest to every pixel on the screen, so that when the user selects that pixel,
the closest object is selected. The selection area for each object would then look
like the one shown in Figure 13.2.

This approach is a bit extreme, since on a screen with a single button the user
might select it accidentally by tapping a full foot away from it. But you get the idea.
It also assumes that your system knows where all the touch targets are—believe it
or not, this is not always the case.

FIGURE 13.2

Iceberg targets can theoretically be so large that touching anywhere on the screen will activate
the nearest touch visible target.

77Design Guidelines

Reduce the Role of Land On
Improving the accuracy of the reduction from touch area to touch point and
expanding target sizes will get you a long way. But even with this accuracy, targets
will still be missed. To do even better, you should consider changing more elements
of the user experience.

Two general approaches have been explored before and are worth considering;
both involve changing the selection event. Consider four possible ways by which
a finger can come into or leave contact with an object. It can slide onto the object
(A in Figure 13.3), it can land on the object (B), it can be lifted away from the object
(C), or it can slide off of an object (D).

Engaging a key on a keyboard requires only (B): Landing on a key causes text
to be entered. Engaging a button in a GUI usually requires both (B) and (C), so that
the user has an opportunity to slide off the button. One approach for solving the
fat finger problem is to require only (C): lifting off of the screen while touching the
object. Consider the keyboards on the Android, Windows Phone, and iPhone plat-
forms: When a finger lands on the keyboard, no text is entered. The button the user
is touching grows to show an approximation of where the finger is, so that the user
can slide around on the keyboard to find the right key. Where the user lifts (C) is
what counts.

This approach gives users the opportunity to correct their selection before
they confirm it, but it does have the disadvantage that small targets require a good
amount of time to be made. An alternative method was described by researchers
at the University of Toronto. Their technique, dubbed “Escape,” was a variation of
selection using the (D) event: The selection is made by examining the direction of
the user’s finger as it slides off of an object.

Figure 13.4 makes the technique clear. The user wishes to select the green
object (1). She puts her finger on the cluster (2). The actual land-on point is used
only to make everything nearby a candidate—it doesn’t matter if he actually lands

FIGURE 13.3

Four different finger/object interactions: slide on (A), land on (B), lift off (C), slide off (D).

78 CHAPTER 13  Fat Fingers

on the little green one. Next, he slides his finger in the indicated direction (3), and
the object is selected (4). It’s worth noting that traditional selection is also sup-
ported if there are no other objects nearby:

The downside of this technique is clear, in that touch targets in your UI must
be labeled with a direction for sliding selection. But the advantage is also clear: The
user sees the direction in advance so doesn’t have to wait for a pop out or other
method to make small selections.

Whether you use these techniques or others, they point the way towards funda-
mentally redesigning your user interface to account for fat fingers. Do not limit your-
self to a classic selection model; think of redesigning your interface so that selection
itself might not be necessary at all!

Must
l	 Ensure that users are able to precisely select objects in your UI. This can be

done in a variety of ways, from adjusting the physical size of content to provid-
ing techniques that enable selection of smaller content.

Should
l	 Consider the physical, not pixel, size of content and ensure that targets the

user will need to touch are no smaller than 1.6 cm on large touchscreens and
0.9 cm on small ones.

l	 Use iceberg targets to make actual selection areas larger than what you show to
a user.

l	 Collect data correlating your users’ perception of where they touch with the
location collected by your device or platform, and consider adjusting to take
into account these differences.

FIGURE 13.4

The Escape technique works by requiring the user to slide in an indicated direction in order to
make selections.

79Summary

l	 Consider reducing the role of the land-on event in your system. Consider the
techniques we have described above or your own techniques using different
combinations of the finger/object interaction moments we described earlier.

Could
l	 Expand the region on which an object can be selected beyond its graphical

representation, so that selecting a pixel or two above or below it still selects
that object.

l	 If small targets are essential, such as for placing the cursor, consider using a
technique such as cursor placement on the iPhone, where the user is given the
ability to fine-tune their selection.

SUMMARY
Designing your UI in such a way that users can always reliably select content will ensure
that they always feel successful, like natural users of your interface. Making content too
small is frustrating, and providing mechanisms to overcome this small size is essential.

VOICES FROM THE FIELD: THE FAT FINGER PROBLEM
Patrick Baudisch
Hasso Plattner Institute, Potsdam, Germany  

The designers of today's mobile touch devices face a difficult challenge: On the one hand, users
want tiny devices for maximum mobility, which leaves space for only very small user interface
elements. On the other hand, users demand interface elements large enough for easy operation.
Can we achieve both objectives at the same time?

The targeting problem with small buttons is linked to a very specific scale. Targeting works fine
down to buttons about the size of a fingertip. For buttons smaller than that, the users' fingers cover
up the button entirely, so that users cannot see the visual confirmation the button might deliver
to confirm successful acquisition (the so-called fat finger problem). Consequently, users have to
target without visual control.

Without visual control, users need to remember where the target is located, but it is not the
uncertainty about the target location that poses a problem for users; it is the uncertainty about the
location of their own finger. How can this be a problem?

Today's touch devices compute the contact point as the center of the contact area between
finger and screen. Just like the target is occluded by the user's finger, so is the contact area, so
that users have no way to observe it directly. Users essentially have to guess the shape of the
contact area—and our studies indicate that they guess incorrectly. While they expect the center of
the contact area to be located comparably close to the fingertip, the contact area extends farther
back along the finger than most users expect. This misconception causes the contact point to be
located farther "back" along the finger, which manifests itself as targeting error.

Until recently the only way to prevent this type of error was to employ fingertip-sized buttons,
as evidenced by many commercial designs, such as Apple's iPhone. Just recently, however, my
team found a way to overcome the problem. We conducted additional studies that revealed that

80 CHAPTER 13  Fat Fingers

users' misconception about the contact area is systematic in nature, that is, that a given person
(for a given finger posture) tends to err by roughly the same direction and distance. Based on this
observation, we constructed an improved touch-sensing mechanism we call Ridgepad. The device
identifies users and determines their finger posture based on their fingerprint, which it takes
during every single touch interaction. By compensating for user-
specific offsets, the device allows users to reliably acquire targets
less than half the size supported by traditional touchscreens. A
miniaturized version of such technology might one day provide
the basis for mobile touch devices that are half the size of today's
devices.

Author Biography
Patrick Baudisch is a professor in Computer Science at Hasso Plattner Institute in
Berlin/Potsdam and chair of the Human Computer Interaction Lab. His research
focuses on the miniaturization of mobile devices and touch input. Previously, Patrick
Baudisch worked as a research scientist in the Adaptive Systems and Interaction
Research Group at Microsoft Research and at Xerox PARC and served as an Affiliate
Professor in Computer Science at the University of Washington. He holds a Ph.D. in
Computer Science from Darmstadt University of Technology, Germany.

FURTHER READING
 Holz, C., and Baudisch, P. The Generalized Perceived Input Point Model and How to Double Touch

Accuracy by Extracting Fingerprints. In Proceedings of CHI 2010, Atlanta, GA, April 10–15, 2009,
pp. 581–590. In this project, Holz and Baudisch provide a model for making touch selections using a
fingerprint scanner far more accurate. While the precision of a fingerprint scanner is beyond most modern
touch devices, their methodology of collecting the difference between the user’s and the device’s under-
standing of the position of the touch point can be applied broadly to any device.

 Yatani, K., Partridge, K., Bern, M., and Newman, M. W. Escape: A Target Selection Technique Using
Visually-cued Gestures. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI 2008), pp. 285–294, April 2008. Yatani et al.’s technique uses sliding direction to allow
users to precisely select very small targets among a large number of dense targets.

81

CHAPTER

14No Touch Left Behind:
Feedback Is Essential

Whenever we present a state of affairs which is known to be reinforcing at a given
drive, we must suppose that conditioning takes place, even though we have paid no
attention to the behavior of the organism in making the presentation.

—B. F. Skinner explaining superstitious behavior,
Journal of Experimental Psychology (1947)

DESCRIPTION
Picture yourself using a traditional PC: you move the mouse pointer to an on-screen
object, you click the mouse button—and nothing happens. What do you assume
caused the failure? The overwhelming majority of users in this situation assume
that they have clicked on something that is disabled, that something happened
that they did not recognize, or that the software has crashed. Now picture yourself
using exactly the same application with a touch device. You reach out, touch that
same object—and nothing happens. What do you assume caused the failure? This
time, the overwhelming majority of users assume that the hardware has failed in
some way. They push harder, tap the display more vigorously or slowly, or other-
wise change the way they are touching the screen. Why the difference?

As always, the user is left to interpret this response using the feedback that has
been made available by the system. In the case of a mouse input, feedback provided
by both the operating system and the hardware helps the user to quickly isolate
the cause. Visual movement of the mouse pointer reassures the user that the system
is still working, the physical activation of the mouse button affirms that the input
was received, and the position of the mouse pointer makes it apparent where the
input was delivered. In touch-based systems, this is typically not the case, and so
it is left to the application to provide feedback for all of these potential causes of
unexpected behavior. Table 14.1 describes various possible causes of unexpected
behavior, as well as the source and type of feedback available to dispel that cause in
both a mouse and a direct-touch system.

http://dx.doi.org/

82 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

Most applications do not provide an explicit feedback mechanism that can help
users to understand why their action was not successful, and the application feed-
back is typically constrained to responses designed to signal the execution of suc-
cessful actions—a lack of success is visually identical to not having done anything at
all. How the application reacts to the user’s input determines how well the user will
understand the reasons for the unexpected behavior. The result is applications that
respond to touch input, but do not provide information about the causes of those
responses.

That this happens is not overly surprising. Firms accustomed to designing web-
based applications have had the luxury of the mouse pointer, and the feel of the
mouse buttons, to rely on. These have become such an integral part of the experi-
ence that they are forgotten entirely by designers. When designing a touch and ges-
tural experience, however, these luxuries disappear—and it’s up to the designer to
provide a replacement for the feedback that disappears with them.

APPLICATION TO NUI
Understanding the connection between cause and effect is a particular problem for
touch and gestural applications, since, as we have seen, dispensing with traditional
input devices and visualizations causes a misattribution of error to the input device.

As we described in Chapter 12, the mouse pointer serves as a proxy for the user.
When using direct input, the user’s finger can function as its own indicator for a
well-calibrated system’s understanding of the input location. Despite this, there
are uses for a cursor. In devices that can sense location prior to the input event, a

Table 14.1  Causes of unexpected responses to input and the feedback given by the
hardware or OS in typical mouse and touch systems to each, or left to applications (app)

Cause of Unexpected Behavior Feedback Refuting Cause

Mouse Touch

System is nonresponsive OS: Pointer movement (app)

Hardware failed to detect input HW: Activation of button (app)

Input delivered to wrong location (fat fingers) OS: Visible pointer (app)

Input does not map to expected function (app) (app)

Accidental input (arm brushing) N/A (app)

Overconstrained (too many contacts) N/A (app)

Max size reached OS: Pointer moves past edge (app)

Stolen capture (second user captures control) N/A (app)

83Lessons from the Past

cursor can serve as an indicator of the precise location for contact. Further, iconic,
such as a paintbrush or vertical bar for text entry, cursors serve as an indicator of
state or mode. Finally, the presence of the cursor and its response to user input give
feedback to the user that the system is active, tracking, and ready to receive com-
mands. While we would not argue for putting a mouse cursor onto the screen of a
touch or gestural system, it is critical to understand that your system must include
a representation of the system’s understanding of the user’s input. Your task will be
to design this feedback. Sadly, with the notable exception of the Microsoft Surface,
few UI toolkits designed for touch include it, so even if you are simply designing
an application to run on a device built by someone else, you’ll need to do this part
yourself—unlike mouse-based systems, where the physical feel of the mouse and
visual feedback of the cursor can be assumed.

Echo Feedback vs. Semantic Feedback
Input devices process a stream of sensors to yield a logical result. The system’s feed-
back can be either an echo of unprocessed sensor data back to the user (here’s what
the system sees) or a semantic representation of the user’s state (here’s what the sys-
tem knows), like the cursor. Traditional systems have trended toward the latter—a
mouse, for example, senses only movement, but the feedback given to the user is of
a cursor position, which is a logical state maintained entirely for the benefit of the
user. In point-based interactions, the alternative (echoing back movement without
showing a cursor) makes little sense. Richer input streams, meanwhile, might tempt
the designer to skew the feedback more toward the unprocessed data, since it may
represent a richer visualization. While richer, such a representation offers less clear
information to allow the user to understand cause and effect. Making clear connec-
tions between cause and effect is critical in making interactions feel natural—users
can improve their input and learn to work with the system effectively.

This may be directly the opposite of what your intuition says. You might
ask, “If our goal is a ‘natural’ interaction, and there are no cursors in the ‘natural
world,’ why would we include them in a natural user interface?” We remind you of
Chapter 2, where we explain that the goal of a NUI is not to be natural, but rather
to feel natural to your users. This is rarely achieved through mimicry. We humans
need constant feedback in order to accomplish even the most simple task. If you
want your system to feel natural, feedback is essential. And, as we shall see, clearly
unnatural feedback is essential in achieving this natural-feeling result.

LESSONS FROM THE PAST
Superstitious Behavior
The mythology of Newton’s formalism of gravity is that an apple fell from a tree
as he sat outside at Cambridge. Tellings of the story differ as to whether or not the
apple actually landed on his head—as if physically driving the idea into his mind.

84 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

It was from an oddly parallel experience that the principle of “no touch left behind”
came to be. Daniel’s own experience:

At some point in every business traveler’s life, there will come a time where they will
spend a few hours on a tarmac in a takeoff queue at New York’s LaGuardia airport. It was
during such an experience, as I sat in my chair, that the teenaged boy behind me pressed
away on the touchscreen built in to the back of my seat. Whenever an announcement of
a further delay was made, his movie would stop, and the touchscreen would stop taking
input. At this, the boy would begin to furiously punch the controls, still visible on his
screen, in an attempt to resume his entertainment. Each vigorous press on the screen
would drive my head forward, and my nerve closer to the edge.

This has become such a problem that flight attendants can now often be heard
reminding passengers that presses to the touchscreens are telegraphed to the pas-
senger in front of them through the rigid medium of the airplane seat.

We are driven to ask the question: Why did this obnoxious little twit believe that
pressing harder on the screen would get him a different result than touching lightly?
After careful consideration, it is clear: we have a feedback problem.

We are all hard-wired to believe post hoc ergo proctor hoc—after it, therefore
because of it. B. F. Skinner’s breakthrough work in operant conditioning taught the
world that superstitious behavior is the result of an application of this logical fallacy.
Among his many experiments, it became absolutely clear that creatures are in a con-
stant quest to make connections between cause and effect. When the real cause is
not apparent, they will make inaccurate associations. In his experiments, the results
were pigeons that believed they had to perform ritualistic dances to receive food
(when in truth, the food dispenser was simply on a timer, thus effectively depriv-
ing them of a pigeon-perceptible cause—this led them to attribute the output, occa-
sional food, as a result of what they happened to be doing, moving around).

Startlingly, early implementations of touch and gestural systems have demon-
strated significant failures to provide sufficient feedback to enable users to understand
and make proper associations between their input action and the system’s output con-
sequence. We call this the feedback ambiguity problem. We’ll now run through a
list of possible sources of unexpected behavior and explain how a mouse-based sys-
tem provides this feedback (if it does), and how and why touch systems must do this
explicitly in the absence of the pointer and physical button provided by a GUI.

In the section that follows, we will describe the feedback mechanisms our team
developed for Microsoft Surface to address all of these sources of ambiguity.

SOURCES OF ERROR
To understand the problem, we must first understand all of the sources of possible
error that are leading to a given state. In this section, we enumerate the sources of

85Sources of Error

such error, many of which are unique to a touch and gesture-based system. This list
is a formalization and expansion of that shown in Table 14.1.

Activation Event
When interacting with a traditional mouse-based GUI system, users feel a physical
click when they depress the mouse button. When working with a touchscreen, users
feel the moment of contact with the display. However, depending on the particular
hardware, the moment of activation can vary. With some vision-based systems, for
example, activation occurs before the finger reaches the display, which might result
in an initial position of the touch contact that differs from where the user thinks the
contact occurred. With some resistive technologies, a degree of pressure is required
for activation. There is no consistent physical sensation connected with this transi-
tion. A correct feedback should indicate the activation moment and help the user to
be accurate in their touches. Another such problem is the fat finger problem.

Fat Fingers
There are two elements of the fat finger problem: occlusion of the screen by the
finger and the reduction of the contact area to a single point causing users to “miss”
targets they are physically touching. When the fat finger problem causes a missed tar-
get, the correct feedback must clarify that this failure was due to a miss and, ideally,
demonstrate how to avoid missing in the future. Activation must also be made clear.

Activation
When a user’s finger lands on the device, it is critical that the system provide imme-
diate feedback as to whether the user has landed on an active element or one that
will “ignore” their input. When using a trackpad on your laptop, if you tap the but-
ton below it, you feel that it has activated. If you instead miss and hit the chassis
of the laptop, you know that you have missed because you can feel it. Touch sys-
tems must also provide feedback for both the “active” and “inert” touches. Whereas
mouse-based systems can rely on the feel of the button to distinguish this, touch
systems must do this in software. This is also true of nonresponsive content.

Nonresponsive Content
Invariably, applications will include elements that are not intended to respond to
touch: deactivated controls, background images, etc. Although visual cues should
afford inactivation to the user, this state nonetheless adds another source of error in
which the user will receive no reaction, requiring correct feedback.

Accidental Activation
With a multi-touch system, “every touch counts.” Accidental activations are
common—users might brush the screen accidentally, or point at content during

86 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

conversation. When this occurs, users are able to observe only the consequence to
the application. Some accidental inputs are not noticed by the user, and so sudden
changes in the state of the system cannot be properly linked to their cause. A mean-
ingful feedback would make the causes of accidental activations clear to the user.

Multiple Capture States
In a WIMP-GUI system, UI controls have two capture states: captured (typically
entered when the mouse is clicked on a control) and uncaptured. When working
with controls on a multi-touch system, more than one contact can capture controls
simultaneously. For example, selecting the thumb of a slider with two fingers can
mean that it will not track directly under a single finger when moved.

When too many contacts have captured a control, its behavior can be well
defined but inconsistent with the direct-touch paradigm, leading to confusion. We
term this state overcaptured. To help the user understand overcapture, the contact
visualization system must include a visual distinction between not only uncaptured
and captured contacts, but also overcaptured ones.

Physical Manipulation Constraints
The direct-touch paradigm is also broken when movement constraints are reached.
This can occur, for example, when attempting to move an object past the bounds of
its container or to resize an object past its size limit.

Interaction at a Distance
Use of controls can extend beyond the bounds of those controls. For example, in a
traditional GUI, the scrollbar can be captured by selecting it with the mouse. At that
point, vertical movements of the mouse are applied to the position of the thumb,
and horizontal movements are ignored. The result is that the mouse pointer can be
moved away from the slider while still controlling it. This is equally necessary in a
touch system, but mapping fingers to their controls is a potential source of confu-
sion, with multiple touchpoints, controls, and users all interacting simultaneously.

Stolen Capture
In a traditional GUI, controls are captured by selecting them with the mouse pointer.
In a multi-touch system, multiple fingers may attempt to capture a control simulta-
neously. How to deal with multiple, possibly contradictory touches to the same con-
trol is an issue decided by framework designers. In the DiamondSpin SDK, “click”
events are generated every time a user taps a button, even if another finger is hold-
ing it down. In the Microsoft Surface SDK, “tap” events (equivalent to “click”) are
generated for buttons only when the last captured contact is lifted from the control.
While both approaches have merit, a consequence of the latter is that buttons can be

87The Contact Visualizer

“held down” by a user. When twinned with the issue of interaction at a distance, it
is possible that a button can be “held down” by a contact not actually touching that
button. When a subsequent “tap” fails, the source of failure should be visualized.

Tabletop Debris
Users of tabletop systems have been observed to place objects on the surface of
the screen. The table used in that study did not sense the presence of objects on its
surface. This is not true, however, of all sensing technologies used in multi-touch
systems. The result can be unexpected behavior when the system responds to these
unintended inputs. In our own internal observations of users, we found that this
was particularly problematic when an object would act as an additional contact for
an object being manipulated by the user.

When scrolling a list, for example, the Microsoft Surface SDK uses the average
distance traveled of all contacts on the list to compute its movement. Because it is
interpreted as a stationary contact, a beverage placed on the surface of the table has
the effect of halving the speed of scrolling a list. A visualization framework should
visualize both when debris on the table is being interpreted as an input, and when
stationary contacts are placing additional constraints on movement.

THE CONTACT VISUALIZER
In order to address feedback ambiguity, Microsoft Surface employs a Contact
Visualizer, which provides visual states and transitions to provide clear indications
of the system’s current state, and the cause of that state (Figure 14.1).

This contact visualizer was found to reduce errors by over 50% and to lead users
to describe the system as more responsive and better at understanding their inten-
tions. Of course, we in the know understand that, in actuality, it is the user who bet-
ter understands the system’s responses.

FIGURE 14.1

Each contact with the display is given a response and persistent visualization. Left: Photograph of
the Contact Visualization system. Right: Tethers indicate that the fingers have slipped off the item
because it reached maximum size.

88 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

DESIGN GUIDELINES
It is incumbent upon the designer to ensure that each and every source of error has
a distinct response, ensuring that the user fully understands the link between the
cause and effect of what they are seeing on the screen. This leads to the design goal
of “no touch left behind”—ensure that every input to the system is meaningful and
receives a clear response that allows users to link it back to their physical actions.

The Surface contact visualizer provides a layer of visualizations that is divorced
from applications. When designing an application, you may prefer that the visual
responses be more in keeping with your own design. Following the guidelines in
this section will ensure that your system has sufficient feedback to allow users to
understand their input and the consequences of that input.

Must
l	 It is essential that visual responses be provided to make clear the connection

between cause and effect.

l	 For single-touch systems, we have developed a set of visual states and transi-
tions that will ensure minimal coverage of the various error causes. Providing
unique visuals for each of these states and transitions will provide a set of
responses that is sufficient to disambiguate the various causes of unexpected
behavior (Figure 14.2).

	 State 0 cannot be visualized in most systems, as it precedes detection. The
visualizations of transition A and state 1 address the problem of clearly indi-
cating the activation event. They also help to note accidental activations,
as unintended contacts receive an individual response, allowing the user to
correct the posture. To help the user to differentiate between fat fingers and

FIGURE 14.2

Touch visualization states and transitions. 0: not yet touching; 1: stationary contact; 2: moving
contact.

89Design Guidelines

nonresponsive content, and to visualize selection, the visual provided for tran-
sition A differentiates between contacts that have successfully captured an
object, and those which have not (Figure 14.3).

	 To address fat fingers, we also included an animation for transition D (Figure
14.4). This animation emphasizes the hit testing point. To overcome occlusion,
transition D delays its feedback subtly, so that it will continue to be visible for
a moment after the user lifts her finger. Further, as the contact visualization dis-
appears, it contracts to the hit test point, so that this point is the last thing seen
by the user (Figure 14.4). Unlike previous work, the goal is not to assist the
user in making the current selection, but rather to improve accuracy over time
by helping the user to learn the point/finger mapping.

l	 In addition to the basic contact visualization, additional states were added to
address issues that arise primarily with multi-touch systems. These issues are
multiple capture states, physical manipulation constraints, interaction at a
distance, and stolen capture. In examining these problems, we found that all
could be addressed by adding just two states and their associated transitions.
These are shown in Figure 14.5.

	 State 3 is described earlier as overcaptured: when the number of contacts cap-
tured to a control exceeds the available degrees of freedom of that control,

FIGURE 14.3

Left: Two animations are shown for transition A. If an object is captured, a circle shrinks around
the contact. If not, it “splashes” outward. Right: State 1 is identical for both captured and
uncaptured.

90 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

necessitating breaking the direct-touch input paradigm. For example, overcap-
turing occurs if two fingers have captured the thumb of a slider, or if three
have captured an object enabled for two-finger rotate/translate/scale. As in the
basic contact visualizations, this difference is conveyed through the transitions.
Transition F receives the same visual treatment as transition A for an uncap-
tured contact, and transition G the same as a captured contact. To differentiate
these, however, transitions F and G are applied to all contacts captured to a
control, clearly differentiating states 3 and 1.

	 State 4 is a condition under which the user has met a constraint on transla-
tion, scaling, or rotation of an object. In the Microsoft Surface SDK, these con-
tacts remain captured to the object even though they are no longer touching
it. An alternative capture model might cause the contact to lose capture of the
object once the finger is no longer touching it. Whatever model is employed,
it is critical that a visual be provided to explain why the object is no longer
under the user’s finger—this addresses the problems of physical manipulation

FIGURE 14.4

Transition D (see Figure 14.1): When contact is lifted, the visualization shrinks to the hit testing
point.

FIGURE 14.5

Additional visual states and transitions for multi-touch. 1: engaged (see Figure 14.1); 3: object is
overcaptured; 4: contact operating beyond constraints.

91Design Guidelines

constraints and the interaction at a distance. To visualize these constraints,
we employed a visualization similar to the trails seen in state 2 (see Figures
14.10 and 14.11). In state 4, the trails become “tethered” to the point at which
the constraint was reached, illustrating that the contacts are now “slipping”
from their last point of direct touch (Figure 14.6).

	 A purist’s interpretation of state 4 would yield tethers when interacting with
the majority of controls, since most map multiple degrees of freedom to a single
dimension or cannot be moved. What we found, however, was that this could
produce what we termed the Freddy Krueger effect, where tethers were appear-
ing regularly all over the display. We reduced the frequency of the tethers to the
minimal set needed to address specific as sources of error (see above).

	 The first such situation was the overconstrained scrolling of a list. It was deter-
mined through iterative design that, in most cases, the reaction of the list
itself matched user intent and thus did not require visualization of constraints.
The remaining case involves tabletop debris, which can cause slower than
expected scrolling of a list. In this situation, determined by the presence of a
stationary contact, tethers are rendered to demonstrate that the list is scrolling
slowly because of that contact (Figure 14.7).

	 The final state 4 visualization visually tethers contacts that have slid off of, but
are still captured to, controls. Again, to reduce unnecessary visuals, we split
these into two classes. For controls that can be manipulated from a distance,
the visualization is shown from the moment the contact slides off the con-
trol. For stationary controls, the tether is shown only when another contact
attempts to actuate the control, addressing stolen capture (Figure 14.8).

FIGURE 14.6

Tethers indicate that a size constraint has been reached on an item being scaled.

92 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

Should
l	 To properly achieve the goals of a NUI experience, we recommend that the

visual states be integrated into the application. For example, rather than draw-
ing tethers to show that the object has stopped growing, a visual “bounce”
effect would provide the same results.

l	 Most touch hardware suffers from inevitable lag—an elapsed time between the
instant the user does something and when the consequence of that action is
rendered on the screen. A manifestation of this in a direct-touch system is that
when dragging an object on the screen, it can “lag” behind the finger, so that
the lag is actually visualized as physical distance between the finger and the
object it is dragging.

	 The faster the user moves, and the larger the screen, the more significant the
problem. In a system that provides a visualization of where it “thinks” the
user’s fingers are, this problem could be exacerbated, since it will be rather
blatantly pointing out that it is wrong (Figure 14.9)! To address this, you should
consider adding an additional state to your visualization, so that it changes
when moving. This change is a tacit acknowledgment of the lag and should
give the appearance of it being “intentional” (Figure 14.10).

FIGURE 14.7

Tethers indicate that slow scrolling of the list is due to the presence of the stationary contact.

93Design Guidelines

FIGURE 14.8

Left: Contact controlling the slider is visually tethered to it at all times. Right: For stationary
controls, such as buttons, the tether is shown only when another contact attempts to actuate the
control.

FIGURE 14.9

As a user drags a finger on the screen, the lag inherent in any interactive system manifests itself
as a physical separation between where the finger actually is and where the system “thinks” it is
at any given moment. Adding a visualization that tells the user “Here’s where I think your finger
is!” can exacerbate this lag.

94 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

Could
l	 Consider customizing for the particular input device on which the system

will be running. As we have described elsewhere, touch software is typically
built on top of a reduction that obfuscates the details of the sensors. While this
makes development easier, it makes it less likely that software will take advan-
tage of the unique attributes of its hardware. For example, consider displaying
raw sensor output, such as shown in Figure 14.12.

FIGURE 14.10

By adding a special state for objects when they are moving, any lag appears to be intentional.

FIGURE 14.12

An early attempt to visualize input by displaying raw sensor data. This approach does not
generalize across device types.

FIGURE 14.11

State 2 is shown as a trail, which reduces the perception of lag. 1: contact is static (state 1);
2: begins to move (transition B); 3: moving (state 2).

95Summary

SUMMARY
While there are great advantages to direct-touch software, and there is a tendency to
reduce abstraction and to allow direct interaction, as we have described in the early
chapters, this does not alleviate the need for careful design of system responses.
Indeed, the burden is actually increased: While designers of yesteryear were able to
rely on the physical feel of the mouse and feedback of the pointer, touch applica-
tion designers have no such luxury. The result is that they must spend more time
carefully designing the array of responses to ensure that the user properly under-
stands the various causes of the system responses they will see, lest they become a
horde of dancing pigeons.

97

CHAPTER

15Touch versus In-Air
Gestures

My fellow Americans, I’m pleased to tell you today that I’ve signed legislation that
will outlaw Russia forever. We begin bombing in five minutes.

—Ronald Reagan

DESCRIPTION
As we have described in Chapter 3, technologies inhabit an ecological niche, in
that each represents a set of potential uses and markets. Just as those who failed to
understand the true utility of touch input predicted the death of the mouse and key-
board, new technologies, such as Xbox Kinect and the Sony EyeToy, that offer touch-
less gesture input might incorrectly be believed to be a replacement for touch and
touch gestures. Certainly, devices that enable users to gesture in air open a seemingly
all-new world of interaction potential—and perhaps new ecological niches as well. To
the well-trained expert, however, it can be seen that in-air interactions share a great
deal with those based on touch. This difference is easily expressed and understood
using tools presented in this book, and will enable the quick and easy transfer of
design knowledge from touch-based to touchless gesturing.

APPLICATION TO NUI
As we have seen, NUI is not a technology, but rather an experience that can be cre-
ated using technology. Different sensing technologies are suited to different situa-
tions. As one rather well-known researcher is fond of saying, “Everything is best for
something, and worst for something else.” In-air gesturing, which can be sensed by
devices like the Sony EyeToy and the Microsoft Kinect, is suitable in some circum-
stances where touch input is less so. In living rooms, with digital signage, and in
other environments where walking over and touching a screen might detract from
the experience, in-air gesturing helps close that gap.

http://dx.doi.org/

98 CHAPTER 15  Touch versus In-Air Gestures

LESSONS FROM THE PAST
The wrong way to think about in-air gesturing is “touch at a distance.” The right
way to think about it is as a unique input/output paradigm, which must be designed
separately and differently from a touch one. That being said, many of the tools we
have described elsewhere in this book are applicable to this input methodology as
well as to touch input. We will focus on one particular differentiating element: that
in-air gestures suffer from a “live mic,” similar to the one that Ronald Reagan apoc-
ryphally encountered in the early 1980s when he delivered the quote that opens
this chapter. In the case of in-air gesturing, this refers to the always-on nature of
in-air gesturing and the need to “clutch”—to differentiate physical actions that are
intended to drive the computing system from those that are not. In the case of
touch computing, the clutch comes when the user lifts her hand from the digitizer.
In most cases, when the hand is in the air, the system can’t see it. This is true too of
the mouse: Lifting your hand from the mouse (or lifting a mouse in the air) causes it
to stop sending position change information to the system.

In Chapter 12, we described the state-transition model of input devices. Using
this model, we explained that touch is fundamentally different from mouse input in
one very important way: Typical touch input has no tracking state, or zone where
the touch is registered by the system, but not yet engaged.

We pointed out that modern operating systems actually rely rather heavily on a
tracking state and that designing well for touch input would mean designing an all-
new UI that does not rely on the tracking state to provide a preview. If you thought
that was hard, wait till you see this: in-air gesture systems are typically one-state
input devices!

You can see now the challenge faced by those designing games and experiences
for such input devices: There is no mechanism in the hardware that will differenti-
ate between movements that are intended as gestures to the system and those that
are not. When designing a touch application, there is little concern about this—if
the user needs to cover his mouth to sneeze, scratch his head, gesture to another
person in the room, wring his hands, stretch, or any other of a thousand different
non-input actions, there is little worry that your sensor, the touchscreen, will send
these to your app as “touches.” You can simply assume that these will be filtered
out by the simple fact that the user will stop touching the screen while doing them.
This is not the case for in-air systems. The sensor will be buzzing away, like the cam-
era and microphone pointed at President Reagan, happily sending all of these events
to your application or platform.

This fact makes it easy to encounter errors in recognition of the types described
in Chapter 28: where either the user does not intend to perform a gesture but the
system recognizes one anyway (false positive errors), or the user believes she has
performed a gesture but the system does not recognize it (false negative errors).
These two problems can happen just as easily with touch as with in-air systems, but
because of the “live mic” problem, they are likely to happen more often. To under-
stand this, imagine the simple task of pushing a virtual button using both a touch

99Lessons from the Past

input and an in-air input device. In the touch case, this is relatively simple to accom-
plish: The user puts a finger on top of the button and lifts it within its bounds. In
the in-air case, it is decidedly more complicated. The naive designer might say,
“When the user points at the button, call it ‘pushed.’” But this won’t work—it’s like
aiming with a fully automatic rifle with the trigger stuck on “fire.” As the user lifts
a finger toward the screen, it is pointing the whole way and would be “pushing”
every button as the finger is lifted. How then do we distinguish between aiming and
firing in a one-state input device? Several approaches have been explored for in-air
and other similar contexts that are worth examining.

Reserved Actions
The reserved-action approach takes a particular set of gestural actions and reserves
them so that those actions are always designated as either navigation or command-
ing. For example, Ken Hinckley and his colleagues at Microsoft Research examined
the problem of how to distinguish between strokes intended as commands and
those intended as drawings in a pen interface. They reserved the “pigtail” gesture
for issuing the “invoke menu” command (Figure 15.1).

This approach has the advantage of following an ink-based system without
requiring a menu or mode. Want to draw a circle around something? Just go ahead
and do it. Want to select something? Draw that same circle, but add a little pigtail
to the end, and the system interprets it as a command. The disadvantage of this
approach is also equally clear: The user of such a system could never draw a pigtail,
because that is a reserved action. False positives are likely, since users of a drawing
program are likely to draw strokes that cross themselves fairly often without intend-
ing them to invoke the command.

In-air gesturing has also been shown with reserved actions. Grossman and his
colleagues invented Hover Widgets, a set of gestures performed by the user of a
tablet PC with the stylus hovering in the air above the screen (Figure 15.2). Users
could use the tracking state on the tablet PC as it was intended for a classic UI, as a
preview for what would happen when they transitioned to engaged by touching the
pen to the device. If they happened to move the pen in a particular pattern above
the device, however, they would invoke commands.

FIGURE 15.1

Selection using a pigtail gesture.

100 CHAPTER 15  Touch versus In-Air Gestures

In this case, false negatives are more likely than false positives. This is because
the “hover” zone above a tablet PC is rather small, and it is likely that the user will
exit that zone during the gesture. However, the principle is sound: This reserved
action is unlikely to be performed in the normal course of pointing, and is thus on
the right track.

Reserving a Clutch
Similar to but different from a reserved action is a reserved clutch. This is a special
class of action dedicated to creating a pseudo-tracking state. Similar to the clutch in
a car, which connects or disconnects the engine from the wheels, a gestural clutch
is an indicator that you want to start or stop recognition of the gesture. An obvious
method for such a clutch would be an invisible plane in front of the user. When the
user moves her hands in the air, they are tracked. To engage, they must push past
that invisible plane.

The advantage of a clutch over a reserved action is immediately apparent: It
provides an a priori indicator to the recognizer that the action to follow is either
intended to be treated as a gesture or not. As we will learn in Chapter 18, the ear-
lier your recognizer can differentiate gestures from non-gestures, the more accurate
and positive your user experience will be. Another nice effect of a clutch is that it
enables the complete gesture space to be used. In a system using Hover Widgets,
for example, what if the user just happened to want to move the pen over the sur-
face of the digitizer, but didn’t want the Hover Widget action to happen? A clutch
provides an obvious mechanism to differentiate the two situations, without having
to set aside whole classes of actions.

Unfortunately, a virtual clutch may also cause errors. In the example of the invis-
ible plane, if the plane is too close to the user, it’s likely that he’ll cross it uninten-
tionally and frequently (false positive error). If the plane is too far away, it’s likely
that he’ll fail to cross it when he intends to (false negative error). Unfortunately,
there can be little doubt that these “too close” and “too far” zones will not border
opposite sides of a “just right” zone, but rather that they will overlap and be differ-
ent for different users, or even the same user over time.

FIGURE 15.2

The Hover Widgets are invoked by moving the stylus in a particular pattern in the air above the
device.

101Lessons from the Past

A better example of a reserved clutch is the use of a “pinch.” When the hand
is in a regular pose, it is tracked. When the user pinches the finger and thumb
together, it causes a transition to the engaged state. This approach is less likely to
be subject to false positive errors, since this action is one that is unlikely to occur
in the natural course. It is also less likely to be subject to false negative errors, since
it is fairly easily detected and differentiated from other actions. It does, however,
have the obvious disadvantage that you remove the pinch (or whichever gesture
you choose) from the set of gestures you could otherwise use for other things in
your system.

Despite the reduced probability of false negatives or positives, there may well
be occasions in which a reserved action or clutch is not feasible. An alternative is to
make use of multi-modal input.

Multi-Modal Input
Another solution to the live mic problem is multi-modal input. To understand this
solution, we’ll turn to the iPhone.

A question frequently asked of us by designers of touch applications is “Why
does the iPhone have a button?” An engineer would point out that it allows
the system to turn off the touch sensor, which saves power. Aside from this rea-
son, there would still be a need for one that may now obvious to you in light of
the live mic problem: without the button, how could the user be guaranteed
to always be able to exit an application and return to the home screen? A reserved
action might work (say, any time the user were to draw the Apple logo, or slide 5
fingers together on the screen, the application would exit and return to the home
screen), but this would be problematic for the same reasons we have outlined
above. Instead, multi-modal input is used: touch input is sent to the application,
while hardware buttons control universal parameters (e.g., volume) and basic navi-
gation (e.g., go home, open music controls).

Another example of multi-modal input commonly attempted with in-air gesture
systems is to use speech input in combination with gesture. The “put that there”
system was developed at MIT in the late 1970s and early 1980s. In it, the user could
point at a screen, and the point was tracked. To transition between tracking and
engaged states, the user issued speech commands. For example, to move an object
from one place on the screen to another, the user would point at it, then say “Put
that,” which moved the system into “engaged.” The user would then move her
finger to point at the new location, and say “there.” The advantage of multi-modal
input is also obvious—it does not reduce the vocabulary of the primary modality the
way that a reserved action or clutch do.

Another example of multi-modal input is the use of the keyboard to mode
mouse clicks or drags. Drag an icon in windows and you will move it from one
place to another. Hold down the CTRL key while you drag it, and it will make a
copy instead of moving the original. Using input devices and methods in combina-
tion with one another may on its face seem more complex, but it can in actuality

102 CHAPTER 15  Touch versus In-Air Gestures

greatly simplify the problem of how to differentiate inputs and solve the live mic
problem.

DESIGN GUIDELINES
Understand the live mic problem and how you will need to design for it. Consider
the lessons of this chapter and the live mic problem. Aside from this, consider all of
the lessons contained elsewhere in this book: for the most part, they apply equally
well to both in-air gesturing and touch.

Must
l	 Understand the live mic problem as it applies to in-air gestures and design your

system accordingly.

l	 Include mechanisms to differentiate between those actions that the system
should recognize and those it should not.

Should
l	 Consider the solutions we have proposed here: reserving actions or clutches,

or using multi-modal input to solve the live mic problem.

l	 Carefully consider and study your live mic solution. Do not assume that an
action that you can perform easily will also be performed easily by your
users.

l	 Consider the problems of both false positives and false negatives in defining
your solution.

Could
l	 Design your system so that there is no need to solve the live mic problem by

completely redesigning the UI from the ground up, and taking this issue into
account.

SUMMARY
While touch and in-air gesturing may at first seem quite different from one another,
there is only one significant subtlety that differentiates them: the live mic problem.
Fully understanding and addressing it will allow you to apply the other lessons from
this book to both touch and touchless gestural interaction.

103Further Reading

FURTHER READING
 Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F. Design and analysis of delimiters for selection-

action pen gesture phrases in scriboli. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Portland, OR, April 2–7, 2005). CHI ’05. ACM, New York, NY, pp. 451–460.
DOIhttp://doi.acm.org/10.1145/1054972.1055035. In this work, Hinckley and his colleagues examine
various methods for telling the system “The stroke I just entered wasn’t intended as ink, but rather as
a command.” They consider a variety of mechanisms, and conclude that the pigtail method is clearly
superior.

 Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., and Balakrishnan, R. Hover widgets: Using the track-
ing state to extend the capabilities of pen-operated devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Montréal, Québec, Canada, April 22–27, 2006). R. Grinter et al.,
eds. CHI ’06. ACM, New York, NY, pp. 861–870. DOIhttp://doi.acm.org/10.1145/1124772.1124898. In
this work, Grossman and others at Microsoft Research build a set of simple hover-based gestures to comple-
ment those built-in to the tablet PC. The Hover Widget gestures differentiate themselves from other actions
performed in the hover zone of the PC by reserving specific physical movements to invoke them. These are
distinct from other types of in-air gestures in that they are meant to complement a pen input system, where
touching the pen to the display performs other actions.

107

CHAPTER

16Mechanics, Dynamics, and
Aesthetics: The Application
of MDA

It’s not the meat; it’s the motion.
—Maria Muldaur

DESCRIPTION
The mechanics of a product and the dynamics of use determine the aesthetics of the
product experience.

Mechanics are the essence of any software product. Simply stated, the mechan-
ics of a product are what it can do (functions) and what actions (behaviors) the user
must perform to activate those functions and what goals are implied or promised by
the product. One also might think of mechanics as the “objects” (virtual or real), the
rules of operation, and the goals (end states) that are achievable with the product.
For software products one can think of mechanics as what goes on the disk (or can
be downloaded).

Hunicke, LeBlanc, and Zubek have applied the mechanics, dynamics, and aes-
thetics framework to game design. Consider a game like chess. In chess the objects
are the pieces and the board. The rules of play define where pieces can move under
what circumstances and how pieces are captured. The goal of the game is to cap-
ture the king. Together, the objects, rules, and goals are the “essence” of chess. The
game can be rendered in various ways—simple portable plastic board and pieces,
elaborate carved pieces and board, an electronic chess playing game—but they are
all chess because of their identical mechanics. In effect, the definition of chess is
embodied in how it is played. This way of defining words, that is, in terms of their
use, has been elaborated on by Wittgenstein.

Extending the concept of mechanics to software products is illustrative. The
objects are often virtual objects—text, graphics, formulas, avatars, targeting reticles,
mini-maps, etc. In addition, other things that the user interacts with, menus, dia-
log boxes, rulers, and the like, are also objects. Some of these objects are primary
(text, graphics, etc.); others are secondary (menus, dialog boxes, etc.). Creating or

108 CHAPTER 16  Mechanics, Dynamics, and Aesthetics: The Application of MDA

modifying primary objects is the reason for using the product. For example, I use
an editor to create text objects. Secondary objects affect primary objects. Menus or
dialog boxes change the rendition of text (its font, size, or style). We could also con-
sider the physical input medium. In most cases this will be a pointing device (e.g., a
mouse) and text input device (e.g., a keyboard).

In any meaningful system, objects have rules of operation. A primary object like
text appears at the insertion point when a user types. The text that follows the text
being typed moves to the right and down, provided the user is in insert mode. In
overstrike mode, text replaces text to the right in a one-to-one correspondence. All
secondary objects have rules of operation and rules that govern their effect of pri-
mary objects. Together, the primary and secondary object and their rules of opera-
tion constitute the means by which the “goals” of the product are met. Goals can
be general—I want to make a document—or quite specific—I want to change this
letter to the Trebuchet font.

When users engage a game or any product, their actions vis-à-vis the game or
product constitute dynamics. For example, when players play chess, the movement
of the pieces constitutes dynamics. While the mechanics of chess are fixed, the
dynamics vary within a range. Players can make only “legal” moves. Conditions of
victory are pre-set. However, the players’ behavior is not completely determined.
Players bring their own knowledge and individual motives to the game. Each par-
ticular game has a broader context, for example, it could take place in a park. These
characteristics make each chess game unique and interesting. The social context
also plays a role. The game may be between old friends, in which case the interac-
tion between the players could be more important than who wins. Alternatively, the
game could be in a tournament in which winning is key. In other words, dynamics
are predictable (you must play by the rules) but never fully determined. Every chess
game is unique, but all follow the same rules. Thus, chess fulfills the criteria for a
good game: simple to learn but hard to fully master.

When software products and their supporting hardware are used by people, that
interaction generates dynamics—user actions. Just like in a game, users bring their
background knowledge and their own goals to the situation. The knowledge can be
either “domain” knowledge (e.g., the author is a good writer) or “product” knowl-
edge (e.g., the author knows how to use MS Word or LaTeX to create the document
she wants). The goals are part of the context. Goals may change, but it’s useful for
the analyst or designer to be aware of them. Thus every interaction with a product
is constrained by the objects, rules, and purpose of the product (mechanics), but
every interaction will also have emergent properties determined by the user, her
knowledge, her motives, situational factors (she must finish a five-page report by
tomorrow), and possibly changing goals.

Finally, the dynamics of a game are the source of the aesthetics of the game.
Drawing on the chess example again, a highly competitive game will elicit conclu-
sions about the game and reactions to it. For example, an observer may conclude that
it was a “good” game. Based on the actions during the game, the observer concludes
that the opponents were evenly matched and the outcome was unpredictable. The

109Description

players will have their own aesthetic conclusions. For example, one player may con-
clude that she played below her potential or that her opponent “cheated” by distract-
ing her. The conclusions can take any form, for example, “chess is not for me.” They
could also be emotional, for example, “I feel angry and I won’t play him again.” These
conclusions about the game—intellectual conclusions, personal conclusions, and
emotional conclusions—are called aesthetics. They refer to the player’s experiential
conclusions about this game, chess in general, herself, or her opponent.

We apply this construct of aesthetics to any product. People draw conclu-
sions from the use of the product. That product is hard (or easy) to use. The con-
clusions may be emotional and global: “I hate product X.” Or they may be subtle
and nuanced: “Don’t use product Y if you have to produce a document with many
tables, but product Y is great if you are writing a novel.”

Figure 16.1 depicts the mechanics, dynamics, and aesthetics (MDA) framework.
This framework of mechanics, dynamics, and aesthetics was developed to ana-

lyze game design. It can be usefully applied to any product, but there are some
important differences between products and games. In games like chess, the rules
are well established, are extensively documented, and change very slowly. Once
you learn the rules of the game you can play and gain experience. As you become
better at it, you understand more “dynamic possibilities,” for example, if I do X, that
leads to condition Y, and my opponent is likely to do Z. Your aesthetic appreciation

FIGURE 16.1

The MDA framework.

110 CHAPTER 16  Mechanics, Dynamics, and Aesthetics: The Application of MDA

may change. For example, you may learn to appreciate getting beaten by a worthy
opponent in a well-fought game. You may take away “learnings,” for example, I’ll
try the end game on my next opponent.

Applying the MDA model to products helps us appreciate certain distinctions,
and new possibilities emerge. For example, the mechanics of the primary objects
in a product may facilitate or hinder its use in a given domain. An editor that used
overstrike mode exclusively would not be well suited to free-form writing. Free-
form writing often involves inserting text between already-written text, which
is hard to do in overstrike. On the other hand, overstrike makes text replacement
very easy (the deletion step is eliminated). It works well for replacing data in forms.
Insert editors compensate for the difficulty of replacement by including an over-
strike mode or by pending delete (select the text to be replaced and type).

Beyond the behavior of primary objects (e.g., text), game and product designers are
faced with the challenge of the design of secondary objects. The behavior of these sec-
ondary objects imposes an additional burden on the user. They must not only learn the
domain, but also learn how to use the “tool,” that is, the secondary objects. Consider
an electronic chess game. The user may type in commands to move pieces on a virtual
board. The designer must aim to make this as easy to learn as possible since in and
of itself it typing commands contributes nothing to the “joy of chess.” The designer
is aided by the fact that chess has a traditional notation system that many players are
familiar with. The designer of electronic chess can simply implement that system.

In software products, design teams often face two challenges. The product must
teach domain knowledge and must teach tool knowledge. Early users of modern
editors had to learn about fonts and layout. These are part of the domain knowledge
that was the traditional domain of printers. In addition, the designs had to teach tool
knowledge—where and how the user can change the font of a word or a paragraph
or a document. This problem was compounded by the fact that users want to learn
by doing as compared to reading. As a result, design became not merely matching
the actions of a domain but representing these to users so that they could under-
stand (or learn) the domain and learn the tool. The design of the mechanics of a
system can be very challenging.

Some exemplary products accomplish both these goals very well. Users become
skilled practitioners, quickly learning both the domain and the tool. In some cases
they even enjoy the process. Some products like games exist only for pleasure (by and
large). Designers of games often strive to make this learning fun by eliminating unnec-
essary challenges and introducing challenges progressively, creating a gradual ramp
for learning as you play. These “ramps” consist of well-designed steps in which both
the domain knowledge and the tool knowledge are progressively introduced.

APPLICATION TO NUI
By definition a NUI offers an opportunity to introduce products where the mechan-
ics are readily practiced. There is a high probability that the product works the

111Application to NUI

way one expects it to work. These “intuitive” or natural mechanics should lead to
highly effect dynamics. Use should be smooth and expert-like without long periods
of training or practice. A user’s progress will be more or less continuous, without
regression or long plateaus. A motivated learner will develop deeper skills with each
game. Her growth in skills will be about chess, not about the tool she might use to
play it. The aesthetic result is that the device is experienced as delightful and fun to
use. The user feels empowered by the technology rather than frustrated, enslaved,
or ridiculed by it.

Consider a NUI version of chess. In that version one could move the pieces by
touch, that is, touch the piece and move it to the destination square. NUI chess
could also prevent illegal moves, such as moving bishops off the diagonal. In this
way it aids the beginner in learning in situ. This example illustrates some of the
essential elements of a NUI system. “Learning” focuses on primary objects—pieces,
their movement, and conditions of success. The novice will learn the mechanics of
chess relatively quickly and with pleasure. The transition to skilled player may be
even more rapid than it would be with a traditional board and pieces, since ille-
gal moves are precluded and valid moves may be highlighted. A second player is
optional. The computer can play that role, and the difficulty level can set by the
player to ensure the right level of challenge. Progress can be tracked and games
can be stored and reviewed, with supplemental teaching. Playing will be more fun.
Minor but burdensome tasks, such as picking up the game and finding lost pieces,
are eliminated. NUI chess also eliminates the need for secondary objects. The player
need not learn a notation system and enter codes to indicate which pieces move
where.

Once the mechanics are mastered, a NUI version would aid the players in devel-
oping skill. It could do this in several ways. Games could be automatically replayed
so that the novice can study how she won or lost. This uses technology as an aid
and possibly substitutes for traditional instruction or informal discussion with other
players after a game is over. The replay could be enhanced by explanatory text or
by allowing the player to intervene at any time and play the game from that point,
allowing one to practice mid-game or mating strategies.

One could also imagine a natural way of learning during play. Often novices at
chess adopt an informal rule that a move is not complete until you remove your fin-
ger from the piece. This allows them to position a piece and study the board. One
could easily imagine electronic chess allowing the same action but enhancing it by
showing the novice what other pieces were a threat. Any number of mechanisms
are possible. Threats could be shown after a delay (the computer is scanning for the
novice) or on command.

The critical NUI elements of the development of expertise are that new infor-
mation is introduced progressively, it occurs in a way that is consistent with the
level of the novice and desired state of expertise being strived for, the learning takes
place in the context of use, and the learning is perceived as fun.

Contrast this approach to the very traditional approach to learning chess.
One typical element of traditional learning is studying books that describe typical

112 CHAPTER 16  Mechanics, Dynamics, and Aesthetics: The Application of MDA

patterns of movement. This often requires the learner to learn the notation of chess.
While this may be valuable, it is not natural and can be a stumbling block.

The example captures the essence of a NUI. It is an interface that encourages rapid
transition to skilled practice by removing nonessential objects and rules, enhancing
the learning of essential rules, enabling the process of skill acquisition to be pleasur-
able, and offering technological enhancements that enrich the experience. Natural
does not mean primitive, or even intuitive. To the non-player there is nothing intuitive
about chess. But to the experienced player and the willing student, a natural interface
to chess is the way to go. We could introduce our own “Turing test” for a natural user
interface. It is one that will be chosen over others by the majority of both novices and
experts. In other words, in most cases students of chess and accomplished players
will choose it over playing chess with the traditional board and pieces.

Actually, designing a NUI system can be a quite subtle and difficult problem
depending on the domain or task. There are no foolproof and simple heuristics one
can follow to create a NUI. However, we can provide some guidance for how to
approach designing a NUI system.

Removing intermediaries like the keyboard and a specialized pointing device, for
example, the mouse, is a possible step to this more natural interface. By removing these
“transducers,” the user is able to interact directly with the objects that the computer
system presents. However, such removal is not foolproof. It depends on the task and
the current dominant practices. For example, replacing the keyboard for tasks that pri-
marily involve text creation would be problematic given the evolved state of keyboard
design and the skill level of the population. It will be a long time, if ever, until a vir-
tual keyboard can match the performance of a regular keyboard. However, a sufficiently
accurate and fast voice recognition system may become a contender at some point in
the future. Even more subtle approaches may be more natural in some situations. For
example, anticipating the word that user is typing by offering options, or a keyboard
system that allows only valid entry by rendering “wrong” virtual keys inoperative (some
auto navigation systems adopt that approach), may speed the user to skilled practice.
Stretching the point, one could even see autocorrect in software systems as “natural” if
the user gets to skilled practice more quickly and the results are better.

A NUI promises straightforward mechanics, smooth and flawless dynamics, and
consequently positive aesthetics. Needless to say, this nirvana is not easily achieved.
The development of new hardware capabilities offers the possibility that these
NUIs may emerge, but only the possibility. In practice, designing and implementing
such interfaces are extraordinarily difficult. The rest of this book will provide some
insight into how such interfaces can be built.

LESSONS FROM THE PAST
With some justification, one can see the evolution of the human-computer interface
as a slow but relentless progress toward a more NUI-like interface: one that enables
skillful performance rapidly without diminishing the result, and perhaps enhancing it.

113Design Guidelines

In this chapter we have taken a framework that has been useful in game design
and applied it to the NUI. Like NUIs, games face the challenge of creating skilled
practice without making the interaction trivial. They have adopted interesting ways
of addressing that challenge. For example, game designers think in terms of the dif-
ficulty ramp of the game: How can we make each stage of learning the game just
challenging enough to make it interesting, that is, not too trivial and not too insur-
mountable? They also think in terms of creating a lawful world where players can
anticipate, plan, and strategize about their approach to winning. Some games face
the additional challenge of representing in some way real-world environments. For
example, driving games can simulate the physics of driving high-performance cars,
or they can simplify the physics and provide some support. How much the physics
are simplified and how much support is provided is a strategic decision.

DESIGN GUIDELINES
The MDA framework does not offer detailed design guidelines. Instead, it provides
a framework for thinking about design. It also hints at pitfalls such as assuming that
the mechanics are obvious or assuming that new capabilities will necessarily lead to
delight. But by using MDA and our experience with games, we can offer some guid-
ance to design teams.

l	 Begin with the fundamental mechanics of the interaction. If your understand-
ing of those do not draw on the situated knowledge of skilled practitioners, it
is unlikely that the implementation of the NUI will be successful.

l	 Do not draw inspiration from pre-existing interaction paradigms: beginning
with a command system, a GUI, or a web interface almost certainly guarantees
inconsistency and failure.

l	 Consider carefully what is skilled behavior in a domain and how the path to
skilled behavior could be shortened without cheapening the skill.

l	 Remove secondary interface controls wherever possible.

l	 Do not consider how to use technology to enhance the interaction until you
have designed the fundamental interaction and how to teach it quickly and
easily. Only then consider the enhancements that technology can add. For
example, design the chess game first and make the action of the pieces work
smoothly and the pieces clearly differentiated. Only after that is working
should you consider enhancements and then focus on those that enhance the
progress to skilled performance. For instance, first make illegal moves impos-
sible but in a fluid way, such as not allowing a piece to follow the user’s fin-
ger to an illegal square, but allowing tracking to resume when the user moves
the piece in a legal direction. Get that right before you consider such enhance-
ments as auto replay and teaching.

114 CHAPTER 16  Mechanics, Dynamics, and Aesthetics: The Application of MDA

l	 Finally, beware of creating plateaus. One pointed criticism of many modern so-
called NUIs is that the user quickly develops skill to a certain level but will
never progress beyond that level. The Wii is a good example. Wii tennis may
be fun at parties. It may do great social good by allowing physically impaired
folks to enjoy some tennis-like movements and thrills, for example, winning.
But becoming an “expert” in Wii tennis is unlikely to be a path to becoming a
tennis champion.

SUMMARY
In this chapter we explicated the MDA framework and applied it to the NUI. We
distinguished between primary objects (those that are inherently part of the task)
and secondary objects (interface controls). NUIs minimize the latter. We suggested
a Turing-like test for the successful NUI: would skilled practitioners and eager learn-
ers prefer it to traditional training approaches. Finally, drawing from game design,
we suggested some principles to guide the development of a NUI.

FURTHER READING
 Hunicke, R., LeBlanc, M., and Zubek, R. MDA: A Formal Approach to Game Design and Game Research,

http://www.cs.northwestern.edu/~hunicke/MDA.pdf. The MDA framework has proven very useful for
thinking about game design and improving games. While there are a number of classification systems for
aesthetics, the value for our purposes is in the clear distinctions this framework makes between design-
ing the “thing,” using or playing with the “thing,” and the users conclusions about the “thing.” We have
applied it to NUI because we think it helps advance the concept of NUI beyond the ideas of a set of
primitive gestures. It has also served to shape the thinking of the Games User Research team at Microsoft
Studios (http://mgsuserresearch.com/).

 Wittgenstein, L. (1953) Philosophical Investigations, translated by G. E. M. Annscombe, Blackwell. We
call out Wittgenstein here because of his analysis of language. Specifically, that the meaning of language
is embodied in its use. This chess is not defined by a dictionary definition but by the cultural practice
of the play of chess, that is, the mechanics. You don’t really know what chess is until you learn to play
it, and then your knowledge of it depends on your level of play (as untalented amateurs we are merely
dilettantes who draw on chess for examples). However, Wittgenstein’s discussion of the Martian who
watches a chess game is instructive. Our hypothetical Martian watches a game of chess and then argues
that the outcome is completely determined. The players are stunned. But the Martian was right; she was
just focusing on the mechanics of chess. For the players the rules were in the background, and yes, they
did determine the play, but the players were focused on the dynamics (their emergent play) and their
aesthetics—how they interpreted the game. The greatest design occurs when the dynamics and aesthetics
intended by the mechanics the designer created are matched by the dynamics and aesthetics of the player.
That is, the product is used as intended and evokes the reactions the designer intended.

http://www.cs.northwestern.edu/~hunicke/MDA.pdf
http://www.mgsuserresearch.com/

115

CHAPTER

17New Primitives

Even the literature of the Party will change. Even the slogans will change. How
could you have a slogan like “freedom is slavery” when the concept of freedom has
been abolished? The whole climate of thought will be different. In fact there will be
no thought, as we understand it now. Orthodoxy means not thinking—not needing to
think. Orthodoxy is unconsciousness.

—George Orwell, 1984

DESCRIPTION
Modern software design has been divided up into professions, often distinguished
as information architecture (designing the layout and flow of an application or
website), interaction design (assembling components of interaction, such as links,
buttons, and so on), and visual design (deciding on the overall and specific look of
an application or site). None of these operates at a sufficiently low level to create
designs for new technologies. The vast majority of designers have never considered
the fundamental mechanics of a link, or a click; this concept is so ingrained in their
understanding of computers that they think of it as axiomatic. Click has become a
part of the language spoken by users of interactive technologies. Ask someone to
speak aloud as they browse the web on their touchscreen phone, and you will hear
them tell you that they are “clicking links.” The metaphor of the button has been
so deeply engrained in the mechanics of interaction that one might fear there is no
going back. As we will discuss in greater detail in Chapter 21, modern user inter-
faces grew in a tight coupling with the evolution of the mouse. As we move to new
input devices, we will need new primitives.

The Ingsoc government of Orwell’s Oceania sought to eliminate undesirable
actions by first removing the building block used to form the intent: language. In
the fragment above, we understand the power of the fundamentals of language as
Ingsocs believed it to be: if there were no words to describe a thought, the mind
would be unable to form it. While modern linguists might debate the efficacy of
such a plan for spoken language, there is no denying that the basic building blocks

http://dx.doi.org/

116 CHAPTER 17  New Primitives

of the user experience form the foundation of its success. Shaking the mouse cursor
on the screen does nothing in the Windows and Mac OS worlds, not because such
an action could not be recognized by the system, but rather because the designers
have chosen that this action should not do something. In the user interface world,
there can be no denying the power of the basics of the interaction language: get
them right, and your system could seem simple, even natural to use. Get them
wrong, and your user experience has no chance of success, even before you have
designed any of what is traditionally thought of as the user experience.

The building blocks of an interaction language are what we refer to as primitives.
To understand their role, you might think of four levels of actions: (1) what is physi-
cally possible with the device (I can slide the mouse on a table, I can turn it upside
down, I can juggle it…), (2) what is actually recognized and conveyed by the device
(only movement on the table), (3) the even narrower subset of what is recognized to
those things to which system responses are tied (movements of the mouse are recog-
nized as a “drag,” which allows the user to move on-screen objects from one place to
another. However, the actual shape of the drag does not matter—all that matters in a
drag is the start and end point. Dragging in a heart shape while dragging does noth-
ing different than dragging directly between the two points.), and (4) the expansion
of the primitives in the form of controls (e.g., clicking and dragging a slider changes
a one-dimensional value, clicking and dragging on an ink canvas draws a two-dimen-
sional stroke, clicking and dragging an icon moves it somewhere else).

Each of these levels is critical. What is physically possible is limited by the laws of
physics and biomechanics. What is recognized is a function of your hardware—dif-
ferent hardware recognizes different things, and is the subject of Chapters 21 to 27.

FIGURE 17.1

Each level is a subset of the one beneath until the primitives are reached. Those primitives
are then composed into a larger set of controls. Keeping the set of primitives small makes the
language easy to learn. For example, clicking and dragging a paint palette draws, clicking and
dragging on a scroll-bar scrolls a page.

117Lessons from the Past

How you expand your primitives by building controls or gestures is the subject of
Chapters 14 and 15. In this chapter, we will describe the development of the primi-
tive actions: those physical actions which are detected by your sensors that you will
select to be primary units of interaction of your system.

APPLICATION TO NUI
Not all applications written for a given platform will require new primitives. Indeed,
the ideal would be for primitives to be more or less standardized across a platform,
the same way they are now in Windows and Mac OS (those which are more or less
standard across them: click, double-click, CTRL-click/right-click, etc). But we’re
not there yet—different touch platforms employ different primitives, and it’s not
uncommon for application writers of touch & gestural systems to build their own.
This is largely due to the fact that very few toolkits have been released which pro-
vide a good and comprehensive set of primitives for the design of touch interac-
tion. Instead, most are simply copies of mouse primitives. This is no doubt because
we’re simply too early in the process—the design work is yet to be done. We need
an explosion of applications with different primitives to finally settle down through
a darwinian process into a smaller set of primitives which will become a standard
within each platform, and possibly, eventually, across platforms.

This can be seen as both opportunity and crisis. The burden for the designers of
touch applications are much greater than for mouse-based systems, because you can’t
rely wholly on the toolkits you have to work with. At the same time, this gives design-
ers far more freedom to experiment and to help shape the future of touch interaction.

LESSONS FROM THE PAST
Where most designers of touch systems err is in believing that the primitives pro-
vided for the mouse are also the right ones for touch systems. To understand why this
is problematic, we’ll now examine two input devices, the mouse and the pen, and
explore how a failure to design new primitives led to the failure of pen-based systems.

What the Mouse is Good At
A mouse is designed to detect two physical actions well: travel from one point to
another (point), and the pushing of buttons (click). In most mouse GUI toolkits,
a click is registered if the pointer is positioned over an object, and the button is
then depressed and released. If the cursor moves off of the object between the time
the button is depressed and released, no click is generated. The requirement of no
movement is to reduce situations where the user might click the wrong location or
press the button by mistake (what we’ll call a false positive in Chapter 20). It gives
them an escape route: They can push down the mouse button, see that they have

118 CHAPTER 17  New Primitives

missed their intended target (or changed their mind), and then drag the mouse off
of the on-screen control to safely release their button without triggering a click. For
this to work well, there must also be a low risk of the system failing to detect a click
when the user intends one (Chapter 20: false negative). The mouse is ideally suited
to this in the case of clicking: Its large surface area provides sufficient static friction
that it is unlikely to slip due to the force of the user pushing the button. As for the
moving from one place to another, the mouse is also ideally suited to this – exten-
sive, exhaustive studies over the years have shown the mouse to be faster than joy-
sticks, pens, trackballs, you name it—the mouse is faster for pointing.

What the Mouse Is Bad At
It’s essential to note the subtlety of the primitive of pointing: It’s the movement from
one place to another. This is distinctly different from following a path – the mouse
provides terrible control for actually controlling the path of movement. Don’t believe
us? Open up a drawing program and try drawing a perfect (heck, even passable) cir-
cle. Now grab a pen and a piece of paper. Which one was faster, and which one looks
better? A defender of the mouse might at this point pipe-up and say “there is no need
to control the path of the mouse! The user needs only to move over a target and click
– so who cares? If you want to draw, use a stylus.” And of course, they’d be right, but
they’d also be missing the point: the reason there is no need to control the path of
the mouse is because the UI has been designed that way. The astute designer might
note moments in operating systems where the path does matter – but these moments
are examples of poor design. For example, navigating sub-menus: Slide too far outside
the narrow path of the root of the menu, and the sub-menu disappears. No doubt this
is why sub-menus have been all but eliminated from more modern software.

The job of a designer of primitives is to understand what your hardware is good
at detecting, and what the applications will need. The mouse GUI was an example
of where this has been done extremely well, through 40 years of innovation, fail-
ure, missteps, and corrections. An obvious example of where the software was not
designed for the hardware was in the Tablet PC.

What a Pen Is Bad At
The early version of the Windows-based Tablet PCs were essentially operated by the
pen emulating the mouse. As we will describe in Chapter 21, this sort of situation is
largely due to the business decision of wanting to ensure old applications could be
operated by the new system. Of course, a careful examination of the pen will reveal
that it is terrible at one of the two things a mouse is best at: clicking. As the pen
approaches the digitizer, the cursor jumps around with every small movement of the
pen. Once the pen is touching, it is extremely easy to slip by some small amount,
ensuring that no click is generated in the application (Chapter 20: false negative). It’s
even harder to perform a right-click, which typically requires the user to press a but-
ton on the barrel of the pen while they are trying to keep it still on the device (or
hold it down in an awkward posture while they perform their click). As for pointing,

119Lessons from the Past

the stylus is passable, but one must also consider the digitizer: Most digitizers detect
the stylus only when it’s within an inch or so of the digitizer. The consequence is
that the user is usually doing most of the physical pointing movement with the pen
out of range of the digitizer (what we called the “out of range” state in Chapter 13).
This means that any controls which rely on knowing the movement during a pointing
movement won’t work correctly, or you will force the user to keep the stylus close to
but not quite touching the digitizer, which can be a pain.

In truth, it’s almost hard to imagine a worse device for controlling a WIMP GUI.
It’s no wonder that the Tablet PC never caught-on.

What a Pen Is Good At
Where the pen excels is in the area where the mouse does not: controlling the
path of movement. Users can quickly sketch, write, and annotate. Detractors of the
Tablet PC will often note that typing is much easier than hand-writing. And of course
they’re right. But that misses the point – if your application requires a lot of typing,
it’s not right for a pen-based system. But for all of these other tasks: active reading,
sketching, brainstorming, entering mathematical equations, the pen wins by far. What
has held back the user experience of pen-based devices is that they have relied on a
user interface largely designed for the mouse. Imagine if the Tablet PC’s software had
been built completely from the ground up taking these simple facts into account.

Designing New Primitives
As you saw in Figure 17.1, the primitives used in a system are used in combination to
form controls. Thus, this for-mouse design of the WIMP GUI lives in the controls them-
selves. Just as you would never try to push a physical button with a pen, nor does it
make sense for the button to be the metaphor or interaction method for a pen in the
virtual world. These controls, however, are formed as collections of the more funda-
mental primitives which are designed at a lower level. One can imagine a creating a user
interface where clicking is never required. What if only crossing were recognized? To

FIGURE 17.2

Traditional GUI checkboxes. These are activated by applying the click primitive to the white
square. In most, but not all tookits, the user can also click the label.

120 CHAPTER 17  New Primitives

understand what we mean, consider the traditional checkbox, as we see in Figure 17.2.
These are activated by applying the click primitive. This is easily done with the mouse:
the user points the pointer over the control, and clicks to toggle the state of the box.
This simple control is perfectly designed for the mouse. But it is terribly designed
for pen input, since a click is very hard to perform with the pen, for the reasons we
described above.

Instead of click, a pen-based UI might employ cross as a primitive. What we
mean by this is that the user would slide the tip of the pen over the control. It
wouldn’t matter where the stroke were initiated, or where it ended, but if it passed-
over the control, it would toggle it. The users could stroke over the control, or they
could choose to draw a little check-mark, whatever they wanted. Figures 17.3 and
17.4 show what that might look like.

In addition to being easier to perform than a click, another advantage of a
crossing-based checkbox is that multiple boxes could be crossed with a single
stroke, as we see in Figure 17.4.

FIGURE 17.3

Hypothetical, crossing-based checkboxes: Stroking over them toggles their state. (1) the control.
(2) ink showing the path of the user’s pen stroke. (3) the checkbox shows the new state.

FIGURE 17.4

Crossing-based checkboxes: the user selects multiple boxes with a single stroke.

121Design Guidelines

The disadvantage of a crossing primitive is that it might have a high degree of
accidental detections if the user became a little sloppy (Chapter 20: false positives).
An alternative would be an escape primitive, where the stroke must initiate within
the bounds of the object, but end outside it. Or an entry primitive, where the stroke
must initiate outside and terminate within the object. Each would have pros and
cons, which you would need to evaluate. Once a decision was made on the primi-
tives, it could then be extended to the controls. It is obvious how a radio button or
button might work under any of these schemes. Of course, which controls you cre-
ate depends more on the applications and context of use of your system. But they
will all be composed of the primitives you build for your hardware. A critical mis-
take made by the designers of pen-based interfaces was starting with the controls,
instead of with the primitives. As soon as they missed replacing the click, there
really was no hope that they would build a for-pen user interface.

Hope of a for-pen user interface is not lost. An excellent design exercise was
conducted by a group of researchers at the University of Maryland. Crossy was a
drawing program, designed for use with a pen, which had all of its primitives
replaced by crossing. It is a source of inspiration for how to define new primitives,
and then design controls using those primitives.

DESIGN GUIDELINES
The unfortunate truth is that a definitive set of touch primitives has yet to be
designed. A few have been seen on a bunch of systems: pinching to zoom in and
out, sliding the finger up and down to scroll. Continuing to evolve these will be
the task of designers of touch-based platforms and applications. There is a tendency
with touch and gesture systems to believe that more actions can “naturally” be pro-
moted to primitives. This seems intuitive, since we have such a large vocabulary
of primitives when interacting with objects and with one another—we don’t just
point at ideas on a page, we say them, while using pointing gestures to aid in con-
versation. As we alluded to in Chapter 2 and will discuss in more detail in Chapter
30, the set of primitive actions which we all perform without prompting is incred-
ibly small. Ask 10 people what the gesture should be for “turn that box red,” and
you’ll get anywhere from 5 to 10 different gestures. The take-away, of course, is that
you will always need to teach any new primitives and higher-order commands you
introduce. How this is done is covered in great detail in Chapter 19, applying the
principal of scaffolding we discussed in Chapter 12.

Overlap Primitive Sets for Novices and Experts
There is a tendency to optimize for quick learning. This can be accomplished by,
among other things, having a very small set of primitives. This approach, of course,
optimizes for novices and neglects the opportunity for users to learn and become
experts. There is a lesson to be learned from the WIMP GUI, which has a rather

122 CHAPTER 17  New Primitives

large set of primitives for both mouse and keyboard. For the mouse, there are click,
double-click, right-click (function-click for the Mac folks), scroll, and of course
point. For the keyboard, these are roughly every key on the keyboard, with some
combinations in the form of accelerator keys (e.g., Apple1C to copy, CTRL1V to
paste). The beauty of this system is that the mouse and keyboard primitives actu-
ally co-exist entirely, without interference. A user could drive both Windows 7 and
Mac-OSX using only a keyboard or a mouse. The keyboard primitives (aside from
text entry) exist as a set exclusively for the benefit of expert users. The beauty
of their design is in how well these systems co-exist, and how well the users are
supported in starting out with the mouse, and then gradually learning the more
advanced primitives of the keyboard. As we describe in detail in Chapter 19, this is
one of the few areas where the Windows UI unquestionably is better designed than
OSX. Users of either operating system would be well served to use the Windows
treatment of overlapping primitives as a study in how this can be done well, and
consider how you might do so in your touch applications.

How Many is the Right Number of Primitives?
A critical issue to consider is the number of primitives. This is an area of poten-
tial trade-off of expert vs. novice use. If your system has very few primitives, they
can be learned more quickly. If your system has a large number of primitives, it
may take longer to learn them, but an expert can perform a single primitive more
quickly than using primitives in combination. An obvious example of this trade-off is
the scroll wheel added to the mouse, or two-finger scrolling on modern trackpads:
in the olden days, “scroll” was not a primitive, it was enabled by controls that could
be manipulated using point and click primitives (the scroll bar). But someone rec-
ognized that promoting that logical action to a primitive would enable faster expert
use – now scrolling is as easy as pointing (to the window to be scrolled) and sliding
the wheel or two fingers on the trackpad. The disadvantage is obvious: novices have
more to learn. There is no hard and fast rule as to which is the right number. An oft
misapplied number in design circles is the capacity of working memory (5–9 items).
Since primitives are stored in long-term memory, this value does not apply.

Constructing and Evaluating Primitives
Another disadvantage of the mouse’s scroll primitive vs. using point and click to
manipulate a scroll bar is that it’s harder to follow what someone else is doing when
they use the scroll wheel while you are looking at their screen, since you lose the
added information of seeing which end of the scroll bar they are pointing towards
before they click and the window starts to scroll. This is an example of something
that probably cameup (or should have) when hardware manufacturers and soft-
ware designers were evaluating the scroll primitive. As a general methodology for
designing and evaluating primitives, we have found great success in a two-pronged
approach.

123Design Guidelines

When engineers construct something, we have observed that they tend to like to
work bottom-up. A bottom-up approach focuses on answering three questions: What
can the hardware reliably detect? What can the users do in a physically comfortable
way? What can the users understand and learn? In contrast, a top-down approach
tends to be favored by designers. This approach also seeks to answer three questions:
What will interaction with the overall system look like? What are the contexts of use
and usage scenarios? What is the unifying theme to the interaction? Where we found
great success after several false starts was in actually evaluating all of these at the
same time, rather than favoring one approach over the other. This is because each
tends to look out for pitfalls in the other. For example, designers tend to overlook
the strict realities of the hardware, and engineers tend to drive towards experiences
which optimize efficiency over a properly scaffolded experience. As we will discuss
in more detail in Chapter 31, a multi-disciplinary team observing a Rapid-Iterative Test
and Evaluation methodology has the best chance of creating a great set of primitives.

There are few hard and fast rules when it comes to primitive design, but those
that we have found are enumerated below. Most of the chapters of this book have
some element of good primitive design.

Must
l	 Take into account what the hardware is good at. Your primitives must be

sensed reliably.

l	 Take into account what your hardware uniquely supports, and consider expand-
ing your primitives to include these elements. This will help you to avoid generic
design which does not differentiate your platform.

l	 Take into account the overarching questions: What does the user need to
be able to do, and what do you want the expert user’s behavior to look like?
Building-out a few different elements of your design (or applications on your
platform) will lead naturally to selecting primitives from the overlapping sets.

Should
l	 Avoid questions like “what feels natural to me?” As with any other element of a

user experience, the designer is far from a typical user.

l	 Follow the RITE method, outlined in Chapter 31, to iterate on your primitives.

l	 Follow a simultaneous bottom-up and top-down design process. Chapters 3–12
focus on how to aid the top-down designer, while the remaining chapters focus
on how to aid bottom-up design, or guide your process.

l	 Consider carefully the size of your set of primitives, and avoid erring by having
too few, placing an upper-bound on performance, or having too many without
a scaffolded (Chapter 12) self-revealing gesture language (Chapter 19).

124 CHAPTER 17  New Primitives

Could
l	 An excellent approach to supporting both novices and experts is to have over-

lapping sets of primitives, one better suited to experts, one catering to novices.
The lessons of Chapters 11 and 12 demonstrate how to start small and expand
your set outwards.

SUMMARY
Primitives make up the basic language of your interaction. If you are building atop
a platform, some of those primitives may have been defined already, but there is no
rule that you must use them. In truth, most of the UI toolkits and platforms designed
for touch either contain only a very small set of primitives, or they have the wrong
ones. Free yourself to consider an even lower level of interaction than is typical
in creating an application for the GUI. Because touch and gestural input is in its
infancy, you have little other choice.

VOICES FROM THE FIELD: UI AS LANGUAGE
Kay Hofmeester
A user interface is the communication medium between human and computer. It requires a
language in order for us to communicate our intent to computers. Touch is an enabler which
requires a new language, framing input into the system. A computer replies using a language
consisting of visuals and audio.

The touch language has gestures and compound manipulations. Gestures can be compared to
phrases, compound gestures resemble sentences. For instance: Finger down can mean “this item.”
Tap (finger down and up) can mean “open this item.” The system plays its part in the conversation:
When the finger touches the screen, it should immediately react, telling the user it has registered the
touch. Then it should highlight the item the finger is touching, confirming the selection. When the
finger is lifted it should present an animation to indicate the item is being opened.

Users often try to use interface language conventions they know from systems they used
previously when they encounter a new language. An example of the set of conventions that users
will apply to touch languages is the GUI language of Windows/Icons/Menus/Pointer. The touch
interface has to make clear that it refers to a different language. Our research has uncovered that
to learn the new language, it is more effective to provide opportunities to use the new language
than to teach it. Once open to learning, the user is likely to overcompensate for learning the new
language. This means trying to apply the new rules and rejecting the old rules. We can make use
of this state of learning by making exploration of the system and its language safe and rewarding.

Biography
Kay Hofmeester is User Experience Lead on the Microsoft Windows team, working on
input languages for the next generation of Microsoft Windows. Kay previously managed
the Surface design team and worked on Windows Phone. Before joining Microsoft,
Kay was Creative Director at Agency.com and Design Manager for long-term European
design research projects, focusing on future communication technologies. Previously
he worked as Director of Interactive Design at a music e-commerce company and at
Philips Design.

125Further Reading

FURTHER READING
Apitz, G., & Guimbretière, F. 2004. CrossY: a crossing-based drawing application. In Proceedings

of the 17th Annual ACM Symposium on User interface Software and Technology (Santa Fe,
NM, USA, October 24–27, 2004). UIST ‘04. ACM, New York, NY, 3-12. DOI http://doi.acm
.org/10.1145/1029632.1029635

The Crossy project from the University of Maryland provides an example application build with a
different primitive, cross, far better suited to pen input than click and point. Consider it as a case
study in the creation of new primitives, in both bottom-up (crossing is better then clicking for a
pen) and top-down (what should expert use of a pen-based drawing program look like?).

http://www.doi.acm.org/10.1145/1029632.1029635
http://www.doi.acm.org/10.1145/1029632.1029635

127

CHAPTER

18The Anatomy of a Gesture

Anatomy is destiny.
—Sigmund Freud

DESCRIPTION
According to Wu and his co-authors, a gesture consists of three stages (Figure 18.1).
Registration is the moment that the type of action is set. Next is continuation,
which adjusts the parameters of the gesture. Last comes termination, which is
when the gesture ends. For the engineers, a gesture can be thought of as a function
call: The user selects the function at the registration phase and specifies the param-
eters of the function during the continuation phase, and the function is executed at
the termination phase (Table 18.1). In most touch systems, these phases correspond
roughly to physical changes.

FIGURE 18.1

The three stages of gestural input and the physical actions that lead to them on a pen or touch
system. OOR is “out of range” of the input device.

http://dx.doi.org/

128 CHAPTER 18  The Anatomy of a Gesture

APPLICATION TO NUI
To draw from an example you should now be familiar with, consider the two-finger
diverge (“pinch”) gesture that has come to mean zoom in or zoom out. This model
of gestures allows for an abstract examination of the gesture language, as shown
in Table 18.1. As we will see, multi-touch input provides significant advantages to
gesture design. By deeply understanding a model for how gestures are designed, we
will be better equipped to build not just individual gestures, but a set of gestures
that are both consistent and error-free.

LESSONS FROM THE PAST: AMBIGUITY
There is a temptation among designers to try to make every registration and con-
tinuation action the same: put a single finger down on a piece of content and move
it on the screen. While this might make for a simple UI, it severely limits the set of
possible gestures and can lead to ambiguity. Let’s build up a theoretical gesture lan-
guage, beginning with a possible delete gesture: To delete something, we’ll flick it
to the left side of the screen (Table 18.2).

Two things are immediately apparent. The first is that there is no continuation
phase of this gesture—the system doesn’t know it’s a flick to the left until the user
has flicked, and there is no next step. This isn’t surprising, since the delete com-
mand has no parameters—there isn’t more than one possible way to delete some-
thing. The second striking thing is that the registration requires two steps. First, the
user places her hand on an element, then she flicks to the left.

Requiring two steps to register a gesture is problematic. First, it increases the
probability of an error, since the user must remember multiple steps. Second, error
probability is also increased if the second step has too small a space relative to other
gestures (e.g., if flicking in another direction leads to another action—or worse, if sim-
ply moving something, rather than flicking, is a gesture). Third, it requires an explicit
mechanism to transition between registration and continuation phases: if flick right
is “resize,” how does the user then specify the size? Either it’s a separate gesture,
requiring a modal interface, or the user will keep her hand on the screen and require

Table 18.1  Registration, continuation, termination

Registration Continuation Termination

Place two fingers on
a piece of content.

Move the fingers around on the surface of
the device: The changes in the length, center
position, and orientation of the line segment
connecting these points are applied 1:1 to
scale (both height and width), center position,
and orientation of the content.

Lift the fingers from the
surface of the device.

129Lessons from the Past: Ambiguity

a mechanism to say “I am now done registering; I would like to start the continua-
tion phase.” Last, the system cannot respond to the user’s gesture in a meaningful way
until the registration step is complete, and so this prolongs this feedback.

Let’s consider a system that implements just four gestures: one for manipulation of
an object (grab and move it), along with three for system actions (rename, copy, delete)
using flick gestures (Table 18.3). We can see the flow of a user’s contact in Figure 18.2.
When the user first puts down his finger, the system doesn’t know which of these four
gestures the user will be doing, so it’s in the state labeled “<ambiguous>.” Once the
user starts to move his finger around the table in a particular speed and direction (“flick
left” vs. “flick right”) or pattern (“slide” vs. “question mark”), the system can resolve that
ambiguity, and the gesture moves into the registration phase.

Table 18.2  Stages of our theoretical delete flicking gesture

Registration Continuation Termination

1 Place finger on an item.
2 Flick to the left.

None Lift the finger from the surface of
the device.

Table 18.3  Stages of various theoretical gestures, plus the manipulation processor’s
one-finger move gesture

Gesture
Name

Logical Action Registration Continuation Termination

Rename Enter the system into
“rename” mode (the
user then types the
new name with the
keyboard).

1 Place finger on
an item.
2 Flick the finger
down and to the
right.

None Lift the finger
from the
surface of the
device.

Copy Create a copy of
a file or object,
immediately adjacent
to the original.

1 Place finger on an
item.
2 Flick the finger up
and to the left.

None Lift the finger
from the
surface of the
device.

Delete Delete a file or
element.

1 Place finger on
an item.
2 Flick the finger
up and to the right.

None Lift the finger
from the
surface of the
device.

Move Change the visual
position of an object
within its container.

1 Place finger on
an item.
2 Move the finger
slowly enough to
not register as a
flick.

Move the finger around
the surface of the device.
Changes in the position
of the finger are applied
1:1 as changes to the
position of the object.

Lift the finger
from the
surface of the
device.

130 CHAPTER 18  The Anatomy of a Gesture

Let’s look first at how the system classifies the gestures: If the finger moves fast
enough, it is a “flick,” and the system goes into rename, copy, or delete mode based
on the direction. Consider now what happens for the few frames of input while the
system is testing to see if the user is executing a flick. Since it doesn’t yet know that
the user is not intending to simply move the object quickly, there is ambiguity with
the “move object” gesture. The simplest approach is for the system to assume that
each gesture is a “move” until it knows better. Consider the interaction sequence
in Figure 18.3. Because, for the first few frames, the user’s intention is unclear, the
system designers have a choice. Figure 18.3 represents one option: Assume that the
“move” gesture is being performed until another gesture is registered after analyz-
ing a few frames of input. This is good, because the user gets immediate feedback.
It’s bad, however, because the feedback is wrong: the system is showing the feed-
back for the “move” gesture, but the user is actually performing a “rename” flick;
the recognizer just hasn’t tripped yet. The system has to undo the “move” at the
time of registration of rename, and we get an ugly popping effect. This problem can
be avoided by providing no response until the user’s action is clear. This would cor-
rect the bad feedback in the “rename” case, but consider the consequence for the
“move” case (Figure 18.4).

FIGURE 18.2

States of a hand gesture, up to and including the end of the registration phase. The continuation
and termination phases are not shown.

131Lessons from the Past: Ambiguity

Obviously, this too is a problem: The system does not provide the user with any
feedback at all until it is certain that the user is not performing a flick. The problem is
ambiguity: because we have overloaded one-finger sliding with a large number of possi-
ble gestures, the recognizer can’t tell us quickly enough which one is being performed.

Solving Ambiguity
The goal, ultimately, is to avoid the time during which the user’s intention is ambigu-
ous. Aside from all of the reasons outlined above, this ambiguity also creates another
bad situation in designing the recognizer: deciding quickly the recognizer should pick
out a “flick” from a “move”? The user has put her finger down, and it has started
moving—how soon does the recognizer click over to delete mode, versus waiting to
give the user a chance to do something else? The sooner it makes the decision, the

FIGURE 18.3

Interaction of a “rename” gesture. 1: user places finger on the object; 2: user has slid finger, with
the object following along; 3: the “rename” gesture has registered, so the object pops back to its
original location.

FIGURE 18.4

Interaction of a “move” gesture in a thresholded system. 1: user places finger on an object; 2:
user slides finger along surface (the object does not move because the “flick” threshold is known
to have not been met); 3: the system is confident that this is not a flick, so the object jumps to
catch up to the user’s finger.

132 CHAPTER 18  The Anatomy of a Gesture

more likely there will be errors, since less data are available to make the right deci-
sion. The later it decides, the longer the user will get ambiguous, or worse, incorrect
feedback. It’s just a bad situation all around.

The solution is to tie the registration event to the finger-down event: As soon
as the hand comes down on the display, the gesture is registered. The movement
of the contacts on the display is used only for the continuation phase of the ges-
ture (i.e., specifying the parameter). The problem, of course, is that we have a large
number of operations that we might want to perform, but now a more limited num-
ber of possible gestures.

Multi-touch gives us a solution. By allowing us to move registration up to the
moment of contact, we can explode the set of possible gestures, but without
increasing the possibility of error. We do this by tying the registration to the num-
ber of fingers. Consider as an example two gestures from the iPhone gesture lan-
guage: move and zoom (Table 18.4).

Applying the same type of diagram we used above, we see two detached trees
(Figure 18.5).

The beauty of a multi-touch system is immediately apparent: The gestures are dis-
ambiguated not only by the movement of the contacts on the device, but also by the
posture of the hand (in this case, how many fingers are touching). In so doing, we
significantly reduce the possibility of accidentally tripping into the wrong gesture.
There is no chance that the user will accidentally move when he intends to zoom—
the number of fingers immediately tells the system which mode to go into, without
any of the problems described above.

In addition to posture-based registration, we can also carefully expand the set
of gestures for any one posture, so long as that set is easily and quickly disambigu-
ated. Consider again the iPhone and the set of gestures supported by its lists: scroll,
delete, and activate (Table 18.5).

Table 18.4  Two gestures from the iPhone gesture language: move and zoom

Gesture
Name

Logical Action Registration Continuation Termination

Move Change the
viewport onto
an on-screen
list.

Place one
finger on an
item.

Move the finger around the surface
of the device. Changes in the position
of the finger are applied 1:1 as
changes to the position of the item.

Lift the finger
from the
surface of the
device.

Zoom Enlarge an
object.

Place two
fingers on an
item.

Move the fingers around on the
surface of the device. The changes
in the length, center position, and
orientation of the line segment
connecting these points are
applied 1:1 to scale (both height
and width), center position, and
orientation of the content.

Lift the fingers
from the
surface of the
device.

133Lessons from the Past: Ambiguity

FIGURE 18.5

The this language has no branching, because the number of fingers on the device at the time
of registration disambiguates the gesture a lack of branching means that registration is always
happening at the earliest-possible phase.

Table 18.5  The iPhone set of gestures supported by its lists: scroll, delete, and activate

Gesture Name Logical Action Registration Continuation Termination

Scroll Change the
viewport of the
list.

1 Place one finger
on a list item.
2 Move the finger in
a straight line up or
down.

Move the finger around
on the surface of the
device. Changes in the y
position of the finger are
applied 1:1 as changes
to the position of the
viewport. Changes in the
x position are ignored.

Lift the finger
from the
surface of the
device.

Delete Show the
delete button
for an item in
a list.

1 Place a finger on
an item.
2 Move the finger in
a straight line to the
right or left.

None Lift the finger
from the
surface of the
device.

Activate Select the
item in the list
and activate
it (e.g., “open
this e-mail”).

1 Place a finger on
an item.
2 Without moving
the finger, lift it from
the surface of the
device.

None None

134 CHAPTER 18  The Anatomy of a Gesture

FIGURE 18.6

The anatomy of the iOS list gestures: When the finger is placed on the list, the mode is
ambiguous. If the user slides parallel to the list, it scrolls. If the user slides horizontally, a “delete”
button pops up. Differentiating gestures by direction is more reliable than doing it by speed, as is
done in Windows.

This particular set does not take advantage of the posture-based disambigua-
tion, although it could—there’s no reason the makers of the iPhone couldn’t have
included a “zoom” gesture to enlarge individual list items, since placing two fingers
on an item does not create ambiguity. What this approach does do, however, is
reduce ambiguity in another way.

Note the improvement in the design of the “delete” and “scroll” gestures over
the “flick” gestures we described above. In the previous example, flicking was reg-
istered after a certain time and distance. This is not so for the delete/scroll/activate
decision: Because only direction matters, this decision can be made by the recog-
nizer almost immediately, obviating the need for either lag or false feedback. If the
user slides to the right even a little bit, it’s a delete. If the user slides the list up or
down, it’s a scroll. If the user doesn’t slide at all, it’s an activate (Figure 18.6).

The key to unambiguous gesture design is to get the user through the registra-
tion step as quickly as possible. The faster this happens, the faster the system can
give appropriate feedback, and the less likely the system will be to get the gesture
wrong.

135Summary

DESIGN GUIDELINES
Must

l	 Minimize the number of steps the user must take before in order to register the
gesture mode.

l	 Minimize overlap in the initial action—whatever action the user does first, make
sure that as small a subset of your gestures as possible uses that same first action.

l	 Minimize the load required to transition between registration and continuation
phases. It should be immediately clear to the user how to specify the command
she wants to execute.

l	 Provide clear feedback for the user at each step, ensuring she understands
when she has transitioned from registration to continuation, and how to termi-
nate the gesture.

Should
l	 Map registration to the moment the user makes contact with the display. Thus,

the location of the contact and its posture will determine which function will
happen—after that, all movement simply adjusts the details of that function.

l	 Map termination to the moment the user breaks contact with the display. In so
doing, you will be sure that there is always a clear moment where the user says
“I’m done with this gesture.”

Could
l	 Take this to a logical extreme, and register only based on the number of fingers.

This approach is called a “chording gesture,” similar to playing a piano.

SUMMARY
Gesture registration is perhaps the most important step to design. Overloading reg-
istration with possibly ambiguous or difficult to distinguish physical actions, such
as flick and move, will create a system fraught with errors and without feedback.
Two elements of gesture design can be used to overcome this. First, multi-touch
input allows a broader range of possible initial postures, complicating the registra-
tion step. From this complication, however, we see an explosion of possibilities that
allow us to separate out the gestures, so that each initial posture can map onto only
one possible action or small set of actions. Second, when multiple gestures use the
same posture, carefully designing them to reduce overlap of registration actions will
reduce errors.

137

CHAPTER

19Properties of a Gesture
Language

Personality is an unbroken series of successful gestures.
—F. Scott Fitzgerald

DESCRIPTION
A gesture language is a communication system. Its language depends on its fun-
damental clarity (each gesture is well-defined) and its overall coherence (the ges-
tures make sense together). We can apply genetic epistemology of cognition to
any gestural system. In doing so we are saying that a well-developed and easy-to-
learn system will be one that operates logically in a way that is analogous to human
reasoning.

Specifically, we apply Piaget’s concept of the INRC group. The developmental
stage of formal operations is characterized by the following four properties:

l	 Identity (I)
l	 Negation (N)
l	 Reciprocal (R)
l	 Commutative (identity of groups) (C)

In mathematics, identity means that an element is unchanged in a binary opera-
tion, for example, adding zero to a number, or multiplying a number by 1. Similarly,
in cognition, an identity operation leaves the element unchanged. For example, if I
change the shape of a lump of clay, its mass is still the same. In contrast, the nega-
tion of a number results in zero. In a sense, the number is “undone,” becomes noth-
ing. In cognition, negation is equivalent to “not,” for example, “that is not true.”
Negating a lump of clay is a little harder to imagine, but imagine the clay being dis-
solved in water—it is negated. The negation operation may be reversible; for exam-
ple, if I let the water evaporate, then the clay is left as a precipitate. In contrast to
negation, the mathematical reciprocal is the inverse. For example, the reciprocal of
4 is 1/4 or 0.25. Reciprocal is different from negation in that a reciprocal results in
identity (4  ¼  1), while a negation results in zero (4  0  0). A direct physical

http://dx.doi.org/

138 CHAPTER 19  Properties of a Gesture Language

equivalent to reciprocal is harder to imagine. However, if we think of two physical
dimensions it becomes easier. If you pour a liquid from a short container into a tall
container a young child may believe there is “more” liquid. However, when chil-
dren reach the stage of “formal operations” they “conserve” the volume of a liquid.
In effect, they are treating two dimensions (the horizontal and vertical) as reciprocal
to each other and thus can conserve the volume.

Commutative means that the sequence of operations does not matter. Addition
is commutative; so is multiplication. However, when combined, the order of opera-
tion matters, that is, which operation is done when makes a difference in the result.
The order of operations is assumed (multiplication first) or controlled with paren-
theses in the expression. Considering cognition, some operations are commutative;
for example, suppose you reshape an object, divide it, recombine it, and shape it
back to its original form. Regardless of order, the beginning and end state are
equivalent.

APPLICATION TO NUI
By analogy, the INRC group in a gesture system means the following:

l	 Identity: when I perform equivalent actions, the system reliably does an equiva-
lent action. To the user, it appears invariant.

l	 Negation: when I start an action, I can return to the previous state by doing the
opposite action. To the user, the system appears forgiving.

l	 Reciprocal: there are actions that return some aspect of the system to its origi-
nal state. This is not simple negation (i.e., undo); instead, it is a different action
that returns an object to its previous state.

l	 Commutative: I can change the order of operations and the result is the same.
Moving an object and then resizing it is the same as resizing the object and
then moving it.

LESSONS FROM THE PAST
The greatest challenge in building a NUI system is making it learnable. To make a
NUI learnable, it’s best to consider the entire family of required operations (i.e.,
what you need to do in the entire system) and devise a system of gestures to sup-
port that set. A pitfall to avoid is trying to use a few gestures to support a large and
complex set of operations. In our research for Surface we found that users would
often try to complete a wide variety of tasks by tapping. Initially, tapping appears
to show great promise because it’s familiar to users, and even more deeply, it has
a clear identity (i.e., it is seen as a unitary act). However, there are many problems
with that approach. For example what is the negation of tap? In other words, how

139Lessons from the Past

do you “untap”? What is the reciprocal of a tap? The GUI approach of treating tap as
a simple selection depending on context (i.e., tap on the title bar and the window
is selected and may pop to the top; tap inside a document and the document is
selected and the cursor is inserted at the location of the tap) also leads users to try
tapping on a NUI.

This is a transfer of learning problem. The tapping in the GUI was originally con-
ceived as an accelerator. That is, you learned the system and then you learned that
you could use tapping to perform the most common action in a given situation as
a kind of default accelerator. Hence transfer of this kind of learning from the GUI
makes NUIs seem hard and inconsistent. Rather than encouraging transfer from the
GUI to the NUI, we should discourage such transfer. While this may seem counter-
intuitive, it makes sense. Consider the fact that many users familiar with command
systems suggested making GUIs work like command systems so they could apply
their knowledge. That would have been a serious mistake. Instead, the GUI altered
some of the most fundamental aspects of command systems. For example, the syn-
tax of most command systems was verb (command) followed by object. The GUI
required selection followed by menu choice, in effect object then operation. This
allowed the GUI to avoid “modes.”

Let’s consider how each of Piaget’s four concepts applies to the NUI.

Identity
The starting point for a NUI is objects. These objects have identity and can be
manipulated in various ways. But a NUI always begins with objects. Notice that this
is not the starting point of a classic GUI, even though it may seem so. In fact, tradi-
tional GUIs begin with two fundamental constructs—objects (content) and appli-
cations (programs). This initial “schizophrenia” is hidden from most users. They
simply “open” content and an application is “automagically” activated. However,
there are breakdowns. When you are given content, for example, an email attach-
ment, you may or may not have an associated application. The result is that you
can’t perform the typical action of opening the content. You get an error message
and an invitation to associate this content with some application that exists on your
computer, or you can find the appropriate application on the web. This is a per-
fectly adequate workaround. But it plunges novice (nontechnical) users into one of
the most subtle aspects of the GUI—the distinction between content (objects/data)
and applications (programs). It also requires the user to search for the “right” appli-
cation to render and operate the content. That choice is not simple. Some appli-
cations will render content as gibberish. Other applications will render content
but not provide the assumed operation. This challenge of matching application to
content puts the user in an analogous position to the customer who goes to the
hardware store knowing what she needs to do but not knowing which tool to ask
for. In a well-designed NUI this would never happen. No content exits without the
“right” application to render and operate on it. This implies that applications, as
such, are invisible to the user. And they should be. Making both application and

140 CHAPTER 19  Properties of a Gesture Language

objects visible is just a source of unnecessary confusion. Making applications visible
to users is nonsense. New content should be created by simply accessing blank con-
tent. Applications that don’t create content in the traditional sense, such as games,
are accessible by dragging their environments from a holding area to the main work
area. For example, to play chess you drag out a chess board (Figure 19.1).

Negation
Negation refers to an operation on objects and therefore is necessarily more com-
plex than identity. To illustrate it in a NUI, we will consider opening an object that
has been iconified and is located in a set of iconified objects. A tap could do that,
and it’s what most people try. But how would we get it back into the set of iconi-
fied objects? That is how would we “negate” our action. We could tap it again, but
that might seem odd, particularly if there were multiple objects in the workspace or
if we had performed other operations on those objects. Also, since a tap is actually
a combination of three primitives (press down, very short hold, release), it’s hard
to undo mid-step. Instead, in the NUI, we could try dragging it out of the set. As we
drag it past the boundary of the set of iconified objects, it enlarges slightly. If we
continue hold down our finger and move it, the object tracks our movement. When
we stop moving our finger, the object stays where we left it. When we let go of
the object, it is ready to be acted upon—it has been moved out of a set of iconified
objects, has increased in size by some reasonable amount, and is positioned where
we lifted our finger. Notice that this suggests a way that we can easily “negate” this
action. As the user begins to drag out the object and it enlarges, she is “notified”
that it will be open if she releases it. Or she can move it back into the set, and as she
does so, it will shrink. Releasing it in its original position returns it to an iconified
state in the set of icons, that is, it is a negation (Figure 19.2).

FIGURE 19.1

Identity—an object does not change.

141Lessons from the Past

Reciprocal
Reciprocal is slightly more complex than negation. It is a different operation,
and while it returns an object to a previous state, it may also have other effects.
Let’s consider a reciprocal operation in a hypothetical NUI system. If we stretch
an object in the horizontal plane, we both increase its size and change its aspect
ratio. If we then stretch the object vertically, we increase its size again, but if we
stretch it the “right” amount we restore the original aspect ratio. Thus one aspect of
the object—the “distortion” of a solely horizontal stretch—is undone, but another
aspect of the object—its absolute width—is unchanged. A difference between nega-
tion and reciprocal action is that negation cancels an operation in progress, while
a reciprocal action undoes an action after it is completed but may (or may not)
leave some of the consequences of the action unchanged. The action that embod-
ies a reciprocal operation may bear no physical resemblance to the original action
that embodied a given operation. The action of vertical stretching is different from
the action of horizontal stretching. In contrast, the negation operation is embod-
ied by the opposite physical action. This illustrates one of the challenges of talking
(and thinking) about a NUI. We often fail to distinguish our action from the system
operation. We talk about “drag,” but drag means that an object is “attached” to the
movement of our finger. Drag is a system operation; movement is a physical action
(Figure 19.3).

Commutative
Ironically, this most complex interaction is simple to understand. It simply means that
the order of physical actions does not matter—the system will perform the same oper-
ations regardless of order. This is a common characteristic of many operations on sev-
eral different types of systems: command, GUI, and NUI. For the most part, this is true
of system operations. It is also true of many operations within an object. However,

FIGURE 19.2

Reversibility—an operation can be reversed with no effect (the example I use is dragging an
object out of a group and then returning it).

142 CHAPTER 19  Properties of a Gesture Language

there may be exceptions. These exceptions depend on the object. For example, if we
consider a chess game an object, then many operations may not be commutative since
the data of the object (i.e., the game) changes over time. Moving your queen to a par-
ticular square may put her in danger of capture (or not), depending on the state of the
board. Once she is captured, she’s no longer available to be moved (Figure 19.4).

One of the greatest challenges of developing a NUI system is making the system
coherent for the user, while making it relatively easy to master quickly. One way
to do that is to consider these INRC characteristics. Consideration of the system as
a whole in terms of these principles is particularly important if you are designing a
system that does not draw on a well-understood and practiced set of conventions.
For example, a game of checkers could be readily implemented using a NUI because
it is familiar and the systematic rules of the action and interaction are well-defined.
Building an entirely new system is much more difficult and is likely to be hard to
learn if these principles are not considered in the early stages.

NUI designers should proceed cautiously. The initial questions to be considered
are the following:

l	 What are the fundamental objects in the system?
l	 What operations do users expect to perform on these objects?
l	 What actions are most likely to occur to perform these operations?
l	 How are each of these actions reversed while they are being performed?
l	 What actions have reciprocal effects and what are these reciprocal effects?
l	 Which actions and operations are commutative?

This design of the entire system will require both feedback and feedforward.
Affordances help the user to map the available actions to system operations. These
operations and action pairs need to be systematically refined in user testing. It is par-
ticularly important to test them in combination.

FIGURE 19.3

Negation—an operation undoes another operation—(the example I use is resizing past a limit
results in the object being returned to the group; we could also illustrate this by stretching an
object changes it aspect ratio and then a second stretch in the “other” direction restores the
aspect ratio but does not undo/reverse the first stretch).

143Design Guidelines

DESIGN GUIDELINES
Must

l	 As a starting point, all actions must follow the principles of identity, negation,
inversion, and commutativity. Applying these principles helps make any system
learnable and safe. Below, each principle is restated in terms of a touch NUI.

l	 Identity: Objects are permanent unless explicitly deleted, and an action on a
given object in a given context always yields the same result.

l	 Negation: Any action can be reversed midcourse, and that reversal will return
the system to its previous state.

l	 Reciprocal: Once an action is completed, a side effect of that action can be
undone by another action. For example, horizontal stretching of a graphic
object will change its width and its aspect ratio. A subsequent vertical

FIGURE 19.4

Commutativity—order of operations does not matter.

144 CHAPTER 19  Properties of a Gesture Language

stretching of the same object will not undo the change in width but will
restore the aspect ratio.

l	 Commutativity: Actions can be performed in any order and yield the same
result.

Should
l	 Design teams should provide affordances and feedback, so that exploratory

actions from the users will be elicited and can then be shaped by the system.

l	 The set of actions should constitute a coherent system before shortcuts are
designed.

l	 The team should begin design with a clean slate and not draw from past
metaphors.

Could
l	 Depicting the entire system, and the corresponding system states and feed-

back, can help a team see the overall system and help avoid inconsistencies.

SUMMARY
We have applied some of the concepts from Piaget’s concepts of genetic episto-
mology to the design of a touch-based system. It seems logical to apply some well-
accepted concepts from developmental psychology to understanding a system. In
part, any NUI presents a new world for the user. It is natural, in the sense that it
supports skilled and fluid practice and does not require that objects and operations
be formalized into abstractions. However, that “naturalness” does not ensure that
it is easy to learn, nor does it depend on transfer of habits from GUI experience.
Instead, it presents a new, albeit more interesting and promising, set of challenges
to the designer and the user.

FURTHER READING
Piaget’s work created a new foundation for understanding the development of thinking in children. His over

50 years of writing are encyclopedic, profound, and insightful. These writings also show an evolution
in thinking and are not always easily understood or interpreted. We have presented our interpretation—
based in large part on the book Genetic Epistemology, translated by Elenore Duckworth and published
by Norton in 1971. J. H. Flavell provides an excellent introduction to Piaget in The Developmental
Psychology of Jean Piaget, Van Nostrand, 1963. A second excellent volume, Piaget and Knowledge by
Hans Furth, was published by Prentice Hall in 1969.

145

CHAPTER

20Self-Revealing Gestures

The best way to teach somebody something is to have them think they’re learning
something else.

—Prof. Randy Pausch, “The Last Lecture”

DESCRIPTION
Self-revealing gestures are a philosophy for design of gestural interfaces that pos-
its that the only way to see a behavior in your users is to induce it (afford it, for
the Gibsonians among us). Users are presented with an interface to which their
response is gestural input. This approach contradicts some designers’ apparent
assumption that a gesture is some kind of “shortcut” that is performed in some
ephemeral layer hovering above the user interface. In reality, a successful develop-
ment of a gestural system requires the development of a gestural user interface.
Objects are shown on the screen to which the user reacts, instead of somehow intu-
iting their performance. The trick, of course, is to not overload the user with UI
“chrome” that overly complicates the UI, but rather to afford as many suitable ges-
tures as possible with a minimum of extra on-screen graphics. To the user, she is
simply operating your UI, when in reality, she is learning a gesture language.

APPLICATION TO NUI
A common immediate reaction to a high-bandwidth, multi-finger input device is
to imagine it as a gestural input device. Those of us in the business of multi-touch
interface design are often confronted with comparisons between our interfaces
and the big-screen version of MIT student John Underkoffler’s Ph.D. work: Minority
Report. The comparison is fun, but it certainly creates a challenge—how do we
design an interface that is as high-bandwidth as has been promised by John and oth-
ers, but that users are able to immediately walk up to and use? The approach taken
by many designers is to try to map a system’s functionality onto the set of gestures

http://dx.doi.org/

146 CHAPTER 20  Self-Revealing Gestures

a user is likely to find intuitive. Of course, the problem with such an approach is
immediately apparent: The complexity and vocabulary of the input language are
bounded by your least imaginative user.

At a more fundamental level, the goal of providing natural and intuitive gestures
that are simultaneously complex and rich seems to contain an inherent contradic-
tion. How can something complex be intuitive? What we have found in practice
is that to achieve our goal of an interface that feels natural to its users, we must
actually provide them with a UI. The trick, of course, is to do so in a way that is
minimally intrusive and that makes it seem to the user as if she is “discovering” the
gestures. To this, we will apply many of our design principles, the most salient of
which we described in Chapter 10: we will scaffold our user experience.

LESSONS FROM THE PAST: CONTROL VS. ALT HOTKEYS
For a little fun (and perhaps some disillusionment), make an appointment at your
local Genius Bar at an Apple store and bring along your OSX-based computer.
When it’s your turn, kindly ask the genius, “I can’t figure out how to use this
computer—can you please show me the basics?” As they reach for the trackpad,
gently correct them—”Sorry, I meant how to use it using only the keyboard.”

It is interesting how devotees to one OS or the other can take on a religious zeal
about their choice. In truth, there are very few instances where someone with HCI
training can point to a clear winner in the Mac OS vs. Windows debate. Different
elements of each have merit. But one instance where Windows is the clear, indis-
putable winner is in the way hotkeys are designed and taught. In this lesson from
the past, we will examine the Windows approach to hotkeys and take away a clear
understanding of the merits of the approach.

Many users never notice that, in Microsoft Windows, there are two completely
redundant hotkey languages. These languages can be broadly categorized as the Control
and Alt languages. It is from comparing and contrasting these two hotkey languages that
we draw some of the most important lessons necessary for self-revealing gestures.

Control Hotkeys and the Gulf of Competence
We consider first the most-used hotkey language: the Control language. Although the
particular hotkeys are not the same on all operating systems, the notion of the con-
trol hotkeys is standard across many operating systems: we assign some modifier key
(Function, Control, Apple, Windows), putting the rest of the keyboard into a mode.
The user then presses a second (and possibly third) key to execute a function. Many
users know a couple of these hotkeys—such as CTRL  X to cut and CTRL  C to
copy (APPLE  X on a Mac, but recall we’re talking about Windows here). What inter-
ests us is how a user learns this key combination.

Control hotkeys generally rely on two mechanisms to allow users to learn
them. First, the keyboard keys assigned to their functions are often lexically

147Lessons from the Past: Control vs. Alt Hotkeys

intuitive: CTRL  P  print, CTRL  S  save, and so on. Figure 20.1 shows some
hotkeys from the Notepad application.

Relying on intuitiveness works well for a small number of keys, but it breaks
down quickly—if CTRL  C means “copy,” then what is the hotkey for “center”?
This is roughly parallel to the naïve designer’s notion of gesture mappings: we
map the physical action to some property in its function (if we want “help,” draw
a question mark!). However, we quickly learn that this approach does not scale:
Frequently used functions may overlap (consider “copy” and “cut”). This gives rise
to shortcuts such as CTRL  H for “find next” (CTRL  R is “center”, in case you
were racking your brain). We also note the use of function keys as CTRL short-
cuts—even though they don’t actually use the CTRL key, they are still notionally
CTRL shortcuts, as we shall see.

Because intuitive mappings can take us only so far, the menu provides the sec-
ond mechanism for hotkey learning: the functions in the menu system are labeled
with their hotkey invocation. This approach is a reasonable one. We provide users
with an in-place help system labeling functions with a more efficient means of exe-
cuting them. However, a sophisticated designer must ask themselves, “What does
the transition from novice to expert look like?”

In the case of Control shortcuts, the novice-to-expert transition requires a leap
on the part of the user: we ask her to first learn the application using the mouse,
pointing at menus and selecting functions spatially. To become a power user, she
must then make the conscious decision to stop using the menu system and begin
to use hotkeys. When the user makes this decision, it will at first come at the cost
of a loss of efficiency, as she moves from being an expert in one system, the mouse-
based menus, to being a novice in the hotkey system. We term this cost the gulf of
competence. The graph in Figure 20.3 demonstrates this idea—at the time that the
user tries to switch from mouse to keyboard, she slows down.

FIGURE 20.1

The Control hotkeys are shown in the File menu in Notepad. Note that the key choices are
selected to be intuitive (by matching the first letter of the function name).

148 CHAPTER 20  Self-Revealing Gestures

The gulf of competence is easily anticipated by the user: He may know that hot-
keys are more efficient, but they will take time to learn. We are asking a busy user
to take the time to learn the interface. The gulf of competence is a chasm too far for
most users. Only a small set ever progress beyond the most basic control hotkeys,
forever doomed to the inefficient world of the WIMP. Thankfully, we have a hotkey
system that is far easier to learn: the Alt hotkeys.

FIGURE 20.3

The learning curve of Control hotkeys: The user first learns to use the system with the mouse.
They he must consciously decide to stop using the mouse and begin to use shortcut keys. This
decision comes at a cost in efficiency as he begins to learn an all-new system. This cost is the
“gulf of competence.”

FIGURE 20.2

The Control hotkeys are shown in the Edit menu in Notepad. The first-letter mapping is lost in
favor of physical convenience (CTRL  V for paste) or name collisions (F3 for find next—yes, F3
is a Control hotkey under our definition, which will be more clear soon).

149Lessons from the Past: Control vs. Alt Hotkeys

Alt Hotkeys and the Seamless Novice-to-Expert Transition
While the Control hotkeys rely on either intuition or the willingness to jump the
gulf of competence, a far more learnable hotkey system exists in parallel that
addresses both of these limitations: the Alt hotkey system. Like any hotkey system,
the Alt approach modes the keyboard to provide a hotkey. Unlike the Control keys,
however, on-screen graphics guide the user in performing the key combination
(Figure 20.4).

Because the Alt hotkeys guide the novice user, there is no need for the user to
make an input device change: He doesn’t need to navigate menus first with the
mouse, then switch to using the keyboard once he has memorized the hotkeys. Nor
do we rely on user intuition to help them to “guess” Alt hotkeys.

The Alt hotkey system is a self-revealing interface, because there is no need for
a help system or instructions—the actions are simply shown and followed. Better
yet, the physical actions of the user are the same as the physical actions of an expert
user—both press ALT  F  O to open a file. There is no gulf of competence. In
applying this lesson to the gesture space, there is a highly relevant piece of work
that should be examined in detail: marking menus.

Marking Menus: The First Self-Revealing Gestures
Marking “menu” is a bit of misnomer—it’s not actually a menu system at all. In
truth, the marking menu is a system for teaching pen gestures. For those not
familiar with them, marking menus are intended to allow users to make gestural
“marks” in a pen-based system. The pattern of these marks corresponds to a par-
ticular function. For example, the gesture shown in Figure 20.5 (right) leads to an
“undo” command. The system does not rely at all on making the marks intuitive.
Instead, marking menus provide a hierarchical menu system (left in Figure 20.5).
Users navigate this menu system by drawing through the selections with the pen.

FIGURE 20.4

A novice Alt hotkey user’s actions are exactly the same as an expert’s: no gulf of competence.
On-screen graphics guide the novice user in performing an Alt hotkey operation. Left: The menu
system. Center: The user has pressed “Alt.” Right: The user has pressed “F” to select the menu.

150 CHAPTER 20  Self-Revealing Gestures

As they become more experienced, users do not rely on visual feedback, and even-
tually transition to interacting with the system through gestures, and not through
the menu. It’s important to understand that there is no difference in the software
between novice and expert “modes”—the user simply uses the system faster and
faster. Because there is a 200 ms delay between the time the pen comes down and
when the menu becomes visible, novices declare themselves by doing exactly what
comes naturally—hesitating.

Just like the Alt menu system, the physical actions of the novice user are physi-
cally identical to those of the expert. There is no gulf of competence, because there
is no point where the user must change modalities and throw away all his prior
learning. So how can we apply this to multi-touch gestures?

DESIGN GUIDELINES
Self-Revealing Multi-Touch Gestures
So it seems someone else has already done some heavy lifting regarding the creation
of a self-revealing gesture system. Why not use that system and call it a day? Well, if
we were willing to have users behave with their fingers the way they do with a pen,
we’d be done. But the promise of multi-touch is more than a single finger drawing
single lines on the screen. For all of the reasons we described in Chapter 18 and

FIGURE 20.5

The marking menu system (left) teaches users to make pen-based gestures (right).

151Design Guidelines

throughout the book, we need to do better. We must consider: what would a multi-
touch self-revealing gesture system look like?

First, we should recall from Chapter 18 the stages of a gesture. A gesture consists
of three stages: registration, which sets the type of gesture to be performed, con-
tinuation, which adjusts the parameters of the gesture, and termination, which is
when the gesture ends (Figure 20.6).

In the case of pen marks, registration is the moment the pen hits the tablet, con-
tinuation happens as the user makes the marks for the menu, and termination occurs
when the user lifts the pen off the tablet. Seems simple enough. When working with
a pen, the registration action is always the same: the pen comes down on the tablet.
The marking menu system kicks in at this point, and guides the user’s continuation of
the gesture—and that’s it. The trick in applying this technique to a multi-touch system
is that the registration action varies: it’s almost always the hand coming down on the
screen, but the posture of that hand is what registers the gesture. On Microsoft Surface,
these postures can be any configuration of the hand. Putting a hand down in a Vulcan
salute could map to a different function than putting down three fingertips, which is
different again from a closed fist. On less-enabled hardware, such as that supported by
Windows 7 or the iOS, the variation is limited to some combination of the relative posi-
tion of multiple fingertip positions. Chapter 25 describes this in detail. Nonetheless, the
problem is the same. We now need to provide a self-revealing mechanism to afford a
particular initial posture for the gesture, because this initial posture is the registration
action that modes the rest of the gesture. Those marking menu guys had it easy, eh?

But wait—it gets even trickier.
In the case of marking menus, the on-screen affordance was needed only for the

continuation phase, and it would pop up around the pen following registration. On
a multi-touch system, because we have to give affordances before the registration
phase, we need to tell the user which posture to go into before the user touches the
screen. With nearly all of the multi-touch hardware on the market today, the hand is
out of range right up until it touches the screen (see Chapter 15).

FIGURE 20.6

The three stages of gestural input and the physical actions that lead to them on a pen or touch
system, as we described in Chapter 18. OOR is “out of range” of the input device.

152 CHAPTER 20  Self-Revealing Gestures

One must consider affording each of the registration and continuation phases (the
termination phase, which is almost always lifting the hand from the device, more or
less affords itself). As you will learn in Chapter 27, there is no such thing as a “natural
gesture,” with the exception of moving things from one place to another, or “direct
manipulation.” A successful self-revealing gesture system will utilize this to afford
actions, similar to the marking menu. Users of marking menus don’t need tutorials. It
was obvious: select things by tracing over them with the pen. Similarly, physical meta-
phors (things that slide, things that can be dragged, rolled, etc.) all afford movement.

An approach we advocate is one that we have dubbed “just-in-time chrome,”
which we present publicly here for the first time. To understand it, let’s begin by
proposing a gesture to stretch a photo in one of its dimensions. It goes like this:
touch the photo with one hand, then touch the border of the photo with a second
hand, stretch the hands apart, and lift (Figure 20.7).

This gesture is almost impossible to guess (we tested it with dozens of users). Many
had experience enlarging pictures on iPhones, but the idea that they needed to put

FIGURE 20.7

A theoretical gesture sequence for resizing a photo: Touch with one finger, then add another at
the border, pull them apart, and lift.

153Design Guidelines

their fingers in a particular location to stretch the photo horizontally wasn’t guessed.
But if we add just-in-time chrome, the sequence looks like that shown in Figure 20.8.

This gesture, in contrast, is incredibly easy to guess. The participants in our
experiments got it right away, almost every time.

Just-in-time chrome begins with the assumption that there is an action that the user
can perform that will tell the system where and what she wants to engage with. In the
case above, the UI is shown only when the user touches the photo. To avoid the gulf
of competence, the gesture must therefore also begin with a single finger touching
the photo. The basic intuition here is to let the user touch the screen to tell us where
it is she wants to perform the gesture. Next, show on-screen affordances for the avail-
able postures and their functions, and allow the user to register the gesture with a sec-
ond posture, in approximately the same place as the first. From there, have the user
perform manipulation gestures with the on-screen graphics, since, as we learned oh-
so-many paragraphs ago, manipulation gestures are the only ones that users can learn
to use quickly and are the only ones that we have found to be truly “natural.”

These affordances are obvious for the continuation phase, but less so for registra-
tion. To address registration affordances, we recommend using the hover state of

FIGURE 20.8

The same gesture sequence as above, this time with just-in-time chrome to help the user along.

154 CHAPTER 20  Self-Revealing Gestures

your hardware (see Chapter 15), if you’ve got one. If you don’t, then reserve a one-
finger tap as a “I need more information” gesture. Thanks to decades of mouse use,
this is the first action that users always take when they are trying to figure out what
to do. An example of this is shown in Figure 20.9.

Just-in-time chrome is just one method of making your gestural interface self-
revealing. The key is to consider affording registration actions as well as con-
tinuation actions. An alternative approach was investigated by Freeman and his
colleagues at Microsoft: putting a layer of help on top of your application to afford
both registration and continuation. While we don’t particularly advocate for this
approach in general, it is worth considering for certain applications.

Must
l	 Never rely on an action being “natural” (a.k.a. “guessable”). It’s not.

l	 The only exception to the above is “direct manipulation”—users can and will
guess to grab something and move it somewhere else.

l	 For gestures, present objects on-screen to which users respond.

l	 Utilize direct manipulation as an on-screen affordance in all cases. Want to
afford the user putting their hand down in a Vulcan salute? Put a Vulcan-salute
shaped button on the device for them to touch.

Should
l	 Re-use similar visual affordances to afford the same gestures over and over

again. This is commonly known as a “user interface.”

l	 Consider affording both registration and continuation phases of the gesture.
This is a “should” only because your gesture system may have only one registra-
tion action, such as landing a single finger on the device.

FIGURE 20.9

UI affordances are shown on tap. The user is told to put down one finger to resize the photo or
two fingers to scroll or zoom. Whatever mechanism you use, applying the principle of scaffolding
and the lessons of these earlier attempts at self-revealing user interfaces will lead you to far more
successful multi-touch and gesture UI’s.

155Summary

Could
l	 Use hover capabilities of your input device (if present) to preview available

actions before the user actually comes in contact with the display.

l	 Think about teaching more gestures over time. Consider how to layer your
user interface in the same way game designers layer functionality over time.

SUMMARY
The biggest problem with making your gestures self-revealing is getting over the
idea that gestures are somehow natural or intuitive. We have seen over and over
again that users cannot and will not guess your gesture language. To overcome this,
put UI affordances on the screen to which they can react.

UNNATURAL USER INTERFACES
Gord Kurtenbach
Autodesk

I often give a lecture entitled “un-natural user interfaces.” This particular title is a setup to make
people think I’m going to speak about examples of bad, “unnatural” user interfaces and how
we need to design them to be more natural and intuitive. However, the surprise and hopefully
entertaining twist of the lecture is that I claim there is no such thing as natural or intuitive
interfaces. Effective user interface design is very carefully controlled skill transfer—we design
interfaces so users can take their skills from one situation and re-apply them to a new situation.
The classic example is the computer desktop. Users who are new to computers transfer their
existing skills with the manipulation of real physical files and folders to the computer realm. It
can be argued that moving around physical files is “natural,” but that too is a learned skill—
remember playing with blocks as a child? Consider another more “unnatural” example: Suppose
we have software A, which new users find very difficult and unintuitive to learn, but it has been
learned and is used by a large population of users. Software B copies A’s interface style, hotkeys,
etc. The result is that users of A can easily learn to operate B because the interface is familiar. In
other words, they transfer their skills with A over to B. Learning software A from scratch did not
feel natural or intuitive, but once learned, transferring those skills makes learning B “natural and
intuitive.” Nice trick!

This chapter describes how this fundamental and powerful concept of skill transfer applies to
gesture input. Gesture input holds the potential of being vastly expressive, especially combined
with multi-touch. However, without some sort of mechanism to help users learn these complex
interactions, these interactions become as difficult as learning a sign language. The authors reveal
the secret to successful interface design with gestures: A mechanism must be provided so users
can easily learn the gesture set. To accomplish this, skill transfer is used in a powerful way. For
example, an interaction technique called “marking menus” is described, where a user’s skills
with a graphical menu can used to magically teach a vocabulary of arbitrary “zig-zag” gestures.
In similar fashion, with a method called “just-in-time chrome,” users’ skills with interpreting
feedback and direct manipulation transfer directly into a rich vocabulary of multi-touch gestures.

Understanding the concept of self-revealing gestures is absolutely critical for the successful
use of gestures in a user interface. Simply ask the following question for each gesture in your

156 CHAPTER 20  Self-Revealing Gestures

interface: How will the user learn it? Some gestures reveal
themselves because we see others use them, like the ubiquitous
“page-turn stroke” and “pinch-zoom.” However, to harness the
potential of richer, larger gesture sets the concepts introduced in
this chapter are paramount.

Author Biography
Dr. Gordon Kurtenbach is the Director of Research at Autodesk (www
.autodeskresearch.com), where he oversees a large range of research including
human-computer interaction, graphics and simulation, environment and ergonomics,
high-performance computing, and CAD for nanotechnology. Dr. Kurtenbach has
published numerous research papers and holds over 40 patents in the field of
human-computer interaction. His work on gesture-based interfaces, specifically
“marking menus,” has been highly influential in HCI research and practice. In 2005,
he received the UIST Lasting Impact Award for his early work on the fundamental
issues combining gestures and manipulation.

FURTHER READING
Grossman, T., Dragicevic, P., and Balakrishnan, R. Strategies for accelerating on-line learning of hotkeys,

Proceedings of CHI, 2007, 1591–1600. In this work, Grossman et al. study various methods for teaching
accelerator keys.

Kurtenbach, G. The Design and Evaluation of Marking Menus, Ph.D. Thesis. Gord Kurtenbach, working
with his advisor, Bill Buxton, at the University of Toronto, developed the marking menu. A series of pub-
lications describes the original concept, stages of learning, and how they can be integrated into interfaces.
While each was published separately, it is his Ph.D. thesis that describes them all together in great detail.

Freeman, D., Benko, H., Morris, M., and Wigdor, D. ShadowGuides: Visualizations for in-Situ Learning
of Multi-Touch and Whole-Hand Gestures, Proceedings of ACM Tabletop, 2009. In this work, Freeman
and his colleagues make two major contributions. The first is a set of representative gestures that spans
the space of possible gestural input to a surface-like device. The second is a teaching method they dub
“ShadowGuides,” for teaching gestures with on-screen affordances. In this chapter, we have emphasized
that UIs built in to the experience should afford gestures. ShadowGuides, in contrast, provide a visualiza-
tion that sits on top of the UI. While we don’t recommend this approach in general (it represents earlier
thinking in our work), it does nicely break down the idea of providing on-screen affordances for each of
the registration, continuation, and termination phases of the gestures they teach.

http://www.autodeskresearch.com
http://www.autodeskresearch.com

157

CHAPTER

21A Model of the Mode and
Flow of a Gesture System

I’m just preparing my impromptu remarks.
—Winston Churchill

DESCRIPTION
Building a gestural system requires the development and refinement of a language.
That language must be simple to understand, internally consistent, and predictable.
In previous chapters, we described the state model of input devices and the stages
of a gesture. Like Sir Winston’s “impromptu” remarks, the goal is, in essence, to not
feel designed. In this chapter, we describe a method of representing a gestural lan-
guage that combines these two ideas. We introduce the mode and flow model of
a gesture language. This model allows for both a quick glance at and a deep exami-
nation of a gesture language, enabling teams to formalize their language for better
coordination and iterative design. We were using this model in Chapter 18; here we
will define it and demonstrate its use to dissect and represent a gesture language.
Central to applying this model is the concept that gestures always put systems into
a mode, in the same sense that UI designers use the term. We saw this in Chapter
18: Once the registration action has been taken, the system is then in that mode for
subsequent actions. A simplification that allowed us to explain the concepts
in Chapter 18 was that once a system was in a particular mode, it could not be
changed—only terminated by lifting the fingers from the device. In this chapter, we
will expand on this and demonstrate how users can flow from one mode to another,
and how to use this tool to design those modes and flows.

APPLICATION TO NUI
As we described in our definiton of NUI in Chapter 2, the goal is to produce a sys-
tem that allows the user to feel like a natural. This is best achieved through deep,
rapid, iterative design of the system, as we will describe in Chapter 29. In order

http://dx.doi.org/

158 CHAPTER 21  A Model of the Mode and Flow of a Gesture System

to undergo such a process, a model of the thing being designed must exist. This
model can be used for specs, for brainstorming, and for formalization of the lan-
guage. In short, this model will enable the process and allow teams to speak with
sophistication about their language. Countless times, we have been asked to consult
on a gestural application or platform that just “wasn’t working”, because it seemed
confusing or inconsistent. Our first step is always to lead the designers to model
their language using this tool—as soon as this is done, the vast majority of problems
become immediately apparent to everyone in the room.

LESSONS FROM THE PAST
In order to explain our model of gestures, we will examine in detail the gestures
of the Safari browser on the iPhone. If you own an iPhone, iPad, or iPod touch, it
might be helpful to pull it out of your pocket and use it to follow along.

The Safari browser accomplishes something that’s actually quite impressive: It
allows both “point and click” gestures and manipulation gestures to coexist on the
same screen. The manipulation gestures on the device are highly refined, tweaked (it
is safe to assume) through significant iterative design. Applying our model to this ges-
ture language will allow us to uncover precisely how these subtleties were achieved.

Recall from Chapter 18 that gesture registration occurs when the system
has decided definitively which gesture the user has initiated. In that chapter, we
argued that this is best achieved with a minimum of ambiguity, which in turn is best
achieved by mapping different gestures to different numbers of fingers or other dif-
ferences in posture that can be immediately recognized by the system. The Safari
gesture language does just this. Figure 21.1 is a simple representation of the mode
and flow of the gestures on the browser.

FIGURE 21.1

A simplified mode and flow model of the Safari gesture language.

159Lessons from the Past

FIGURE 21.2

A more complete mode and flow model of the Safari gesture language.

From this model, we can see that the Safari browser has four gesture modes.
It is always idling, depressing, scrolling, or zooming. The way the user transitions
between these modes (the “flow”) is shown with the arrows. You can understand
this intuitively by following along with the sequence: open up a browser, and put
your finger down on it. Before you start scrolling, the viewer is “depressed.” In this
state, you have not yet told the system whether you are going to scroll or just lift
your finger back up. If you then start to slide your finger, you put the system into
scrolling mode. If you then add a second finger to the display, you put the system
into zooming mode, where you can enlarge or reduce the size of the content by
spreading your fingers apart or moving them together. When you lift your fingers off
the device, you put the canvas back into idle mode.

It’s worth noting that there is no way to flow from scrolling mode back into
idle—just stopping moving doesn’t do it. There’s a pretty good reason for this that
will make more sense in a moment.

If you play with this a bit more, you’ll realize that we made one simplification:
You can actually flow directly from idle or depressed into the zooming mode by
adding a second finger—you don’t need to first scroll the canvas before you zoom.
Figure 21.2 shows a slightly more accurate model.

160 CHAPTER 21  A Model of the Mode and Flow of a Gesture System

Each of the modes in the system maps onto an action the user might want to
perform. In the zooming state, the user is able to zoom in and out. In the scrolling
state, she can scroll the page. In the depressed state, she can push a button. In the
idle state, the system is waiting patiently for her to flow into another mode. It is
immediately obvious that you will need to carefully design the modes of your ges-
ture language. One of the beauties of the mode and flow model is that it makes it
equally apparent that you will need to design the flow of the language just as, if not
more, carefully than the modes.

Adding and Removing Flow Options
Looking at the above model, one might ask, “Why are there instances where there
is no arrow pointing from one mode to another?” For example, why is it that, once
in scrolling or zooming modes, the user can’t get back to depressed mode? This is
because the flow between modes is what generates events. The tap event, for exam-
ple, is used to press a button in a browser. Someone might naively describe tap-
ping as the following: “Putting your finger down on a control, then lifting it back
up again.” This is not an accurate description, however. In Safari, the tap event is
triggered only when the flow of input follows the sequence “A, B”—that is, the user
puts her finger down on the screen (neither moves it nor adds a second finger) and
then lifts it. It was probably explored at some point to allow also “A, I, G” to trigger
taps (that is, put down one finger, add a second finger, then lift both), or “H, G”
(that is, put down two fingers, lift two fingers) to generate two taps. But these were
disallowed. Why? We weren’t there, but one can imagine that it was because tap-
ping two different places at the same time would break a lot of websites, and send-
ing the two taps sequentially could cause concurrency problems.

This was an important design decision, one that the mode and flow makes it
immediately apparent must be made. Yet another example of the sophistication
of the language is that “A, C, D” does not generate a tap event. It could—the user
puts a finger down on a button, scrolls the page down a bit, then releases the
finger—so why shouldn’t it cause the button to activate? This was likely because
of a high false-positive rate: if the user slides her finger, she wants to scroll, not
activate a button. It also gives a handy mechanism for “canceling” if the user real-
izes she’s about to make a mistake—she puts her finger on the button, it can then
respond to show her what will happen, and she can then cancel by sliding her
finger around. This design illustrates an important principle of the NUI, providing
the user with both feedback about the current state and a way to cancel or com-
plete the operation.

Yet again, the mode and flow model makes it immediately apparent that this design
decision had to be made. As you develop your model, these design decisions become
apparent when you ask “Which flows through the model should generate events?”
You can enumerate all of the possible flows, and then ask “Does it make sense to have
this generate an event?” If the answer is “I don’t know,” then that’s a great question
for a RITE study (see Chapter 29 on that topic). If the answer is an immediate “Yes” or
“No,” then you should probably still do a RITE study on it (because you are definitely
not a typical user)—again, see the later chapter.

161Lessons from the Past

Splitting and Combining Modes
An additional step that should be taken when building your language is consider-
ing splitting and combining your modes. Combining modes effectively reduces the
number of modes, and most designers understand intuitively that this simplifies the
user’s task of understanding your system. What may be counterintuitive to some
designers is that adding modes by splitting existing ones can also improve and sim-
plify the user’s experience.

We can continue to dissect the Safari gesture language to reveal that even the
model shown in Figure 21.2 is still a simplification. To see what we mean, open a
web page and zoom in such that you could scroll vertically or horizontally. Now,
start to scroll the page vertically; then, without lifting your finger, slide it horizon-
tally. The page doesn’t scroll horizontally—it has locked in to a vertical scroll. The
same thing is true if you start out with a horizontal scroll; you can’t then switch to
vertical. The only way you can keep from locking into a particular axis is by starting
out the scroll with a diagonal movement, at which point, you can scroll vertically,
horizontally, or both at the same time, but you can’t then lock in to scrolling just
one or the other. We can model these subtleties with a mode and flow diagram. We
realize that, while similar, these aren’t three variations on the same mode—they are
three different modes! The mode that we have called scrolling is actually three dif-
ferent modes: scrolling X/Y, scrolling vertical, and scrolling horizontal (Figure 21.3).

FIGURE 21.3

The scrolling mode is actually three different modes. The rest of the model still applies, but is
omitted to simplify the figure.

162 CHAPTER 21  A Model of the Mode and Flow of a Gesture System

Why this is done in Safari is simple. Consider how a user holds the phone in her
hand and uses her thumb to scroll. When she starts out, the direction she wants is care-
fully mapped onto the movement of her thumb. As the motion continues, however, the
thumb begins to arc, simply because of the physiology of the hand (try it yourself and
watch the tip of your thumb—for further evidence, load a paint app onto the device
and try again; you’ll see the arc). By splitting scrolling into three different modes, the
system is able to lock in on the user’s intention and actually simplify the interaction.

So, the old adage that reducing modes leads to simplicity is not actually true in
detailed gestures. A great way to iterate on your gesture language is to consider
splitting or combining existing modes.

It’s interesting to note that in the above model there is no way to flow between any
of the three scrolling modes—the user has to lift her finger off the device and start over.
In truth, there is a very subtle difference in the Safari gesture language between the hori-
zontal scroll mode and vertical scroll mode: the user can flow from horizontal to vertical
if she does it quickly enough, but there is no way to flow from vertical to horizontal. So
the scrolling modes and flows actually looks like that shown in Figure 21.4.

FIGURE 21.4

Flow C.4 is an extremely subtle element of the Safari gesture language. That there is no
complementary flow between modes 3.1, 3.2, or 3.3 is noteworthy.

163Design Guidelines

Since the goal in having three different scroll modes is to better lock-in on user inten-
tion, it makes sense that there is no way to switch between them. How often will a user
really want to scroll in one direction and then the other? Certainly not as often as she’ll
want to do just one of the two, and so a trade-off was made in the design. The pres-
ence of flow C.4 (Figure 21.4) is likely the result of a subtlety of human dexterity: When
scrolling down with the thumb, the point actually moves a little to the side before it
moves down. Again, try loading a drawing app and viewing the trace for yourself.

The last design decision you will need to make will be to carefully tweak the
physical action that leads to each step in the flow—how exactly the user moves
between the modes.

Tweaking Flow Actions
We have seen that there is not one, but actually three scrolling modes in Safari.
At some point in the process, the exact physical action needed to enter any one
of them was tweaked, likely through rapid iterative design and evaluation (see
Chapter 29). While that method will help find the answer, let’s first understand
the question. In the case of scrolling in Safari, the question is: what movements
precisely differentiate diagonal, horizontal, and vertical scrolling?

It is well and good to say, “If the user’s finger is moving horizontally, flow is from
‘depressed’ into ‘scrolling horizontally’ mode.” Immediate follow-up questions would
arise, however: “How close to horizontal does the movement have to be?” and “What
angle exactly do we consider to be diagonal?” The difference between requiring abso-
lute horizontality and allowing a little bit of give will make the difference between a
gesture set that feels natural and one that is frustrating and finicky. Users aren’t able
to make a perfectly horizontal line with their thumb—so don’t make them. Exactly
how much give and take will exist in your language will be the final design decision
you need to make, and it will take extensive user testing to nail the right response. An
easy trap to fall into is to not bring in users and do testing. Because physical actions
are highly variant across users, and because every time the developer tries the system
they are training themselves to use it better, it is *essential* that fresh users be brought
in for each round of testing. We have met dozens of graduate students and developers
who have very cool gesture recognizers that only work for themselves!

DESIGN GUIDELINES
Effectively applying the mode and flow model of gestural interaction will simplify
your task of building an effective gesture language.

Must
l	 Model your system using the mode and flow model.

l	 Consider all flows through your system, and consider which should generate
events.

164 CHAPTER 21  A Model of the Mode and Flow of a Gesture System

l	 Consider the three design decisions we have described above: adding and
removing flow, splitting and combining gestures, and tweaking flow actions.

Should
l	 Carefully consider combining different modes to simplify the user’s task of

understanding your system.

l	 Carefully consider splitting an existing mode if it will help to better match user
intent.

l	 Carefully consider each step of flow in your system—does it make sense to
flow between these two modes? Is it likely to lead to errors?

l	 Spend time tweaking the physical actions required to flow between different
modes in your system.

Could
l	 Use the RITE method, described in Chapter 29, to adjust each of these issues.

SUMMARY
Designing a gesture language that feels natural is an incredibly difficult thing to do.
The mode and flow model of gesture languages will help you to do this better. The
three design issues we have outlined, adding and removing flow, splitting and com-
bining modes, and tweaking physical actions, require careful consideration, and this
model will help you to understand exactly what to ask. The answers come from the
lessons elsewhere in this book, in particular the RITE method of rapidly iterating,
testing, and evaluating different options.

167

CHAPTER

22
The dynamic element in my philosophy, taken as a whole, can be seen as an
obstinate and untiring battle against the spirit of abstraction.

—Gabriel Marcel

DESCRIPTION
The traditional mouse-based user interface, the WIMP (Windows Icons Menus
Pointers), has as perhaps its most essential component an abstraction of the logi-
cal target of user actions. This abstraction has gone by many names. The inven-
tors of the mouse, Engelbart and English, named it the bug, but later referred to
it as the telepointer. In Windows, it is the pointer. In OSX, it is the alternately the
pointer and the cursor. But by whatever name, it remains a focal point for user-
generated events in the system. A funny thing has happened with the pointer: a
kind of abstraction has grown-up around it, where a plethora of hardware can con-
trol it, and it is the movement of the pointer, rather than the hardware, to which
application designers create their experiences. In our experience, this has led to
widespread misunderstanding that the design of the GUI itself is abstract. It’s not. It
has been designed over more than 40 years of iteration to be highly optimized for a
particular piece of hardware.

On the Lenovo laptop sitting here on the desk in front of us, we can control the
position of the pointer using a trackpad, a thumb stick, and a touch screen. We also
happen to have a mouse plugged-in, as well as a trackball and a pen tablet (yeah,
we’re cool like that). Six input devices, each of which possessing uniquely differ-
ent physical characteristics, all drive the same experience: they move the mouse
pointer around the screen. A reasonable question to ask is, which of them is best
at controlling a WIMP interface? We may all have our own preferences, but put
them to the test, and the mouse will come out on top every time. It’s not a mys-
tery why that is: it’s because the people designing WIMP interfaces at PARC, Apple,
Microsoft, DEC, and elsewhere all were designing and optimizing their software for

Know Your Platform

168 CHAPTER 22  Know Your Platform

the mouse. Sure, each of these other devices has their place. Two finger scrolling
on a trackpad is pretty handy, and the pen tablet is a lot better for drawing. But the
mechanics of the WIMP, pointing and clicking, are designed for the mouse.

Give a smart group of folks the task of designing a user interface optimized
for different hardware, and they can do it. A highly influential paper by Apitz and
Guimbretière did just that: they created a set of controls entirely for the pen, to
support a drawing application. Obviously, the drawing part was already better
done with a pen than with a mouse—they redesigned the rest of the UI to be better
suited to the pen (***FURTHER READING***). The biggest challenge for a designer of
a NUI is to understand that the abstraction that WIMP GUI designers have been
operating under is a lie. The GUI is designed for the mouse. And your job will be
to design for other input devices. The goal of this chapter and the next few chap-
ters is to give you a more sophisticated understanding of the hardware that will be
available to you. There is not yet any equivalent of the pointer for touch computing
folks—you need to design your user interface specifically and without abstraction
for the hardware on which it will be running. This will be hard—but the tools of
this chapter will help you to do it.

In this chapter, we provide a framework to categorize various input and display
capabilities. In the subsequent chapters, we provide more details about specific ele-
ments of this framework. The goal is that you will begin to apply this framework in
one (or possibly both) of two ways. First, to have awareness of on which platforms
your designed software might be run. Second, to target your software to those plat-
forms, to create what is truly a Natural User Interface.

APPLICATION TO NUI
The WIMP interface has led to complacency among designers. Fundamental ele-
ments of interaction are the same everywhere—a single point, moving around the
screen, poking at controls and content. About this pointer, we know its location
(x and y), and the state of its buttons. That’s it. Input devices layered on top of the
WIMP are all reduced to this small amount of information—the stylus of a tablet,
standard resistive touch screens, trackballs, eye-trackers, voice-control, mice—all
are reduced by the WIMP to exactly the same data: x, y, and button state. It’s as if
all literature must be expressed in limmerick, or all calculus in dance. The result
is that all input devices, with their rich and divergent capabilities, are reduced to
emulating the mouse. Simply put, this emulation makes lives easier, because design-
ers of software need to design only for one input device, and all others are shoe-
horned into its capabilities. But the result is that controlling the WIMP with any
input device other than the mouse can be painful. Don’t believe us? Try using the a
voice control system to navigate your computer, and you will see very quickly that
you are essentially emulating the mouse using your voice. It is painful!

NUI is different in two ways. First, new technologies lend themselves to the
creation of a more natural user interface. These technologies are excited precisely

169Lessons from the Past

because they give us more information about the user’s state. Paradoxically to some,
this means that designing for them is much harder. A simple (x, y) coordinate is not
enough. While any sort of reduction might seem to make your software suited to
many different devices, it will fail to take full advantage of those technologies that
provide more information. The pressure of the stylus, the hovering distance of a
finger, the tone of a voice—all are fodder for creating designs that, to the user, feel
natural. This leads us to the second problem: by doing away with this reduction, we
expose ourselves to great difficulty: we no longer have a standard that we can use to
design one-size fits all applications.

In this chapter, we will learn two lessons. First, the danger of one-size fits all
design, and second, the various parameters which differentiate touch and gestural
input technologies now and for the forseeable future. How to design for those
parameters is the subject of subsequent chapters—here, we will concentrate on
understanding them.

LESSONS FROM THE PAST
Nintendo is a company known for taking risks in user interaction. Its latest console,
the Wii, has been a wild success, in part due to its leveraging of simple infrared cam-
eras and accelerometers to enable a magical user experience. The success of the Wii
has led many to forget several failed bets the company has made in the past with
innovative user interface technology. But it is in the long history of those failed bets
that we find a stellar example of the failure of a business, and its designers, to take
advantage of a cutting-edge input device. To those familiar with the history, it will
come as no suprise that we refer to the Nintendo Power Glove.

The Power Glove is worn by the user, and provides several degrees of freedom
of movement. Its position in three dimensions is tracked, as are its roll, pitch, and
yaw. Further, the degree to which each finger is “curled” is delivered to the game.
Its marketing promised to usher in a new era of interaction with games. Freed from
the tyranny of the controller, gamers would experience a magical world in which
simple, intuitive, natural gestures replaced clunky, artificial game controllers. If not
for the leather jacket and haircut on the gamer wearing the glove in its most famous
ad, one might be forgiven for mistaking it for a modern-day spot describing a con-
temporary product. The Power Glove, it turns out, was roughly two decades ahead
of its time.

The Power Glove was a total failure. While there were issues with the technol-
ogy, that is not where the device failed. The Wii has found success following almost
an identical technological path as the Power Glove—leveraging cutting-edge sensors
capable of transforming the way players interact with their games. A question worth
asking is: Why was the Wii a success, where the Power Glove was a failure?

One fundamental advantage the Wii has is that it was a new platform. Games
designed for the Wii are designed for interaction with the Wiimotes and other
specialized hardware. The Power Glove, in contrast, made the farcical attempt to

170 CHAPTER 22  Know Your Platform

enable control of old games, designed for the Nintendo controller. For the vast
majority of the user’s experience, using the Power Glove was essentially emulating
the controller they previously used to play their games. Designers of the experience
were retroactively disempowered, in that they had no opportunity to design, build,
or test their game designs for use with the Power Glove. Truly, it defies common
sense that a game well designed for a controller could ever be driven well with a
hand gestures. Reviewers and gamers alike agreed that the experience was terrible.

But it wasn’t because of the technology—it was because of how the technology
interacted with the software, and simply put, that this software communicated with
its user via an abstraction; in this case, not an x, y location, but rather the state of
the eight buttons of a classic Nintendo Entertainment System controller (UP, DOWN,
LEFT, RIGHT, B, A, SELECT, and START). Yes, all the magical input channels of the
power glove were reduced to emulating presses of eight buttons. Gaming companies
could have designed custom games for the Power Glove that took advantage of its
unique characteristics, but they didn’t. Why bother if they could just design for the
controller, and know that the glove could drive those games, too?

A key takeaway from this lesson is that the controller was functionally complete
for playing those games. The answer to the question “Name one thing you can do
with the power glove that you can’t with the controller” is—nothing! It is not in
producing new functionality that a new technology excels. Rather, it is in produc-
ing a new method of interaction.

Further, we learn from this experience that a “lowest common denominator,” in
this case, the data generated by the controller, cannot provide a natural user experi-
ence for a more capable input device. One must resist the urge to survey available
technologies, look for their common properties, and design for those experiences.
Instead, one must design software experience in a tailored way, considering the
unique physical characteristics of the technologies.

This lesson teaches an important design lesson, but it is just as important as a
business lesson: natural user interfaces can only be achieved through tight coupling
of the experience to their hardware.

DESIGN GUIDELINES
When creating NUI experiences, a thoughtful designer must consider carefully how
to create experiences for the technologies that will be driving that experience. Even
though our focus is on touch and gestural interfaces, the designer will still encoun-
ter a wide array of sensing and display capabilities. Figure 22.1 shows the data avail-
able to users of some of the most popular touch technologies.

To understand the scope of such a problem, let’s consider an example. Let’s
say that a team develops an application on a 30” display running at 1280  720
(a 720 p HD monitor) to sell on the web. Let’s further say that the team follows the
rule of making touch targets at least 7 mm (which translates to 13 pixels on their
display) wide. So far, so good. Consider now what happens if a customer installs

171Design Guidelines

the application on a 13” laptop running at 1280  1024. All of a sudden, what was a
perfectly reasonable button is now only 2.6 mm wide, and the application is totally
unusable. This doesn’t matter with traditional input devices—the scale of the device
doesn’t matter, because the physical mouse remains a comfortable size. It does mat-
ter with touch, where the size of a fingertip never scales. Designing well for new
technologies requires actually designing for those technologies.

To help understand the differences among touch and gestural devices, we will
review a list of parameters that differentiate them. In subsequent chapters, we will
dive into deeper detail about many of these parameters and how to design software
for each of the capabilities described.

Capability vs. Quality
It should be clearly noted here that this chapter is about capabilities, not quality.
Technologies can be differentiated along many lines. This chapter describes a set of
enablers of experiences and scenarios. As such, issues of reliability, sensitivity, or
other such measures of quality are not discussed. Instead, we will focus on sensing
technologies in terms of the user experiences they enable.

Demonstrated vs. As-Yet-Undemonstrated
We will now examine several input capabilities, and discuss how they have been
demonstrated to be useful in enabling certain types of interaction. For each, we will
describe what the capabilities are and mention a few uses that have been shown
to enhance a user’s experience. Keep in mind, while reading this, that the major-
ity of uses of these sensing capabilities have yet to be demonstrated. As we have
seen with the development of the modern mouse-based GUI, some of the best
innovations, such as tooltips and numeric spinners, took decades to arrive on the
scene. Thus, you should regard these descriptions not as prescriptive, but rather as
inspirational.

FIGURE 22.1

Various commercial devices’ sensing of the same contact. (a) The user’s hand on the device,
(b) Microsoft Surface, (c) Circle Twelve DiamondTouch shows activation strength for each
individual antenna, (d) a standard Windows 7 touch device provides a touch point and a
bounding rectangle, (e) an Apple touch device, like the iPad, provides only an x/y point.

172 CHAPTER 22  Know Your Platform

Sensed Objects
The types of objects that can be sensed by a surface computer have perhaps the
most immediately apparent effect on the user’s experience. We define three types
of objects, and various sensing capabilities associated with each. It is important to
distinguish body parts, such as fingers (“touch”), from physical objects. Physical
objects provide a means to communicate with the system. The objects can act as
tools—especially a stylus, which we differentiate from other objects.

Touch
Touch is the number of contact points detected and tracked by the device. The number
of simultaneous contacts has a significant effect on two elements: the gestures any one
user can perform and the number of simultaneous users of the system (Figure 22.2).

Objects
The system is able to detect objects. These objects can be used as tools in the
system or can serve as a means of perceived communication between the display
and another device.

Stylus
The system is able to detect a stylus and distinguish it from any other type of con-
tact. We distinguish between a stylus and other types of objects for two reasons:
first, because a large number of commercially available surface computing devices
are able to sense a stylus, but not other objects, and second, a significant field of
research has been conducted focusing on interaction with a stylus, differentiating
it from other objects. A stylus is more precise, allows for written input, and can be
useful in distinguishing input by type (e.g., touches manipulate; a stylus writes).

Sensed Information
The ideal surface computer can track various physical properties of objects and
body parts and their interaction with the screen. Here, we review the high-level cat-
egories of this information. We will provide more detail of each of the types in sub-
sequent chapters.

Contact Differentiation
Systems with contact differentiation are able to identify the sources of contacts,
so that a touch from one user is distinguished from the touch of another, as is the
touch of an index finger from a ring finger. This is probably the most important of
all parameters—if, for example, a system cannot differentiate between users, one
cannot use toolbars in an application!

Hover
The system is able to detect contacts before they touch the display and is able to
distinguish between hovering and touching contacts. This allows for improvements
to user accuracy in selection and can be used to enable “previews” of actions that
will occur at the moment of touch (e.g., “tool tips”).

173Design Guidelines

FIGURE 22.2

Our taxonomy of surface computing sensing properties.

174 CHAPTER 22  Know Your Platform

Tracking Data
How much information about each contact is detected by the system. Examples of
different levels of this taxonomy are shown in Figure 22.1. Whether we know only
an x/y coordinate or we also know shape, orientation, etc., dramatically affects the
gestures that can be included in your application.

Touch Pressure
The system is able to detect the force with which the contact is touching the dis-
play. This data can be used to differentiate input events (e.g., touching lightly
equates to drawing a rectangle, touching more forcefully to placing the rectangle
down on the canvas), as well as to vary continuous input (e.g., control the size of
the brush in a paint application).

Display Properties
Properties of the display will ultimately lead to significant differences in your design.

Orientation
Will your device be a horizontal computer, requiring UI elements to be capable of
facing each side? A vertical screen, mounted on a wall? Mobile, so that the UI needs
to be used while being held? These considerations have significant impact on the
design of various elements of your system.

Size
The size of the display of your target device is especially important for touch com-
puting. Applications written for devices that fit in one hand will clearly require dif-
ferent design than those on wall-sized computers, since target distances on a large
display might mean having to walk across the room. Further, information shown on
a large display might not be visible all at once by any one user.

DPI
The resolution of the display, the actual number of pixels, is relevant but less impor-
tant than the density of those dots on the screen, usually measured in dots per inch
(DPI). This is, of course, distinct from display “resolution,” which is a measure of
how many pixels the display has—a 20” HD TV has the same resolution as a 60” HD
TV but has very different DPI. In the example that opened the chapter, we saw the
implications of an application being moved from a large TV-sized display to a higher-
DPI laptop display—the application became unusable. We learn from this that appli-
cations’ visual style and behavior must be differentiated based on the pixel density
of the display, rather than simply by the number of pixels.

Direct vs. Indirect Touch
Researchers have described a variety of techniques that differentiate direct touch,
in which touch and display devices are overlaid, from indirect touch, in which they
are separated. The experience of touching a device without a display should be dif-
ferentiated from that when the content is shown in a display beneath the finger.

175Summary

While there are a number of reasons for this, the fat finger problem described ear-
lier in this book (Chapter 13) is a clear example.

Summing Up
From this list of capabilities, we see that, plainly, not all touch devices are created
equal. It is incredibly important that one avoid a “lowest common denominator”
approach to the design of software. While tempting, this will, every time, fail to
achieve a natural user interface. Instead, one must tailor the design to the input and
display capabilities that the user will actually be experiencing.

Must
l	 Determine which sensing capabilities and display properties your application

will have access to, and design for those capabilities.

Should
l	 Consider which elements of this list are not actually relevant to the experience

that you are creating. Object interaction, for example, might not be suitable to
your particular needs. Consider, however, how your application will co-exist
with others that will be running on an object-enabled platform. This is true of
all other capabilities. While there are old-fashioned controllers available for the
Wii, a user is much less likely to buy a game that requires one. The Wii has a
set of de facto standards for games running on its platform. Consider these on
the platform for which you are building.

Could
l	 Design your application first, taking note of these capability requirements.

Then, find the platform that will enable its use. This approach is obviously a
more dangerous one, since you risk not taking advantage of capabilities on the
ultimately chosen platform and also limiting the market potential of your appli-
cation. It is an approach sometimes favored by designers who wish to avoid
the confines of limited thinking imposed by considering hardware capabili-
ties too early. As should now be abundantly clear, this is not the approach we
favor.

SUMMARY
Good design is specific, not generic. The various parameters we have described in
this chapter delineate the platforms on which your software may be run. Consider
them carefully, taking into account the lessons described in the subsequent chapters,
in which we describe how to design for and take advantage of these capabilities.

176 CHAPTER 22  Know Your Platform

RISING ABOVE: THE LOWEST COMMON DENOMINATOR
Johnny Chung Lee
Microsoft Applied Sciences

It is often appealing, from a business and engineering standpoint, to reuse a working system as
much as possible. It saves on development costs and minimizes risk. In many cases it is arguably
the most efficient way to accomplish a task with the smallest amount of resources. As a result,
there should be no surprise that there exists a push toward making as many components be
as general purpose as possible, and a push toward becoming device- and platform-agnostic in
order to maximize return on investment as well as maintain flexibility to unforeseen changes in
the technology market. Specialization to a particular platform in software systems is frequently
viewed as a bad thing, and in some cases is highly discouraged. The end result of practicing this
particular philosophy is the “lowest common denominator” approach to design.

Since specialized capabilities are not guaranteed to exist on every target device, developers and
designers are often encouraged to focus the intersection subset of target capabilities. As a result, there
should be no surprise as to why the majority of consumer products today have a “lowest common
denominator” feel, especially when it comes to the user interface design. They may be functional, but
inelegant and undesirable. Yet, there have been several clear examples of highly successful well-known
products that have demonstrated that when the user experience is a core differentiator for the product,
specialization in the interface design isn’t just one possible option, it is the only sensible option.

Every form of input technology, be it a mouse, a keyboard, a touchscreen, a stylus, speech
input, a motion sensor, or a steering wheel, can be thought of as a different tool in a workshop.
Each has their strengths and weaknesses. Each is ideal for some tasks and absurd for others. If
you tried to use a screwdriver to cut a piece of wood and a hacksaw to tighten some screws, your
colleagues might express some concern for your mental well-being. The same degree of concern
should be expressed when witnessing someone attempting to use a touch system to emulate
a mouse, or trying to use gesture input to operate a pull-down menu. Trying to design a user
interface that works with multiple forms of input technology may achieve the minimum bar of
functionality, but it will not provide a good user experience.

As advances in silicon fabrication continue to provide a reduction in the costs of computing,
it becomes increasingly economical to manufacture highly specialized devices that serve smaller
and smaller needs. The concept of owning a single general-purpose computer is diminishing. For
some time now, we have been transitioning to owning a multitude of specialized computers, such
as a laptop, mobile phone, video game system, television, music player, digital camera, navigation
system, car keys, and our credit/debit cards. This diversity will only increase, and with it the way
we interact with them, and with that, the types of interface technology we will use and the form
factors of the device. The process of designing user interfaces moving forward must embrace
specialization to specific devices. Continuing to hold on to an engineering tradition of reuse and
generalization across multiple forms of interface technology is a guaranteed way to provide an
underwhelming user experience and a guaranteed way to get left behind.

Author Biography
Johnny Chung Lee has a Ph.D. in human-computer interaction from Carnegie Mellon
University and is a researcher at Microsoft Applied Sciences. His research work spans
a variety of topics including projection technology, multi-touch input, augmented
reality, brain-computer interfaces, and haptics. Lee is best known for his video
tutorials on using the Nintendo Wii remote to create low-cost whiteboards and virtual
reality displays, which have garnered over 15 million views. He was a key contributor
to the tracking algorithms behind Xbox Kinect. In 2008, he was named to MIT
Technology Review’s prestigious list of top researchers under the age of 35.

177

CHAPTER

23The Fundamentals Have
to Work

The woods are lovely, dark, and deep,
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.

—Robert Frost, “Stopping by the Woods on a Snowy Evening”

DESCRIPTION
Every new interface paradigm begins with a promise to its potential users. The
promise may morph from the time that it is in the minds of the visionaries who first
proposed the paradigm to when it’s adopted by those who instantiate that vision in
products. The promise as understood by the user and as understood by the designer
may be different. Finally, the promise itself is a source of risk for every product team
that adopts it. The world is full of products and systems that never delivered on
their promise and are long forgotten or cursed by their unfortunate users.

APPLICATION TO NUI
The NUI promises much. The promises are subject to misinterpretation. A team
developing a NUI may incorrectly assume that a new input medium (touch, voice,
gesture) makes their product natural. Rightfully, the user will expect more from an
interface that calls itself natural.

LESSONS FROM THE PAST
The graphical user interface (GUI) is a good example of a promise that morphed
over time. Doug Englebart is often called the inventor of the mouse, and he is, but
the mouse was just a means to an end. The end, the goal of Engelbart’s vision, was

http://dx.doi.org/

178 CHAPTER 23  The Fundamentals Have to Work

to augment the human intellect. Over time and in the hands of others, the promise
of GUI morphed into making tasks easier and broadening the market for comput-
ing technology. In many ways this latter promise was realized. Fifty-odd years since
Englebart’s original paper, a vast domain of new capabilities has been extended to
a wide range of people. Today, typical users compose typeset documents, create
complex financial models, and access vast quantities of information (and misinfor-
mation) with relative ease. While cumbersome interfaces stubbornly persist and are
constantly created anew, the ubiquity of technology is a testament to a lowering of
barriers (i.e., the increased ease of use) for these new capabilities. The question
of whether the individual’s, the collective, or the average “intellect” is augmented
by this growth in technology is highly debatable, and we have no desire to address
that question in this book.

The de facto promise of the GUI, to make tasks using a computer easier, raises
the bar for every product that adopts a GUI. The users expect more than functional-
ity: They expect that the promised functionality will be easy to use. For example,
introducing a new mark-up language with the promise of some new exciting fea-
tures, then expecting that to create a new mass market product would be absurd to
the point of delusional. The promise of easier access to capabilities is already thor-
oughly infused in users’ expectations as they use a product. Parts of the product
that fail to meet these expectations will go unused. It is not uncommon to discover
users asking for functionality that already exists in a product. This perpetuating
irony is driven in part by a lack of transparent ease of use in esoteric elements of the
product. The tragedy of unused functionality is painfully acute because the develop-
ment team has gone to the trouble and expense of building capabilities. These capa-
bilities match users’ needs, and “only” the interface got in the way. These are truly
missed opportunities.

Implicit in the promise of each new paradigm are pitfalls for the development
team. The first pitfall is that the development team may assume that simple adop-
tion of the trappings of the interface ensures delivery on the promise. This was evi-
dent in many early GUI designs. They did include pull-down menus, dialog boxes,
and a screen that showed what you were working on and would “get,” yet they
were unusable. The terms used in the menus were opaque to the intended users.
The organization of the interface elements did not support expected task flow. The
elements created on the screen seemed unrelated to the constructs that users
employed in their work. The path to an intended result was totally unclear. In other
words, while the GUI removed the syntactic demands and the memory requirements
of a command system, it replaced those with a thicket of incomprehensible choices
unrelated to the users’ knowledge of the task domain. An even deeper and rare misun-
derstanding occasionally occurred. In these cases, the team failed to grasp some of the
fundamental principles of the interface paradigm and adopted only the trappings. I
have seen systems that ignored the object-operation syntax (select an object first, and
choose the verb as a menu item) of the GUI and required the user to select an opera-
tion first and then the relevant objects would be highlighted. It was so contrary to
expectations, it took some time to even grasp what was happening.

179Design Guidelines

DESIGN GUIDELINES
The lessons from the unfulfilled promises of the GUI itself and the missteps of early
development teams can provide us with some guidance to creating a successful
NUI.

Must
l	 Start from scratch. Beginning with a successful GUI or web interface and sim-

ply translating it into a NUI is likely to fail. It would be like translating com-
mand language into a GUI paradigm.

l	 Consider the environment and the goal of the application. Each environmental
goal of the application creates a “niche” in which an application and the way
it is rendered will thrive or die. Some extreme examples make this obvious.
Using touch for an interface in which the users’ vision and hands are occupied
would be highly counterproductive—even dangerous. Typing on a handheld
device while driving is unnatural. Speaking commands makes much more
sense in this context, provided the cognitive load is not too high.

l	 A NUI makes two promises. The first is that skilled use is obtainable very
quickly. The second is that the interaction itself will feel enjoyable. In order to
fulfill these promises, any NUI must be both efficient to learn and fun to use. Its
feedback and feed-forward will lead the user to success without being oppres-
sive. The actions themselves will be smooth and fluid.

l	 Pay attention to the underlying infrastructure that enables any application. The
infrastructure of the GUI is well understood and works (for the most part).
The mouse is used to control cursor movement; the keyboard is used to input
text or input a command via accelerators. For the most part, these are depend-
able. The same cannot be said for the evolving platforms of NUIs. The hard-
ware’s reading of touch points is often unreliable. On one system we tried we
were advised to “wet your finger” in order to help the system read your touch.
This was on a bar table with a touch interface. Even then, contact was often
lost. Regardless of what else such a system promised, that lack of reliability
(let alone hygiene) on the fundamentals yielded it unusable.

Should
l	 A development team would be wise to start with an application that is both

simple and different from existing applications on the GUI or the web. Simple
games are often a good starting point for a team to learn how to design and
implement a NUI.

l	 Get the mechanics right first. If the mechanics of the interaction, the gestures
with their feedback, are not fluid and enjoyable, the system will fail. This has

180 CHAPTER 23  The Fundamentals Have to Work

been understood in game design for years. The Mario Brothers franchise would
not have been as successful if the mechanics of jumping were not fun.

Could
l	 It is wise to look at other NUI applications that are in the same domain. It will

give the team insight on what works and does not.

SUMMARY
Building a NUI is not a royal road to fame and fortune. In fact, it contains more
risk for a team because the user expectations will be higher. The development team
may use well-worn skills and implicit assumptions from previous efforts that used
other paradigms. This is likely to fail. The NUI requires not only that expert per-
formance be obtained quickly with few false starts, but also that using the system
while learning be fun. None of these challenges are insurmountable. The success of
any NUI application depends on going the miles needed to keep the promise.

FURTHER READING
If anyone could be called the father of the GUI, it would be Douglas Englebart. The concepts that

he pioneered in his Augment system underlie much of design we take for granted in the GUI.
These concepts were well described in the in his paper prepared at SRI. This paper is avail-
able on the Internet. SRI Summary Report AFOSR-3223. Prepared for: Director of Information
Sciences, Air Force Office of Scientific Research, Washington 25, DC, Contract AF 49(638)-
1024• SRI Project No. 3578 (AUGMENT, 3906). http://www.dougengelbart.org/pubs/
augment-3906.html

181

CHAPTER

24Number of Contacts

That's what an army is—a mob; they don't fight with courage that's born in them,
but with courage that's borrowed from their mass.

—Mark Twain

DESCRIPTION
The number of simultaneous points of contact tracked by the input device will
define the domain of the gesture language that can be developed. Classic hardware
for enabling touch allowed one point of contact to be sensed—touching with mul-
tiple fingers would yield unpredictable results.

At the dawn of the age of commercial multi-touch, the number of contacts
detected by hardware is highly variable. The Windows 7 gesture language, and hard-
ware certification, is written to require only two points of contact. The iPhone gesture
language is limited to two points of simultaneous contact, despite the hardware sup-
porting more. Other hardware enables detection of far more, for a variety of reasons.

APPLICATION TO NUI
As discussed in Chapter 22, the hardware platform will greatly influence the gestural
user experience built upon it , and Chapter 18 described the advantages of differen-
tiating gestures based on the number of contacts. We classify three types of touch
devices based on the number of contacts it is able to sense and report simultaneously:

Single-User Manipulation: Senses sufficient point of contact for a simple manip-
ulation style gesture language: dragging, zooming, etc., such as on the iPhone.
This language requires two points of contact, to enable the “zoom” gesture.

Single-User Gestural: A small number of contacts that allows a single user to
perform gestures requiring multiple points of contact. The actual number of
points depends on the gesture language. If enabling a piano, for example, this
would be ten contacts.

http://dx.doi.org/

182 CHAPTER 24  Number of Contacts

Multi-User Gestural: A larger number of contacts that allow for multiple users to
be engaged in multi-touch gestures simultaneously. The actual number of con-
tacts depends on the number of touches that make up the gesture language
being used on the system. A multi-user gestural system would support mul-
tiple users making gestural input simultaneously. This would be essential for a
large conference table or vertical display.

LESSONS FROM THE PAST
Two elements are differentiated by the number of contacts a language supports: the
nature of the gestures and the number of users.

Accelerators and Modifiers
Inputs to the modern WIMP GUI often require multiple fingers to engage at the
same time. Inputting a capital letter, for example, requires pressing both SHIFT and
the associated key. Copying an item requires holding the CTRL key while dragging it
with the mouse. Most, if not all, multi-finger actions in a modern WIMP can be clas-
sified as either a “modifier” or an “accelerator.”

The distinction between a modifier and an accelerator is subtle but important.
A modifier is a key that, when pressed in combination with another action, alters
that action—ideally, in a predictable way. For example, the CTRL key is a modifier,
in that it alters the function of the other keys on the keyboard. Turn the mouse
wheel key without the modifier, and it scrolls up and down. Turn it while holding
the CTRL modifier, and it zooms in and out. An accelerator, in contrast, is a series
of keystrokes that will lead to something happening more quickly than otherwise,
such as “APPLE  C” to copy the selected item in the Mac OS.

Modifiers and accelerators have both been shown to be incredibly successful.
Interfaces universally include them, from games to productivity software. Perhaps
one of the most successful multi-finger interfaces is Adobe Photoshop.

Photoshop relies heavily on both modifiers and accelerators. It is not often that
you see a more impressive display of expert computer use than an experienced
graphic designer wrangling Photoshop. Their fingers fly across the keyboard, while
the display changes constantly in, to the observer, unpredictable and nearly always
incomprehensible ways.

One of Photoshop's most commonly used modifiers is the space bar. When click-
ing and dragging on the document without the space bar, the currently selected tool is
applied to that part of the document. Holding the space bar, however, places the system
into “hand tool” mode, such that when the user clicks and drags, the document pans.
This simple modifier is incredibly powerful: it allows the user to operate at a high zoom
level and apply a tool repeatedly without having to manually scroll or switch tools.

Photoshop’s use of accelerators is also extensive. Pressing CTRL  SPACE zooms
in, while pressing ALT  SPACE zooms out. A little searching online will lead you

183Lessons from the Past

to a complete list of the accelerators and modifiers in Photoshop—the dense list we
found is four pages long, listing hundreds of key combinations.

Of course, the point here is not that your application’s functionality should be
buried in obscure combinations of finger presses. However, the effective use of
combinations of fingers has been shown, in this instance, to be effective in creat-
ing an incredibly powerful tool for experts. The trick lies in leading your novice
users to become experts quickly, without having to read an instruction manual—as
described in Chapters 10 and 20.

Design for Touch with a Second Finger
The addition of the second touch has enabled an expansion of the traditional set of
actions in a GUI. User interfaces built with the certainty of the availability of this sec-
ond point of contact can provide exciting accelerations and intuitive interactions.

A now-classic example of the use of a second contact point is to enhance one-
finger panning and zooming by adding the ability to rotate and resize by dragging
two fingers on the device. One of the earlier (though not first) examples of the use
of this gesture is in MIT’s metaDESK system. In this case, two models of buildings
from MIT’s campus are placed on the device. The map of Cambridge, MA, moves,
rotates, and resizes to ensure that these buildings are placed at their geographically
correct location. This system uses physical objects, rather than touches, but it estab-
lished the standard for what interaction all multi-touch systems must have: Two fin-
gers expand, rotate, and move content (Figure 24.1).

This interaction gets people excited. It also points to some of the power of differ-
entiating gestures by number of contacts: there is no need to provide a pair of buttons
to zoom in and out of the UI. Nor is there a need to provide a zoom mode in the tradi-
tional sense, differentiating input depending on whether the user has selected this or
a “pan” mode. Instead, we simply teach the user that two fingers means zoom—and

FIGURE 24.1

The metaDESK system displayed virtual maps beneath physical objects. Moving an object would
move and rotate the map to ensure that it was geographically correct. Adding a second model
would cause the map to scale to ensure that the buildings were in the right virtual place.

184 CHAPTER 24  Number of Contacts

they use it. This is one of the key ideas in the reduction of visual clutter that typify a
NUI: we get rid of buttons by requiring the user to input in more than one way, dif-
ferentiated by the number of fingers.

Another example of multi-finger gestures is the language of accelerators used on
the MacBook trackpad. Just like the above example, input to the system is differen-
tiated by the number of fingers. Sliding one finger vertically on the pad moves the
mouse cursor up and down. Place two fingers on the pad, however, and perform
the same action, and the current window scrolls up and down. Three fingers pages
through a document, as we see in Figure 24.2.

Like the zoom gesture, the multi-finger differentiation of the trackpad input has
also proven successful, in that users are able to quickly learn the gestures and per-
form them. They also provide mechanisms to rapidly differentiate input from the
user, without having to use the GUI to select a mode.

An excellent example of a natural mapping of multiple fingers that users can
immediately understand was shown by Igarashi and his colleagues. In their system,
users could place multiple fingers on cartoon characters and bend and twist them to
produce animations. The response of the characters followed an intuitive, physics-
like manipulation pattern.

An interesting element we observed in the construction of our gesture lan-
guages is that it is actually rather difficult for users to intuit, or remember, that
the number of fingers matters in differentiating modes. This seemed to cut directly
across another of the elements of the hardware parameters we discussed in
Chapter 22: directness. Even when expert users of multi-touch trackpad gestures,
such as the ones shown above, were moved to a direct-touch system, any notion
of being careful of the number of fingers they were using to manipulate an object
went out the door. Participants in user studies would tell us they understood, and
then proceed to forget within a minute or so, even after being reminded again and
again. It seems that there is some quality of direct touch that is different from indi-
rect touch in this way.

FIGURE 24.2

Images from http://support.apple.com/kb/HT1115.

http://www.support.apple.com/kb/HT1115

185Design Guidelines

Designing for One User vs. Multiple Users
Large multi-touch devices have the potential of enabling multiple users to inter-
act with a system simultaneously. Multi-user interaction with software has been a
household phenomenon for decades, mostly in the form of video games. What may
not be immediately obvious, however, is that designing for one user does not scale
up to designs for multiple users. To illustrate the point, consider the relatively sim-
ple interaction used to select a color in a paint application (Figure 24.3).

This now classic control is such a fundamental control for a GUI that it is very
easy to miss a simple fact: this will not work for multiple users. As soon as the sec-
ond user touches the control panel, she will change the color for all users, not
just herself. There is no way to specify which color goes with which contact point
(Figure 24.4).

One could easily write an entire book on the design of NUIs for multiple users.
Suffice it to say for now, however, that very simple things break when moving from
a single-user model to a multi-user one—especially if your system lacks user differ-
entiation, discussed elsewhere. And the number of contacts that can be detected in
your platform may be the best indicator of whether you will be designing a system
for a single user or multiple users.

DESIGN GUIDELINES
Must

l	 Determine the number of contacts supported by your platform. Build your ges-
ture language around this number.

l	 Ensure that, as early as possible in a gesture, the system knows which action
the user intends to perform. Use the number of fingers the user puts down on
the display to perform this identification.

l	 For direct-touch systems, be careful about differentiating modes by the number
of fingers beyond some small set, or beyond what is immediately apparent by
the graphics the user is touching.

Should
l	 Differentiate system gestures based on the number of fingers. Provide a clear

and consistent mapping of what one finger does versus multiple fingers, and
how users can remember the association and apply it consistently.

l	 Strive for consistency with other gesture languages, while simultaneously seek-
ing to fully leverage the number of contacts detectable by your system.

Could
l	 Design your system for multiple users, considering carefully to ensure that

such designs are successful.

186 CHAPTER 24  Number of Contacts

FIGURE 24.3

The use of a toolbar to select a color. This interaction does not work on a multi-user system.

187Further Reading

SUMMARY
We advocate the use of the number of contacts as one of the parameters allowing
for instant identification of the user’s intention, to reduce or eliminate any point
in the interaction in which those intentions are unknown to the system and thus
without feedback to the user. Further, it is clear that differentiating gestures by the
number of fingers being used can be successful in creating a rich gesture language.
Finally, we note that a large number of contacts detectable by a system can mean
that multiple users will need to be supported simultaneously. Designing a multi-user
system requires a fundamental rethinking of all elements of interaction and should
be undertaken with due consideration.

FURTHER READING
Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans.

Graph. 24(3), 1134–1141. DOI  http://doi.acm.org/10.1145/1073204.1073323. In this work, Tomer
Moscovich and colleagues at Brown University allow users to grab, bend, and twist cartoon characters.
The mapping between gesture and consequence of that gesture is immediate and intuitive. Users can
learn it easily, and anticipate the effect of adding another finger to the interface.

FIGURE 24.4

Two users cannot use a classic toolbar model to paint in two different colors at the same time.

http://www.doi.acm.org/10.1145/1073204.1073323

189

CHAPTER

25Contact Data: Shape,
Pressure, and Hover

To them, I said, the truth would be literally nothing but the shadows
of the images.

—Plato, the Allegory of the Cave, The Republic

DESCRIPTION
In The Republic, Plato describes a group of people shackled from birth such that they
can see only the wall of a cave, on which the shadows of the world behind them
dance in firelight. The prisoners, he argued, would develop and understanding that
these flickering shadows are reality. By consequence, they might never develop an
understanding of the full 3-D world from which those shadows are projected.

The shadows on the cave wall in Plato’s allegory provide to the viewer an
abstraction of reality. In the same way that someone trapped in this cave would
understand only a portion of the reality an uncaptured person would experience,
software on a touch device experiences only a slice of the reality of the user’s
actual physical interaction. This abstraction is useful, in that it is easier to program
against—applications driven by a mouse need only care about the position of the
pointer and the state of the mouse buttons. Other details are thrown away: the ori-
entation of the mouse, the user’s posture on the mouse, which hand he's using,
how hard he is pressing the buttons—none of this is available to the application.
While useful in the sense that this makes application development easier, this lost
detail reduces the bandwidth of communication from the user to the device. An
application can’t find them out, even if it wants to.

APPLICATION TO NUI
NUI hardware is different. It detects more information about each element of the
interaction, and these elements can be used to subtly adjust the experience in an
intuitive and natural way.

http://dx.doi.org/

190 CHAPTER 25  Contact Data: Shape, Pressure, and Hover

Several variations in hardware exist, as described in Chapter 22. These variations
influence both the detail and the type of information that is presented about each
contact point. A designer must take care to ensure that they squeeze every last drop
of expressivity out of the hardware their system will be using. Most important is
to avoid the pitfall of determining a lowest common denominator across hardware,
and designing your system to respond only to those signals commensurate with that
lowest common denominator.

Instead, investigate deeply the capabilities of your hardware in terms of the
detail it can detect. Take, for example, the difference between a full-touch and a
multi-touch system (Figure 25.1).

Intuitively, we can see immediately the kinds of gestures that are possible with a
full-touch system that are not with a multi-touch one, such as cupping an area of the
screen or even a variation of American Sign Language.

The same is equally true of pressure: A system that detects pressure can respond
in all manner of ways, varying intensity of system response proportionally to the
intensity of the user’s input.

Hover is a different beast. Hover, unlike the others, is not a parameter of the
touch itself, but rather the ability of the hardware to detect hands before they come
in contact with the input device. We described earlier the state-transition model of
input devices, which points out that moving from mouse input to touch gives away
a valuable preview state. Hover has the potential to bring back this state. It can be
used to preview the effects of contacts, such as by indicating what the effect of a
contact will be or suggesting alternative gestures.

FIGURE 25.1

On the left, we see what a multi-touch system is able to determine about those fingers: namely,
just the position of each of the fingertips. On the right, we see what a full-touch system is able to
detect—the exact contour and shape of the area of the hand in contact with the device.

191Lessons from the Past

LESSONS FROM THE PAST
A friend of ours, Paul Dietz, likes to point to the evolution of musical instruments
as a long series of experiments to perfect the user interface for creating music. For
example, the harpsichord, a predecessor to the piano, helpfully illustrates how
changes to a user interface can inspire people to push the limits of a particular field
or discipline (Figure 25.2).

Each key on a harpsichord controls a mechanism that plucks a string. The pluck-
ing of the string is independent of how hard or fast someone presses the key.
As such, harpsichord music relies on playing more notes to achieve the effect of
greater loudness, which creates a significant shortcoming. The desire to be able to
play softly (“piano” is the musical term) or loudly (“forte”) led to the development
of an alternative mechanism: the hammer. By striking the key harder, the hammer
strikes the strings harder, and produces a louder sound. This new instrument was
known by its signature feature, “pianoforte,” because it could be played softly or
loudly. Thus, the piano was born.

With the advent of an interface that allowed for dynamics (the variation of loud-
ness in a piece), players and composers began to explore the possibilities. Piano
music was more than just harpsichord music with dynamics; the new expressive
capabilities allowed for a fundamental change in the type of music that could be

FIGURE 25.2

A harpsichord, which lacks the degrees of freedom of input offered by a piano.

192 CHAPTER 25  Contact Data: Shape, Pressure, and Hover

played. Baroque harpsichord music is intricate: the artistry is often found in very
fast, complex patterns of notes. By comparison, piano music has a much greater
expressive range, from delicate to soulful. The not-so-subtle point here is that while
adding degrees of freedom to an interface may at first appear to offer limited ben-
efits, this addition can fundamentally change the capabilities of the device and also
affect what you wish to achieve with it.

The advent of electronic musical keyboards has followed a similar, albeit shorter,
path. Early keyboards used simple on/off switches. But this design lacked the expres-
siveness of the mechanical piano. Over time, extra degrees of freedom have been
added. Now, all but the cheapest toy keyboards can sense “velocity.” To detect velocity,
many keyboards use two switches that trigger at different key positions. By measuring
the time between the two activations, the keyboard can translate the velocity of the key
strike in a way that allows it to mimic the pianoforte capabilities of a real piano.

Still, the evolution continues. An unfortunate limitation of most keyboard instru-
ments is that once a note is struck, there is little one can do to vary the note’s char-
acteristics. To add even greater control, many keyboards have a pitch wheel—a
separate control typically used to bend the pitch of all of the depressed notes while
they are sounding. This functionality comes at the price of having to dedicate a
hand to this function. A more powerful solution used on expensive keyboards is a
feature called “after touch,” which is a pressure sensor that detects how hard a key
is being pressed as it is held down. Some keyboards have a single sensor for all of
the keys, which adds a single degree of freedom. The most sophisticated keyboards
have a pressure sensor for each key, which allows talented musicians to add effects
to individual notes as they play. These additions are too new to judge whether they
will change the direction of music.

The lessons we have learned from looking at musical instruments include the
following:

1.	 Input technologies slowly evolve to become more expressive.
2.	 As they evolve, the devices that use the interfaces take advantage of the

expanded capabilities in fundamentally different ways.
3.	 One-bit on/off can be evolved through multi-bit velocity/pressure.

DESIGN GUIDELINES
Contact Data
Contact data vary widely across devices. The least expressive is a simple x/y coordi-
nate of a contact. The most expressive is a detailed contour of the contact area. In
between, bounding boxes and other types of data can be obtained.

Contact data can be used to abstract to an "orientation" of a contact, or
more directly by allowing shaped gestures, such as cupping in a physics simulation.
Just how expressive your system will be depends both on its needs and on its con-
text of use. Orientation, for example, can be used to make simple gestures more
expressive—moving a photo across the screen with one finger is fine, but allowing
the user to rotate it by twisting the finger adds more control.

193Design Guidelines

Hover
Hover can best be used to regain the lost state described in Chapter 12 as the state-
transition model of input devices. In traditional WIMPs, this state is used to pre-
view. First, the action is previewed just by the fact that the mouse pointer indicates
what object will be impacted by a click. Next, in most modern WIMP implementa-
tions, hovering over an object with the mouse pointer gives an additional preview.
Sometimes this is the form of a textual description of the function (a "tool tip");
sometimes this is a more subtle highlighting of the object under the mouse).

When using the hover state, we must distinguish between two types of hover.

Continuous vs. Discrete Hover
Discrete hover sensors tell you simply whether the object is physically touching the
device or is somewhere above it. In contrast, a continuous hover sensor gives you a
z value, an actual physical distance between the object and the display.

Discrete hover can always be simulated by a system that provides continuous
hover. Obviously, continuous hover is the most expressive.

Both discrete and continuous hover can be used to offer a preview of the effect
that actually touching the screen will have. Naturally, the inputs during hover and
those during touch can be divorced completely, and research systems have shown this
approach. What we have found, however, is that this divorcing is not actually the most
valuable use of this state. Instead, continuous hover can offer a continuously changing
preview, such as providing a lens effect where targets grow as the finger approaches.

Pressure
Pressure as a NUI Enabler: Why Bother Sensing Pressure?
At first glance, pressure is a tempting target as an enabler for natural input. While
you’ll never catch us broadly classifying modalities on an imagined spectrum of nat-
uralness, let us point out that pressure is hard to control. As such, it requires signifi-
cant feedback and learning over time. The purpose of what follows is not to make
an argument for pressure as an input to touch, but rather to point out a few things
that we already know about the use of pressure in a touch system.

Precise Pressure vs. Pressure Proxies
Pressure is the force with which users touch the display. Sensing this force directly
is one way of detecting pressure. Alternatively, a device might sense secondary indi-
cators of this force. Examples include changes in contact area, or shape changes of
a contact. This technique is called the “SimPress” (or “simulated press”) technique,
as we see in the figure shown in Figure 25.3.

Absolute vs. Relative Pressure
Whether sensed directly or indirectly, the output from the device might provide
absolute pressure so that the same force always yields the same value. Alternatively,
the process might produce relative pressure, or pressure changes for a particular
contact. Note that the capabilities of such sensors vary: The former would allow you
to build a scale, while the latter would not.

194 CHAPTER 25  Contact Data: Shape, Pressure, and Hover

Localized vs. Pad-Wide Pressure
Whether a device senses pressure locally for each contact or for the pad as a whole
does not matter for a single-touch device. For multi-touch devices, however, the
type of pressure sensing makes a great deal of difference. Earlier, we described key-
boards that can sense pressure for one key or for multiple keys; the same principle
applies to touch. Note that Apple trackpads can detect pressure on the whole pad,
but not for individual contacts.

Continuous vs. Discrete Pressure
Pressure can be sensed continuously or discretized into levels. Like anything else,
the application dictates the most appropriate mode of detection. One of the more
promising uses of continuous pressure was shown to allow users to tilt and quickly
adjust the z ordering of objects—to move something down in z order, simply push
on it harder than on the object you would like higher up in the order.

Discrete pressure, in contrast, is used to target particular values. Unlike continu-
ous pressure, users can consistently target particular levels, as long as those levels
are appropriately selected.

One-Bit vs. Three-Bit Discrete Pressure
Pressure can be discretized in any number of ways. Two of the most interesting
ways are one-bit and three-bit pressure.

One-bit pressure creates two pressure levels: light and heavy. This approach enables
techniques like the SimPress, where the user touches on the display for one activity, and
then presses down to engage. Similar to a key on a keyboard, resting your finger on a
key has one effect, while pressing down has another. Using one-bit pressure in this way
is very useful because it allows a preview followed by an “engaged” state—just like a
mouse pointer, the user can specify the location and then press down.

One-bit pressure is used in the same way on trackpads, such as those in Apple
laptops: Touching lightly moves the pointer around the screen, and pressing hard
sends a click event to the targeted pixel.

FIGURE 25.3

The SimPress technique allows pressure sensing on devices that can’t actually sense it, like
Microsoft Surface. Instead of measuring force, the device measures change in contact area when
the user presses down.

195Design Guidelines

Three-bit pressure is interesting because it maps onto humans’ perceptual capa-
bilities. Ramos et al. tried varying levels of discretization and ultimately found that
their participants could consistently select from among seven levels of pressure.
Anything greater than seven, and users couldn’t target it accurately. They then built
a set of “pressure widgets” that used those seven levels in creative ways to allow
users to give varying levels of input. Note that the feedback includes the continuous
pressure values, which then get mapped onto one of seven levels. The key element
here is that three-bit pressure is not a reduced sensing capability over continuous
pressure; rather, it’s an intentional bucketing of pressure values to make it useful to
the user.

Bringing It All Together
Contact data, hover, and pressure can each add both expressiveness and complex-
ity. A key concern is the scope of the release of your application. As we have seen,
the notion of “touch input” is a myth— actually there are a myriad of devices with
extremely variable capabilities, each of which can lay rightful, if ambiguous claim to
the term “touch”.

Must
l	 Determine which type of hover, contact data, and pressure your hardware is

capable of, and design for that type.

l	 Use pressure to adjust subtleties and parameters of input, rather than as a
primary indicator.

l	 Use hover to preview the effect of making contact.

l	 Use contact data to provide a more expressive interface.

l	 Use no more than seven levels of pressure if you want the user to be able to
target it precisely.

Should
l	 Consider the use of relative, rather than absolute, pressure. Controlling abso-

lutely the force with which one hits something is a skill that takes time to mas-
ter. In contrast, giving the user feedback on the initial touch, and allowing the
user to adjust up or down relative to that level, is much easier.

l	 Provide highly expressive feedback to the user, even if your interface does
not require it. For example, simply pressing a button requires no pressure or
hover. While you could still use a button, consider having the feedback vary by
the values of these inputs.

Could
l	 Use pressure in one of the particular ways that we have shown above.

196 CHAPTER 25  Contact Data: Shape, Pressure, and Hover

SUMMARY
Hardware is highly variable regarding what it can detect from a point of contact, in
terms of shapes, pressure, and hover. The best systems will seek to maximize their
expressivity by pushing the boundaries of parameters they detect. If you are respon-
sible for the hardware, push the limits! If you are not, sit down with the person who
is, and understand exactly what your sensors can provide your software. The more
you can get, the more expressive your system will be, and the more delightful and
natural it will lead your user to feel.

VOICES FROM THE FIELD: MULTI-TOUCH AS MULTI-CURSOR
Andy Wilson
Microsoft Research

Here is a basic question for any multi-touch sensor: if multiple contacts are allowed, precisely
how many contacts are there? Consider the first figure in this chapter: On the left, there are three
contacts. This is obvious enough. But consider as the hand moves to the pose on the right. We
might say there is one contact at the end (the whole hand), but what about all the moments
in between? If your answer is “I don’t know,” consider that the computer probably doesn’t
either. Furthermore, if your answer is “I don’t care,” consider that contact tracking is likely to
“hallucinate” the movement of multiple unorganized contacts, perhaps resulting in erratic motion
in your application. As with many idealized models (and perhaps life in general), it’s the interstitial
cases that get you.

I argue that the notion of a set of discrete contacts is borne out of our experience with cursors,
and bears little resemblance with the way the real world works. Imagine grasping a coffee cup. Do
the physical processes of friction and gravity that lead to the coffee cup rising to your lips rely on
some mysterious process that counts the number of “contacts”?

The list of discrete contacts that systems pass to applications is a convenient and potentially
limiting view of touch input. This is particularly evident as the fidelity of our sensing systems
increases and we are tempted to model more sophisticated kinds of input. Are there practical
alternatives to the view of multi-touch as multi-cursor? As the coffee cup example suggests, we
can think of touch as impacting a simulated world of physical objects through collisions and tiny
bits of friction forces. In our research, we have used physics engines of the sort used in video
games to simulate these effects directly, achieve more realistic manipulation of objects, and
completely avoid the notion of a discrete contact.

Even if you don’t go so far as to embed your application in a physics engine, it is good to be
aware of the consequences of assuming the seemingly innocuous idea of the “contact.”

Andy Wilson is a Senior Researcher at Microsoft Research. There he has been applying
sensing technologies to enable new modes of human-computer interaction. His
interests include gesture-based interfaces, computer vision, inertial sensing, display
technologies, and machine learning. In 2002 he helped found the Surface Computing
group at Microsoft. Before joining Microsoft, Andy obtained his BA at Cornell University
in 1993, and Ph.D. at the MIT Media Laboratory in 2000. Publications and videos of
his work are located at http://research.microsoft.com/~awilson.

http://www.research.microsoft.com/~awilson

197Further Reading

FURTHER READING
Cao, X., Wilson, A., Balakrishnan, R., Hinckley, K., and Hudson, S.E. ShapeTouch: Leveraging

contact shape on interactive surfaces. Proceedings of TABLETOP 2008, IEEE International
Workshop on Tabletops and Interactive Surfaces, 139–146. Xiang Cao and his colleagues
at Microsoft Research explore the use of postures for gestural input into a system. For exam-
ple, a user can close a window only by touching the corner with an “L” shape of their hand.
ShapeTouch increases expressive power, enabling interactions like this that avoid accidents
without useless dialog confirmations.

Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., and Balakrishnan, R. Hover Widgets: Using
the tracking state to extend the capabilities of pen-operated devices. Proceedings of CHI 2006,
Montreal, Canada, April 2006, pp. 861–870. Tovi Grossman and his collaborators demonstrate
the use of the hover state to differentiate gestures. In this case, a set of gestures is presented that
can be activated only while hovering.

Ramos, G. “Pressure Sensitive Pen Interactions,” https://tspace.library.utoronto.ca/bit-
stream/1807/11121/2/Ramos_Gonzalo_A_200801_PhD_thesis.pdf, a thesis submitted in confor-
mity with the requirements for the degree of Doctor of Philosophy. Gonzalo Ramos performs
an exhaustive review of the capabilities of uses of pressure in a pen-based system. This review
includes work both in human capabilities and in uses for those capabilities. An example is a set
of “Pressure Widgets,” controls that are manipulated by touching them with various levels of
pressure.

199

CHAPTER

26Vertical, Horizontal,
and Mobile

What does mysticism really mean? It means the way to attain knowledge. It’s close
to philosophy except in philosophy you go horizontally while in mysticism you go
vertically.

—Elie Wiesel

DESCRIPTION
We have reviewed some of the important characteristics of a touch system. We’ve
stressed that it be learnable and that it be suited to its environment. We have dis-
cussed how to achieve those goals and also offered a framework understanding ges-
tures. In this chapter we discuss the effects of input device orientation and size on
the design of interactive systems.

Multi-touch interaction with a phone is conducted with thumbs and while holding
the device. Multi-touch interaction with wall-mounted displays is conducted with finger-
tips and arms extended. The physicality of the interaction is clearly different, as is the
context of use and also the tasks that the user is likely to want to perform. Handhelds,
e-readers, tablets, booklets, slates, desktops, tabletops, laptops, and wall-mounted dis-
plays each have their own unique affordances, and thus their own ecological niches.
Correspondingly, software designed for such devices will need to be further tailored to
account for these factors. A detailed review of all of these differences would require a
book unto itself. Instead, in this chapter, we will do the next best thing: we will provide
an overview of the issues, and point the way toward solutions.

APPLICATION TO NUI
We have described in Chapter 2 that the goal of a NUI is to make its user feel like
a natural. It should be obvious that the orientation and size of the display will have

http://dx.doi.org/

200 CHAPTER 26  Vertical, Horizontal, and Mobile

an impact on the user’s task, and thus they will have a differentiating impact on
the user’s goals and expectations of how the device will function. This also serves
to illustrate the point made so explicitly in Chapter 22, that the best software is
tailored software. Clearly, a screen that is wide will require a different user inter-
face than one that is tall—even more clear is that such screens are likely to be used
in different contexts, and so require designs that suit their ecological niches, as we
discussed in Chapter 3.

LESSONS FROM THE PAST
The degree and extent of the work to be done are masked by prior experience with
the mouse. The cursor-controlled desktop metaphor was well-suited to scaling to dif-
ferent screen sizes and to different (though similar) input devices. Both 8" netbooks
and 30" desktop displays could be controlled with equal prowess using the separated
input and display devices and the pointer’s abstract input representation of the user’s
position. What should be abundantly clear to you now is that, with touch input, this
is simply not the case. We have voluntarily foregone this convenient separation of
input from display, and thus we must design the software accordingly. In practice,
this means understanding important issues of biomechanics, interaction areas, win-
dowing, and chassis gestures, which we will discuss in detail in the design guidelines.

DESIGN GUIDELINES
Biomechanics and Contact Shape
The area with which the user touches the device is dependent on the angle and
orientation of the user’s finger. The difference in this area for mobile and larger
screens is rather obvious: mobile devices are typically held in the hands, with the
thumb being used to touch the screen. Less intuitive is that there is also a difference
in contact area for vertical and horizontal displays, as we see in Figure 26.1.

FIGURE 26.1

Left: Wherever the user touches a vertical screen, the contact area of the finger is more or less
constant. Right: On a horizontal screen, targets closer to the user receive a very different contact
area than targets that are farther away. Contact areas also vary for mobile devices where users
interact with thumbs and fingers, each with a different contact area.

201Design Guidelines

This difference in contact area (side of thumb, tip of finger, pad of finger) will
dramatically affect the targeting accuracy of your device. As such, the screen and
digitizer should be carefully calibrated to take into account these differences.

Also intuitively varying with screen size are the shape and nature of gestures that
can be comfortably performed. Touching targets on opposite sides of a handheld
screen means moving the thumb. Doing this with a large display may mean walking
from one end of the screen to the other. Further, touching objects at the top of the
screen is more physically tiring than touching those at the bottom. To the point of
physical comfort, you should also consider how the user can comfortably interact
with your software: on horizontal screens, the user is likely to rest her arm on the
device itself, meaning that false touches may show up in your data stream. With
mobile devices, she will hold the device in such a way that she can rest her arm on
her body or surrounding objects. With vertical screens, resting is less convenient,
requiring the user to return her hands to a desk or to the sides of her body between
touches.

Interaction Areas and Privacy
Also clearly different are the nature of the display and how the user will interact
with it. A small, mobile device may be intended for interaction primarily by a sin-
gle individual, held between the hands. As the screen size changes, however, so
too does the number of users who might be interacting with it. In designing your
software, consider whether the information is private or public: will multiple view-
ers share the display, or can you assume the individual will use it alone? Take, for
example, the design of a poker game. For a small, mobile device, one could assume
that the user’s cards could be shown on screen when it is his turn. For a vertically
mounted screen, however, the cards should be shown only when other users aren’t
looking. Of course, a horizontal, tabletop-like screen offers the best of both worlds,
if you include a gesture that the user can use to hide his cards from other users
(e.g., the cards are shown only when the user’s hand is sensed in a “karate chop”
shape above them, which would serve as a natural blind to other users).

Portable screens that can be vertical or horizontal are particularly interesting.
Ask yourself the question, In what ways should your application behave differently
if it senses the user has placed the device flat on a table?

Windowed and Non-Windowed
Perhaps the most obvious difference between mobile devices and other display
types is whether the content should fill the screen or whether it will be windowed.
One luxury for iOS designers is that they did not have to deal with the issue of hier-
archy: should a drag scroll the content of a window, or should it move the window?
This issue of hierarchy is perhaps the single greatest issue that affected the design
of the gesture language for the Microsoft Surface project—and a satisfactory design
was never developed.

202 CHAPTER 26  Vertical, Horizontal, and Mobile

Chassis vs. Touch Gestures
Mobile devices may not concern themselves with windowed content, but they do
introduce a whole new class of gestures: chassis gestures. This is the name we have
given to gestures detected with sensors such as accelerometers, magnetometers,
and gyroscopes. In the iOS, this is limited to two gestures. The first is simply re-
orienting the device and having it respond by rotating content. What is interesting
about the iOS is where it forces the user to perform this gesture. On the iPhone,
if the user is browsing the web with the phone held vertically, when they play
a video, it automatically starts playing horizontally: the user is forced to turn the
device. When we stop to consider it, this is a rather bold design—it forces the user
to change her posture to better suit the content. The second chassis gesture is one
that is far less often detected: shake to undo. Try typing some text. Made a mistake?
Shake the device and it will offer you the option of deleting it. This shake to undo
applies to a rather small set of actions in the operating system (one can’t, for exam-
ple, shake the device to undo deleting an application), so it fails to apply the les-
sons of Chapter 19. Further, there is no mechanism to reveal it to the user, missing
out on the lessons of Chapters 10 and 20. Nonetheless, it is an example of a class of
gestures not possible on a nonmobile device.

Must
l	 Consider the primary purpose of the system. The interaction and visual design

follow from that purpose.

l	 If the system is extended to other environments, avoid altering its primitives.
If the new environment is incompatible with the fundamental aspects of the
design, then consider designing a new system.

Should
l	 Be willing to alter parameters of the system to improve its functioning in new

environments. While the primitives may not change, other elements may. For
example, if a system was designed on a large system and is now being imple-
mented on a smaller system, consider giving feedback when users approach
boundaries.

l	 Avoid blending designs that were intended for different environments. A
blended design often presents an incoherent learning environment for users.
To them, the system will at best appear inconsistent; at worst, it will seem ran-
dom, or they will assume that it is not working at all when they try something
that worked in a different context but is unavailable now.

l	 If you must combine different systems, make the modes clear to users.

203Summary

Could
l	 Consider how your application should behave differently if it senses the user

has placed the device flat on a table.

SUMMARY
The form factor of the display is important in that it suggests two very different
elements that should be considered for design. The first is the ecological niche in
which the device will be operating (Chapter 3). The second is how the physical-
ity of the device changes the user’s interaction with it, in the same way that other
properties affect the tailoring of software to hardware (Chapter 22).

207

CHAPTER

27The User-Derived
Interface (UDI)

The best argument against democracy is a five-minute conversation with the average
voter.
It has been said that democracy is the worst form of government except all the
others that have been tried.

—Winston Churchill

DESCRIPTION
One seemingly simple approach to creating a “natural” user interface would be a
democratic one, that is, let the users “define” it. A method of accomplishing this
would be to show users the various end states that the system offers (i.e., its func-
tionality). We could then show the system in its initial state and ask the user, “What
would you do to create the end state given this start state?” Distilling the actions
from many users for each end state, and combining those synthesized actions into
a complete system, would seem to ensure the creation of a natural user interface.
This approach of creating a context for users to act and then generating an inter-
face based on their actions has been called the user-derived (or designed) interface
(UDI). In a gestural-based system, there is a place for UDI, or, as some have called it,
User-Defined Gestures. It turns out, however, that the scope and applicability of this
tool is smaller than one might expect.

APPLICATION TO NUI
The UDI approach has been shown to be useful in creating successful interfaces
that required little or no training. For example, in command systems when users
were given the task “See that Bill gets the message about the keyboard study from
Bob,” they would use a small subset of words to achieve that state. Typically, their

http://dx.doi.org/

208 CHAPTER 27  The User-Derived Interface (UDI)

responses were “Send this to Bill,” “Mail message 9 to Bill,” and the like. By itera-
tively modifying the command parser, we were able to create an interface that sup-
ported simple mailing tasks (e.g., print, send, forward, delete, file, find). The parser
included elements such as synonym support and pronoun disambiguation. The com-
bination of these features created a robust system, handling over three-quarters of
the commands typed spontaneously by users.

This approach would seem a sensible way to create a natural user interface. If
we could create a successful command system by simply building on what users did
spontaneously, why not apply the same approach to creating a NUI system? So we
and others tried it.

LESSONS FROM THE PAST
Wobbrock and his colleagues from Microsoft Research chose the various com-
mands that can be performed with a mouse and keyboard in windows. These
included moving objects, copying objects, switching windows, and any number
of other actions. As we described the UDI method, they users images of the inter-
face before, and after the action was performed. They then asked the participant
what gesture they would use to transit the interface from the before to the after
state. What they found is surprising to some, but hopefully not to readers of this
book: there was almost no action that yielded the same gesture in each case. What’s
worse, users would perform precisely the same gesture in more than one situation,
and not notice the conflict. The one gesture they did find to be consistently applied
was manipulation: moving an object a short distance from one place on the screen
to the other. Users would universally touch the object with one or more fingers,
and slide their hand along the table. For any other action, at all—the participant
responses were not the same as one another.

It seems ironic that a UDI method would work well for an abstract command sys-
tem but fail when applied to a NUI system. There are several possible explanations.
In a command system we made use of a well-practiced skill—typing commands. In
the NUI the only well-practiced skills that are readily extrapolated from “naive phys-
ics” are actions like moving and rotating. For other actions there is no commonal-
ity. Second, in a command system we could build the commonality incrementally
over time by modifying the parser. In a gestural system the initial diversity was too
great. Third (and perhaps most ironic), the fundamental action of a command sys-
tem, typing words, is well understood prior to coming to a new system, and the
system automatically provides good feedback, that is, characters appear as they are
typed. In contrast, the primitive actions for a gestural or touch-based system require
constant feedback. One needs to know that the system is responding as one expects
it to. After all, the real world works that way. For example, if you stretch a rubber
band, the band provides continuous feedback. In contrast, the test bed for the NUI
necessarily provided no feedback while the gesture was being executed. We have

209Summary

taken the failure of the UDI method to produce a natural set of gestures to mean we
simply applied the methodology to the wrong question. It did give us the incredibly
valuable result that there is no such thing as a ‘natural gesture’. Beyond this, it is
clear that later in the process, when the user is presented with a user interface, this
method can be used to test and iterate on affordances of the design.

A gross overgeneralization would be to conclude that testing users is not a pro-
ductive way to design a NUI system. In fact, testing the system with the intended
user base is essential. The testing simply needs to be the right sort of testing, com-
bined with the right questions. Ultimately, creating a NUI is not the place for “projec-
tive methods” like UDI or for participatory design approaches. As an entirely new
way of interacting, elements of the NUI such as affordances and feedback need to be
carefully designed and rigorously tested. While the UDI was not the right approach
to defining the NUI, the RITE method worked well. We describe that approach in
Chapter 29.

DESIGN GUIDELINES
Must

l	 Understand that there is no such thing as a ‘natural gesture’—you need to
design the set of gestures in your system.

l	 Design teams need to create an overall and detailed vision for the interactive
system before they begin representing and testing it.

l	 Design teams should test that vision with prototypes of varying degrees of
fidelity.

Should
l	 When doing such testing, the team should pay more attention to user behav-

ior than user evaluation. Users will often suggest elements of systems they are
familiar with, such as GUI elements. The temptation to take their words at face
value should be resisted. Their behavior shows what users need to and can do.

SUMMARY
Creating a NUI requires feedback from users, but the methods need to be carefully
chosen, and the evaluation of that feedback should be done with care and per-
spective. The UDI method that had worked well to define a command system did
not work well for the NUI. On the other hand, carefully planned RITE testing did
work well.

210 CHAPTER 27  The User-Derived Interface (UDI)

FURTHER READING
For a discussion of the UDI philosophy, method, and application to command languages, see

Good, M. D., Whiteside, J. A., Wixon, D. R., and Jones, S. J. Building a user-derived interface.
Communications of the ACM, 1984, 27(10), 1032–1043, available through the ACM digital
library: http://portal.acm.org/citation.cfm?id358274.358284&collACM&dlACM&CFID10
3583941&CFTOKEN45376533. For a discussion of the UDI as applied to gestural systems, take
a look at Friebrink, R. D., and Morris, M. M. Dynamic mapping of physical controls for table-
top groupware. CHI 2009, Boston, MA, 471–480. Available from the ACM Digital Library: http://
delivery.acm.org/10.1145/1520000/1518778/p471-fiebrink.pdf?key11518778&key25241883
821&collACM&dlACM&CFID103583941&CFTOKEN45376533.

Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-defined ges-
tures for surface computing. In Proceedings of the 27th international conference on
Human factors in computing systems (CHI ‘09). ACM, New York, NY, USA, 1083-1092.
DOI=10.1145/1518701.1518866 http://doi.acm.org/10.1145/1518701.1518866

211

CHAPTER

28Lessons in False-Gesture
Recognition

Abbott: Well, let’s see, we have on the bags, Who’s on first, What’s on second,
I Don’t Know is on third...
Costello: You don’t know the fellows’ names?
…
Costello: Well then who’s on first?
Abbott: Yes.
Costello: I mean the fellow’s name.
Abbott: Who.
Costello: The guy on first.
Abbott: Who.
Costello: The first baseman.
Abbott: Who.
Costello: The guy playing...
Abbott: Who is on first!

DESCRIPTION
Recognition errors are instances where your software will trigger recognition of a
gesture where none was intended (which we term false-positive errors), or where
the user intends to perform a gesture but it is not recognized (which we term false-
negative errors). Creating a gesture language with a high rate of false positives is
the first mistake made by rookie gesture designers. Here’s an example straight from
a recent meeting discussing in-air gestures:

“When a user wants to delete something, they should just be able to shake it, and it will
disappear. That’s obviously the most natural thing.”

http://dx.doi.org/

212 CHAPTER 28  Lessons in False-Gesture Recognition

There are two obvious problems here. The first and most apparent to the now-
informed reader (of Chapter 2 especially) is the misunderstanding of the term “natu-
ral” in NUI—it’s not about what’s guessable or what mimics some other experience,
but rather what makes the user feel like Michael Jordan while using your system.
Nothing makes the user feel less like a natural than a false-positive recognition of a
gesture. This leads us to the second problem: The shaking gesture is likely to have a
pretty high false-positive recognition rate.

APPLICATION TO NUI
Designing your application/device/platform so that both novices and experts
feel like naturals when they use your gesture-based system is the goal of a natural
user interface. As we saw in earlier chapters, this relies on strong affordances
(Chapter 20) and feedback (Chapter 14) to allow the user to learn a language of
gestures (Chapter 19). This chapter will discuss a key consideration in building
your gesture language: reducing false-positive and false-negative recognition of your
gestures. In so doing, you will ensure that users are successful in conveying their
intended actions to the system and that the system’s response is as the users expect.
To accomplish this, you will need to do a great deal of tweaking of your gesture lan-
guage, as well as of your affordances and feedback. Recognizing false positives and
false negatives will be a key tool in conducting RITE studies to quickly iterate on
and improve your language (Chapter 29). Our work in this area has been influenced
by signal detection theory, an area of psychology. Here, we distill its essential ele-
ments and demonstrate how these are applied to building a NUI.

LESSONS FROM THE PAST
False-Positive Recognition
The high false-positive rate for a shaking gesture might seem obvious. It’s pretty likely
that someone at some point will shake an object simply to draw attention to it, or
move it and then realize they want to change direction, and trigger a false-positive rec-
ognition. But it’s also likely to be done at other times. Think about the first thing that
you would do if the system didn’t respond the way you expected. As we discussed
in Chapter 14, with a touch system, users press harder and repeatedly on the device.
Guess what—when you add manipulations to the system, they start shaking objects
on the screen. Consider, therefore, the user experience proposed here: the user has
just had something happen that she didn’t expect in her application—maybe there
was a glitch, maybe a moment of a frozen display—but she thinks that she’s not being
“seen” properly. So she shakes the object. The system’s response? It deletes the object
that the user was trying to operate on. That’ll teach ‘em.

The last source of false-positive activations is in failures of the gesture recogni-
tion system. The user may be performing what she believes is the correct gesture.

213Lessons from the Past

Another person watching her do it might also conclude that she is performing the
correct gesture. But, for whatever reason, the recognizer does not detect it as the
correct gesture. An astute designer might ask, “What are the other gestures in
the system, and how likely is it that another of these might get confused for a
‘shake’ by the recognizer?” Understanding that gesture recognition systems are far
from perfect will help you to better design your experience. The notion that design-
ers can live in an abstraction created by the platform may have been true in the
mouse world, but it simply isn’t in the world of touch and gestures: you will have to
get down and dirty with your recognizer, and manually tweak your gestures using
the tools and methods we have described.

False-Negative Recognition
All of this worry about false positives might lead you to conclude that you should
obfuscate your gestures by avoiding those actions that users are likely to take acciden-
tally or are likely to trip the recognizer. “Want to delete an object? Hold an object in
one hand while tapping out the words to the Canadian national anthem in Morse code
with the other.” This leads us to the complementary next problem: false negatives.

False negatives occur when the user thinks that he has performed a gesture cor-
rectly, but the system does not recognize it. Note a subtle distinction here: we’re
not only describing about instances where the user actually has performed a gesture
correctly, but rather where he believes he has performed it correctly. This can be
caused by problems with the recognizer, but in our experience, it is far more likely
to be caused by a user misunderstanding regarding how, when, or where to per-
form a gesture. And it’s the designer’s job to make sure the user knows how, when,
and where gestures are properly performed.

Tweaking to Balance Recognition
The example of our extreme delete gesture is an obvious case of overcompensa-
tion for false-positive recognition. More subtle examples of tweaking to get it right
also exist. For example, consider carefully the way scrolling works on the Safari
browser on the iPhone, as we discussed in Chapter 21: if the user starts scroll-
ing vertically, the system locks in to vertical scrolling, so that as the user’s thumb
arcs during the drag it won’t trigger horizontal scrolling (try scrolling up with your
thumb on an iPhone—notice how at the end of the gesture your thumb is moving
almost completely horizontally? The gesture recognizer is compensating for that).
The same is true of horizontal scrolling. Start out scrolling diagonally, however, and
the gesture will not be recognized as either a vertical or a horizontal scroll, and so
is never locked in to one or the other. What the designers of the scroll language in
the browser had to get exactly right is the angles at which the recognizer designates
the scroll as vertical, horizontal, or neither. Neither of the authors was there, but no
doubt this was done through extensive user testing to tweak these values. Evidence
of this tweaking is evident in a subtle difference between horizontal and vertical

214 CHAPTER 28  Lessons in False-Gesture Recognition

scrolling: Scroll a little bit vertically, and the recognizer locks in immediately (the
“recognition” phase ends and moves on to the “continuation” phase of specifying
how much to scroll, to use the parlance of Chapter 18). Try scrolling a little verti-
cally and then switch to horizontally, and it’s no dice: you’re locked in. This isn’t
true in the case of horizontal scrolling, however: start sliding your finger horizon-
tally, and then switch direction to a vertical scroll. Unlike vertical scrolling, if you
scroll a little bit horizontally, you can still switch to vertical scrolling. The recogni-
tion phase for horizontal is longer.

This asymmetry is obvious evidence of tweaking. It’s likely that the designers
and researchers at Apple discovered that users sometimes move a little horizontally
before they start to scroll diagonally or vertically, most likely when scrolling down
with the thumb, and so lengthened the recognition phase to prevent a false-positive
detection of horizontal scrolling.

User Guessing and Learning
As we have described, rookie designers tend to overemphasize making gestures
“guessable,” hoping to reduce false negatives by making it likely that a user will
guess right every time. As we described in detail in Chapters 17 and 19, the goal of
a NUI designer is to create a set of gestural primitives that is learnable and, through
scaffolding (Chapter 10) feedback and affordances (Chapters 14 and 20), guide the
user to perform them correctly.

Thus, your goal in addressing user guessing and learning is not to try to make
your gesture language guessable without help. Instead, your goal is to create an
internally consistent set that can be applied again and again when prompted by
appropriate affordances and guided with appropriate feedback.

Pruning your Gesture Language
Another likely cause of false recognition (positive or negative) is a gesture lan-
guage with too crowded a gesture space. An example of this can also be found in
the iPhone’s delete gesture (hold on, now, iPhone zealots: you knew that eventually
we’d point out some flaws). In our experience, only a subset of iPhone users knows
about the delete gesture. In some lists, such as the list of e-mail messages in the mail
client, the user can slide her finger horizontally across the message in the list and
a little “delete” button will pop up. The user can then tap the button to delete the
message.

It is clear that the delete gesture suffers from both false-positive and false-
negative user errors. The case of false-negative errors is easy to see: many iPhone
users complain that, despite a great deal of practice, they can never quite “get” the
delete gesture. This is because the angle at which delete is recognized (vs. a scroll) is
very narrow—slide your finger up even a little and the system recognizes the action
as a scroll, and the delete never triggers. This is evidence of a dense gesture space in
this case: vertical scrolling has been assigned so much of the range of angles in the

215Lessons from the Past

gesture space that there is very little room left for the delete gesture. It may also be an
example where tweaking was done to reduce false-positive recognition of delete.

The case of false positives is equally obvious to the trained designer of gesture
systems: The fact that there is a delete button at all reflects a belief that this ges-
ture is likely to be performed accidentally, and so a confirmation step was added.
Another aspect to consider is called “proportional effect.” When something large
or decisive occurs, the gesture for it should be proportionately large or decisive.
A two-phase gesture fits the bill nicely.

That there is so much evidence for false-positive and false-negative recognition
of the delete gesture makes it somewhat remarkable that it was included at all. The
case in its favor, however, is an obvious one: with sufficient practice, users are
eventually able to perform this gesture with few errors (as has been the experience
of one of the two authors). This means that the expert user will feel like a natural,
one goal of a NUI. Where the delete gesture fails as a design element, however, is
in the novice users who are not able to perform the gesture correctly. Chapter 20
provides details about how novices and experts can both be supported in a gestural
system.

Inconsistent Gesture Languages
An obvious source of false recognition is when gestures are inconsistently available.
Picking again on the iPhone’s delete gesture, consider its inconsistent use. There are
many lists that a user encounters when using the iPhone. Considering just a few of
the built-in applications, the user will see lists of e-mail messages, cities for which
they are configured to see the weather, songs, artists, albums, videos, bookmarks,
and the home screen itself (a 2-D list). While each of these is a list, only a subset
of them use the delete gesture. Want to delete an e-mail or video? You can happily
swipe to the right and press the button. Want to remove a city from your weather
app or delete a song from your music library? Your one-finger swipe to the right will
get no response at all. Want to delete an application from the home screen? Your
one-finger swipe will instead change the page.

An engineer might argue that the recognizer running in the weather, music
browsing, and home screen applications simply was designed to not recognize the
gesture; therefore, no such error has occurred. To an informed designer of a NUI
system, however, this inconsistency is an example of false-negative recognition. The
user believes that she has performed the gesture correctly, but the system has not
recognized it. Worse still, the system doesn’t give any feedback saying, “Yes, I see
this gesture, but you can’t do that here.” It just sits there, inert. This leads us to our
next topic: superstitious behavior.

Superstitious Behavior
Another reason that a user might not “get” the iPhone’s delete gesture is one that
seems to come from the users themselves. In our observations, users seem to

216 CHAPTER 28  Lessons in False-Gesture Recognition

consistently develop the superstitious belief that the gesture is somehow speed-
based—that it’s not enough to slide their finger horizontally; they also have to do it
quickly. You might even believe this yourself. It’s not true! Slow down! You will be
more accurate and have fewer false-negative recognition errors.

We guess that this behavior comes from previous false-negative errors caused by
other sources: users try it once, and a false-negative error occurs because they slid
a little too much vertically. The next time they try it, they speed up, and it works—
not because they went faster, but because they actually had the angle right this
time. Because they know that they sped up, but didn’t notice the change of angle,
they attribute the accurate recognition to the change in speed.

As we described in detail in Chapter 14, superstitious behavior is the enemy of
a designer of touch and gesture systems, and learning is her friend. In this case, the
reason is obvious: moving too quickly makes it more likely that the user will input at
the wrong angle and experience a false-negative recognition. The next time around,
designers of the iPhone might ask themselves, “How can we get users to slow down
when they are entering the delete gesture?” Understanding the difference between
false negative and false positive errors, and the different causes of each we have
described, will help you in designing your gesture language. Any time you observe
an error in performing a gesture, classify the error in this way, and then apply the
guidelines in this chapter to tweak or redesign your user experience.

DESIGN GUIDELINES
Must

l	 The question “Will the user guess this?” is a fine place to start, but it’s definitely
not where to stop. Ask this question, but make sure to do it rarely, usually for
tweaking your feedback and affordances. This is not normally the question to
be asking when defining the gesture primitives themselves.

l	 Consider both the false-positive rate and false-negative rate of your gestures.
False positives occur because the actions of a user too readily resemble some
unintended gesture in your language. False negatives occur because the preci-
sion with which you have constrained the allowed gesture is too narrow.

l	 Develop a good understanding of the recognizer for which you are building
your natural user interface.

l	 Build affordances and feedback that teach users what gestures to perform (as
explained in Chapter 20); then give them good feedback on their performance
to continually improve (as explained in Chapter 14).

l	 Avoid the use of gestures that overlap with one another in a dense space—this
is likely to generate a lot of cross talk where one gesture is falsely negatively
recognized and another is falsely positively recognized.

217Further Reading

Should
l	 Even better than understanding the recognizer is having the developers who

are building it working together with the designers who are building the UI (or
having them be the same person!).

l	 Aim for consistency in the cause (affordances) and effect (recognition and sub-
sequent action) of your gestures. Avoid the iPhone delete mistake by avoid-
ing modality. Ensure that all similar items (like lists) can have the same actions
applied (like delete).

l	 If a gesture does not actually make sense in the context (e.g., you don’t want
users to delete music using the iPhone, but rather to delete it on the PC in
iTunes), make sure you still recognize the gesture and give feedback. That feed-
back should say to the user, “Yes, I see that you performed that gesture, but
that won’t work here. And here’s why.”

Could
l	 Consider using only manipulation-based gestures, imitating naive physics,

without gestures that get “recognized” at all. As we saw with the iPhone exam-
ple, however, even manipulation-based gestures need a little recognition at
times to tweak and compensate for physical effects, like the arc of a thumb’s
movement.

SUMMARY
False recognition of gestures, positive or negative, is the bane of a user’s interac-
tion with a gestural system. It makes the user more hesitant and less trusting and,
worst of all, encourages the development of superstitious beliefs about the function
of the system. Understanding and reducing false recognition are a key to the suc-
cess of a touch and gestural system. While this may seem easy, the world is replete
with examples of systems where this was not done well (yes, we claim that even
the iPhone has moments where it does not achieve this as well as it could). Perhaps
most important is that you avoid the mistake of a rookie designer—focusing too
much on false negatives at the expense of making false-positive errors more likely.
The goal is to balance and reduce both.

FURTHER READING
Wickens, T. D. (2002) Elementary Signal Detection Theory. New York: Oxford University Press.

The notion of false-negative and false-positive detection has been presented in any number of
domains. In signal detection theory, a construct in psychology, a false negative is a “miss” and
a false positive is a “false alarm.” Wickens’ text provides an in-depth introduction to the space.

219

CHAPTER

29RITE with a Purpose

We all have a few failures under our belt. It’s what makes us ready for the
successes.

—Randy K. Milholland, Midnight Macabre, 10-18-05

DESCRIPTION
The RITE (Rapid Iterative Testing and Evaluation) method is uniquely suited to
the design and development of touch and gestural interfaces. Touch and gestural
interfaces lack the conventions of more traditional interfaces like the GUI. They
also must meet a higher bar; that is, they must feel natural and fun and encourage
the learning of a new interaction paradigm. Making an interface “natural” requires
more research effort and design thinking than making an unnatural interface (e.g.,
a logical but arcane command system) or mimicking a conventional interface like
the GUI. Given these challenges and the perpetual commercial requirement to make
progress quickly, the RITE method is a natural choice.

APPLICATION TO NUI
The RITE method has been applied to two core challenges in creating the a NUI
interface using touch and gesture. The first challenge was what feedback and feed-
forward should we provide to communicate the metaphor effectively. The second
challenge was what metaphor should be chosen for the interface.

LESSONS FROM THE PAST
Historically, the challenge of creating or choosing a metaphor for the NUI has been
relatively clear. One element of the GUI that contributed to its success was the

http://dx.doi.org/

220 CHAPTER 29  RITE with a Purpose

desktop metaphor. In the GUI, the computer screen became like a desktop. A pre-
sentation of documents on the screen was analogous to the way they might appear
on a desk. For example, one could “open” folders on a desk and see the documents
inside. On a physical desktop one could open a document (e.g., turn over the
cover page) and then interact with it—making notes of changes, highlighting sec-
tions, adding comments, and the like. In the “metaphorical desktop” one opened a
document and then could interact with it—making changes, highlighting parts, and
adding comments. When confronting a NUI, the first question is “What metaphor
should we employ that will appear natural and enhance learning?”

The challenge of creating a successful metaphor for a NUI can be divided into
two parts. First, do the design elements of the system communicate the metaphor
to the users? Second, does that metaphor make sense to users, helping them learn
the system while retaining their enthusiasm for it? Historically, the RITE method has
been applied to the problem of refining a design so that users will be able to com-
plete tasks more easily and enjoy the system more. It does this by quickly uncover-
ing problems that users have and generating fixes for subsequent testing. It has a
similar function when applied to a metaphor for a system. That is, it allows the team
to refine the elements of the design so that they more effectively communicate the
metaphor. As the system evolves and the metaphor is effectively communicated, the
second challenge becomes paramount, that is, does the metaphor help users learn
and like the system? This second challenge requires some additional RITEs, that is,
that users’ understanding of and preference for a metaphor be assessed. Assessing
understanding and preference is best done by comparing metaphors.

In a set of RITE tests for Microsoft Surface, the goals of refining the designs
and assessing users’ understanding and preferences were undertaken. Using a set
of guiding principles that had been developed for the Surface product, the design
team explored a large number of possible metaphors, which were narrowed down
to three. These metaphors were “magnet,” “sphere,” and “unfold.” The magnet met-
aphor was based on the idea of a magnet board in which placing physical objects
on the surface created virtual objects and activated functions. In the sphere meta-
phor, the interface was depicted as open space with a series of spherical objects in
which the primary interaction was dragging elements out of their sphere (orbit). In
the unfold metaphor, the interface was depicted like a magazine foldout in which
the users could unfold content.

Refining the interface took a traditional RITE approach. That is, changes were
made as problems were uncovered. However, the changes were directed not only
toward the goal of increasing performance on the task but also at making the meta-
phor clearer to users by removing confusing elements and increasing the salience
of elements that supported the interface. Throughout the testing, we collected user
descriptions and ratings of the individual metaphors.

The magnet board and sphere were both better understood and preferred as
compared to unfold. We also found that each of those two metaphors had different
strengths. The sphere metaphor was better for navigation, and the magnet board
metaphor was better for interaction within a document. As a result, the team syn-
thesized the two metaphors

221Design Guidelines

DESIGN GUIDELINES
The success of a modified RITE approach to the design of the NUI for Microsoft
Surface suggests that it would be an effective approach for any team developing a
NUI.

Must
l	 First and foremost, any team considering a RITE test needs be aware of the fac-

tors that make RITE effective:

l	 It must be technically possible to make changes quickly.

l	 Team members must be present for tests.

l	 Team members must be empowered to make decisions and committed to
improving the interface.

l	 Second, when applying the RITE method to refining and choosing a metaphor
for a NUI system:

l	 As a lead up to the RITE tests, the design team must create a large number of
possible metaphors and designs.

l	 More than one metaphor must be tested.

l	 Understanding and preference data need to be collected throughout the test.

l	 The goal must be clear. Unlike a “traditional” RITE test, where the goal is to
make the interface better, in this case the goal of the RITE is to choose the
best metaphor.

Should
l	 In choosing metaphors to test, teams should choose the most distinctive meta-

phors. This will enable test participants to give better feedback and increase
the opportunity of the team to learn.

l	 Each interface should be “rigorous” in its representation of the metaphor. This
means that the interface should not be a compromise. The team should go so
far as to retain elements that they think may be suboptimal in order to faithfully
depict the metaphor.

l	 Initial tests should be directed at refining the metaphors. The goals of this
refinement are to remove obstacles to interaction and to more clearly depict
the metaphor.

l	 Metrics for comparison should be chosen before the tests and assessed
throughout.

l	 Opinion questions should be used to understand the users’ thinking.

222 CHAPTER 29  RITE with a Purpose

Could
l	 Teams can segment the RITE test. That is, they can iterate in the early stages

and then lock the interface halfway though the tests.

l	 The quantitative and qualitative data regarding the interfaces can be collected
throughout, but the team may choose to focus on the data collected after the
interface was “locked down.”

SUMMARY
The choice of a metaphor for a NUI system is both important and challenging. RITE
testing provides a way to refine the design of the interface so that it better con-
veys the underlying metaphor. In order to choose a metaphor, RITE testing needs to
be complemented by a quantitative evaluation of user preference for the interface
and by a set of qualitative open-ended questions that allows the team to assess user
understanding of the metaphor.

FURTHER READING
The RITE method describes an approach to rapid iteration of designs. It is widely practiced and

consistently shows measurable improvement in usability of products. The original description
of the RITE method is contained in Medlock, M. C, Wixon, D., Romero, R., and Fulton, B. Using
the RITE Method to Improve Products: A Definition and Case Study. Presented at the Usability
Professional Association, 2002, Orlando, FL. Several examples are presented in Medlock, M.,
Wixon, D., McGee, M., and Welsh, D. (2005) The Rapid Iterative Test and Evaluation Method:
Better products in less time. In Bias, G., and Mayhew, D. (eds.) Cost Justifying Usability,
pp. 489–517. San Francisco: Morgan Kaufmann.

Hofmeester, K., and Wixon, D. Using Metaphors to Create a Natural User Interface for Microsoft
Surface. Conference on Human Factors in Computing Systems. Proceedings of the 28th
International Conference on Human Factors in Computing Systems, Atlanta, GA, pp. 4629–4644,
2010.

223

CHAPTER

30A Word About Engineering

The future ain't what it used to be.
—Yogi Berra

DESCRIPTION
Bringing a new human-computer interaction paradigm to life is no easy task. The
history of innovation is littered with products that were “ahead of their time." Often
these “failed" innovations contained a number of innovative attributes that found
their way into subsequent successful products. Alternatively, these innovations
were successful in niche markets but did not reshape an entire industry. Some sim-
ply failed and were forgotten.

In a sense, NUIs stand at a crossroads, and three possible options loom ahead. The
first option is that NUIs will become the next paradigm for how people interact with
computers. The second option is that NUIs succeed in niche markets. These niches may
be large or small. The last option is that NUI elements get incorporated into existing
products with varying degrees of success. To refer to these alternatives succinctly, let’s
call them dominant, niche, and assimilation. Our hope is that NUIs will be dominant and
replace the GUI. But NUIs may only thrive in niche markets. Finally, assimilation would
indicate the “death” of the NUI as a type of HCI and its rebirth as a facilitator of other
dominant forms. In this scenario, the NUI could be a facilitator of the GUI.

Of these three outcomes (dominant, niche, assimilation), which one is most likely?
One way to anticipate the future is to look at the past. Although this may seem like
looking into a rear view mirror to see where you are going, it can be instructive.
Examining the past becomes instructive when we extract some principles that we can
apply to the future. These principles can be enriched if we also examine some con-
crete examples. Finally, which past should we consider? Probably the best place to
look is the near-term history of HCI. If we look at the near-term history of computer-
human interaction, three interface paradigms are instructive. The first is the GUI. The
second is the World Wide Web. The web presented its own browsers, search engines,

http://dx.doi.org/

224 CHAPTER 30  A Word About Engineering

and hypertext links. The final paradigm is computerized gaming. The latter may seem
an odd choice, but the computer gaming industry is huge and diverse. Gaming con-
soles represent state-of-the-art hardware. In many respects, gaming interfaces employ
cutting-edge interactive approaches and represent an instructive if heterogeneous set
of interaction techniques.

When we look at the recent history of HCI we need to take a holistic view.
Technologists tend to focus narrowly. They would focus exclusively on Moore’s
law. While the ever-increasing power of computing is an important determinant of
what made the GUI, the web, and computerized gaming possible, there are large
social, economic, and cultural factors and trends that determined their relative dom-
inance. In addition to these factors and trends, we need to consider some specific
elements of the GUI products, web interfaces, and games. These specific elements
enabled exemplary products not only to become widely used but also to become
the dominant mindset in HCI. In fact, it is the combination of increasing computer
power (with reduced cost), large social, cultural, and economic trends, and unique
element design that has made computing a dominant force and shaped the ways we
interact with this technology.

LESSONS FROM THE PAST
What are the dominant trends and design elements that have shaped HCI over the
past 60 years and that will determine the success of the NUI?

First, computing power will increase and become cheaper. This will drive the
computer industry to seek more diverse markets. The quest for new markets opens
the space for new HCI paradigms and was one of the key drivers of the broad adop-
tion of the GUI paradigm. Computer companies knew that costs were coming down
and that they needed to broaden their market to a mass market. Ease of learning and
use were significant barriers to widespread adoption of the GUI, the World Wide
Web, and computer games.

However, lowered costs also facilitated the evolution and adoption of a number
of niche technologies and interfaces. For example, laser scanners were adopted in
retail and deskilled retail work to the point that customers are now asked to per-
form the retail work for their own transactions. For example, ATMs employed a
menu interface of limited choices and thereby enabled 24-hour banking at lower
costs; provided you wanted to be your own teller. But menu interfaces did not
become the new paradigm of HCI. Similarly, laser scanning did not emerge as the
technological base of new millennium human-computer interaction. They were
highly successful in their niches, but they stayed confined to these niches.

Second, the form factors of computing changed. The original mainframe with its
limited interface gave way to time sharing, which provided more flexibility. Time
sharing was supplanted by PCs. The form factor of the PC was very well suited to
office work. In many ways its keyboard and screen mimicked the typewriter of the
time and thus fit naturally into the office environment. However, a well-adapted

225Application to NUI

form factor would not have been sufficient to induce a paradigm shift. Instead, a
family of applications emerged that were well suited to office work. Most office
work consisted of dealing with documents in one form or another and keeping
track of money. Hence, word processing and spreadsheet applications adopted the
GUI paradigm and made office work accessible to “the rest of us." This combination
of form factor and applications that could do economically useful work drove broad
adoption of the GUI, and it became a dominant mode of interacting with computers.

Third, the world was shrinking and becoming more interdependent. Commerce
was becoming international. Communication became global. Time and distance
between people shrank. In that fertile environment the World Wide Web flourished.
Prior to that, the basic technology of the Internet was a comparatively obscure
DARPA (Defense Advanced Research Projects Agency) project that was intended to
create a computing and communication network that could survive a nuclear holo-
caust. Connecting computers and giving them a simple way to exchange informa-
tion provided the technological underpinnings of the World Wide Web. Supplement
that with a simple way of accessing information (click a link) and the fact that such
information could take any form (text, images, videos) and you have the formula for
increasing the diversity of people producing information and those consuming it.
Mix in the first factor of more power and lower cost (for every base technology—
information, richness of information, low cost storage, and easy transfer), and you
have a recipe for widespread use and adoption.

Fourth, the GUIs actually assimilated interface elements from other systems and
incorporated useful features that propelled them to dominance. Menus were not
new. They solved the problem of remembering and reproducing a large number of
commands and memorizing an elaborate syntax of commands and their qualifiers
and elements. Combined with dialog boxes, they made functionality accessible. But
the dominant GUI systems also eliminated the gap between input and output and
reduced the gap between screens and printing.

APPLICATION TO NUI
What do these four trends—more computer power at lower cost, an emergence and
proliferation of form factors, the shrinking of time and distance, and the tendency of
new paradigms to borrow from other models—mean for the NUI paradigm?

First, the trend of ever-shrinking costs and ever-increasing power of the com-
puters will not simply make NUIs possible; it will drive their broad adoption. The
computer industry will seek to entice more people to use more computers to do a
wider range of activities. Many of these people do not work in offices, sit at desks,
and produce documents and spreadsheets. The industry will create offerings that
fit with the environments they work in and the things they need to do. These envi-
ronments and activities will transcend the domain of the typical GUI, that is, office
work. These new offerings will have to provide a quick and seamless transition from
novice to expert. People will expect them to be intuitive, efficient, and enjoyable.

226 CHAPTER 30  A Word About Engineering

Second, emerging form factors will need to be streamlined and simple. They will
be without mediating devices like mice and keyboards. They will fit into their con-
texts naturally. We are already seeing this trend with book readers like the Kindle
and touch platforms like the iPad. Similarly, form factors for entertainment devices
will diversify, and with that diversification will come a broader range of apps
appealing to a broader range of users. A few years ago the idea that folks in retire-
ment homes would be playing computer games seemed far-fetched. But a platform
that provided a more natural way of interacting—the Wii with its gestural inter-
face, combined with some appealing games such as bowling—was very appealing
to people who retained their passion for bowling despite some minor but critical
infirmities, for example, the loss of grip strength. These and other NUI platforms
and accompanying applications will gain wide and unanticipated popularity because
they will make use of a wider range of human capabilities and modalities than tra-
ditional interfaces and will compensate for infirmities of the same that preclude
unassisted play and use. In these contexts the NUI plays an interesting role: It must
retrain the “fun” of the interaction while removing the constraints. The success of
the Wii is proof that this is possible.

Third, the World Wide Web with its proliferation of information and entertain-
ment and its widespread distribution drives adoption of NUIs. Information exchange
comes in many diverse forms, from farmers in third-world countries checking com-
modities on their cell phones to commuters watching videos as they ride high-speed
trains. One hardly needs a mouse and keyboard to consume information or to be
entertained. Simple, natural, and direct interfaces not only will fill the need, but also
are easier to learn, more flexible to use, and more fun than traditional interfaces.

Finally, successful NUIs will borrow from existing interfaces. Such borrowing
will have certain characteristics. First, it will morph beyond easy recognition. The
GUI adopted menus as a way of making choices, but these menus bore little resem-
blance to the previous menus. There were many more of them. They used a new
input device—the mouse. They were always present and did not represent a “mode."
In short, they looked and acted nothing like the menus of the previous systems such
as the WANG word processor or the IBM display writer. Indeed, only a student of
HCI would see the logical similarity between menus at an ATM and the menus of
Microsoft Office. Similarly, choosing functions in a NUI may be logically equivalent
to menus in a GUI (or any other system, for that matter). In other words, they allow
a choice of functions without relying on recall memory, but their form, their activa-
tion, and their behavior could and should be different. Making them like a GUI menu
simply recreates a GUI with a different (and less efficient) input device. Just as it
would have been nonsense for the GUI to copy the menu of an IBM display writer
it would be insanity for a NUI to reproduce the GUI. Similarly, activating items by
touching would seem to make sense for a NUI, but to make that the default action
would render NUIs merely the web interfaces with a different (and less efficient)
pointer. Instead, a responsive system that shows affordances and leads the user to
the next logical step is a true NUI. That next logical step may be one of several, but
to the user the choice and its implications will be clear. A true NUI will not produce

227Summary

frustrating cul-de-sacs so common on the web. It will also avoid the long searches for
the location of the intended action common to the GUI. A true NUI will not leave its
users wondering what the advantage of the NUI is over and above a GUI.

SUMMARY
Our bias (or aspiration) is clear. We hope and expect that NUIs will become the
dominant form of human-computer interaction over the next few years. The realiza-
tion of that hope will depend on the pioneers who create innovative NUIs and the
settlers who build on those ideas and designs in a practical and compelling way.
Our intent in writing this book was to facilitate that process. We don’t underes-
timate its difficulty. That is why we did not write a “NUI for dummies” or imply
that one could create a NUI by following a simple 10-step process. Instead, we’ve
provided a variety of essays on the NUI and grounded these essays in specific rec-
ommendations. We do provide an overarching broad process that is outlined in
Figure 1.1 in Chapter 1. Here our aim was to segment and structure the challenge
of creating a NUI. We also provided a general flow for approaching the creation of a
NUI. Both the structure and the process flow emerged out of our struggles in creat-
ing NUIs. While we don’t dwell on the mistakes we made, our concrete recommen-
dations and abstract reflections emerge from them.

In the end, we implore you to do two things. Learn from us. Apply our learnings
to your challenges and build on or transcend what we have said. Second, share what
you have learned. Ultimately the fate of your efforts, be it a commercial product, a
research effort, or a platform, and the fate of the NUI in general will depend on you.

229

Index

A
Absolute pressure, contact data, 194
Accelerator keys, primitives, 121–122
Accelerators

GUI tapping, 139
and keyboard, 179
number of contacts, 182–183

Accidental activation, feedback error, 85–86,
88–89

Activate gesture
ambiguity, 133
iPhone, 134t

Activation
false-positive, 212–213
feedback error, 85–86, 88–89
key strike velocity, 192
mouse, 68, 81, 82t
strength, 170f
successful NUIs, 226–227
time-based, 49

Activation event, feedback error, 85, 88–89
Adobe Photoshop, multi-finger interfaces, 182
Affordances

definition, 30
false-gesture recognition, 216, 217
scaffolding concept, 55
self-revealing gestures, 145, 152, 154f

Alt hotkeys
novice-to-expert transition, 149
Photoshop, 182–183

Animations
feedback visualization, 89f
and seamlessness, 45

Apple Newton Message Pad, vs. Palm Pilot,
11–12

Apple touch devices
contact sensing, 170f
false-gesture recognition, 217
fat fingers problem, 80
gesture language inconsistencies, 215
gesture language pruning, 214
gesture models, 158
gesture set, 134t
HCI applications, 226
input devices, 65
move/zoom gestures, 132, 132t
multi-modal input, 101

recognition balance, 213–214
self-revealing multi-touch gestures, 152
super realism, 47
superstitious behavior, 216

ATMs, see Automated Teller Machines (ATMs)
Audio feedback, social NUI design, 41
AutoDesk, state-transition model, 70
Automated Teller Machines (ATMs)

contextual environments, 29
HCI perspective, 224
menu-only systems, 4, 226–227
scaffolding example, 53
user differentiation, 61
as walk-up-and-use interfaces, 59–60

B
Biomechanics

multi-touch systems, 200–203
primitives, 116–117

Bottom-up approach, primitive design, 122–123
Buttons (general)

contact data, 196
ecological niche, 18
error sources, 85
false-gesture recognition, 214
fat fingers, 77, 79–80
feedback, 82t, 93f
gesture languages, 215
gesture system flow, 158–160
interaction design, 115
iPhone, 101
NUI basics, 10–11
number of contacts, 183–184
platform knowledge, 167–169
primitives, 115, 117–120
scaffolding, 53, 54, 56
self-revealing gestures, 155
state-transition model of input, 67–68
stolen capture, 86–87
super real, 48–49
touch vs. in-air gestures, 98–99
tracking state emulation, 69

C
Capture states, feedback error, 86, 89
Chassis gestures, vs. touch gestures, 202

http://dx.doi.org/

230 Index

Checkboxes
crossing-based, 120f
NUI basics, 10–11
primitive design, 119–120
state-transition model of input, 67
traditional GUI, 119f

Chess game
gesture language properties, 142
MDA, 107–108, 110–112

Chording gesture, gesture design, 135
Circle Twelve DiamondTouch, contact sensing, 170f
Click, see also Point and click

pen weaknesses, 118–119
as primitive, 121–122
primitive count, 122
primitive design, 119–120
software design, 115

Clutch
definition, 98
reserving, 100–101

Command languages
commutativity concept, 142
computing history, 17
interface evolution, 3–4
social computing, 38

Community, example, 143f
Commutativity (C)

application, 138
concept, 142–143
design guidelines, 144
gesture language properties, 137
INRC definition, 138

Computing history
basic considerations, 15–17
lessons from past, 18–19
PC sales, 15–16, 16f

Consequential communication, social NUI design,
41

Console games, social experience, 37
Contact area

biomechanics, 200, 200f
contact data, 192
fat fingers, 74f, 75–76, 80, 85
pressure, 193–194
SimPress technique, 194f

Contact data
application, 189–190
basic considerations, 189
design guidelines, 192–193
harpsichord example, 191, 191f
hover, 193
multi-touch systems, 190f

pressure, 193–195
real-world advice, 197
requirements, 195
SimPress technique, 194f

Contact differentiation, input capability, 171–173
Contact point

contact data, 190
fat fingers, 80
second finger touch, 183
touch, 171
user design, 185

Contact sensing, device comparison, 170f
Contact shape, multi-touch systems, 200–203
Contact Visualizer

characteristics, 87, 87f
fat fingers, 74f
feedback, 88

Content
contextual environments, 28–29
feedback error, 85
scaffolding concept, 55
social NUI design, 41
super realism, 49

Contexts, see also Environments
affordance, 30
characteristics, 28–30
design guidelines, 31–32
design/research questions, 27–28
NUI elements, 29
user differentiation, 59–61

Continuation phase
gesture ambiguity, 132
gesture design, 134
as gesture stage, 127, 127f, 128t
self-revealing multi-touch gestures, 151

Continuous hover, contact data, 193
Continuous pressure, contact data, 194–195
Control elements

contextual environments, 29, 32
ecological niche, 18
error sources, 85
fat fingers, 74, 75
feedback visualization, 91, 93f
interaction at distance, 86
MDA, 114
platform knowledge, 167–168
primitives, 116, 116f, 118–121
scaffolding, 56
seamlessness, 45
social NUI, 41
spatial NUI, 34
super real, 48

231Index

Control hotkeys
example, 147f, 148f
and gulf of competence, 146–148
learning curve, 148f

Copy gesture
ambiguity, 129, 129t
classification, 130
engineering issues, 226–227
touch vs. in-air gestures, 102

Coupled tasks
contextual environments, 28–29
scaffolding, 56
social NUI, 40, 41
spatial NUI, 35

Crossing, primitive design, 119–120, 120f
Crossy, 121
Cursor position, mouse feedback, 83

D
Delete gesture

ambiguity, 128, 131–133
classification, 130
false-gesture recognition, 213–214
gesture language pruning, 214
inconsistent languages, 215
iOS, 135f
iPhone, 134t
stages, 129t
superstitious behavior, 216

Delivery promises
application, 177
definition, 177
design guidelines, 179–180
historical perspective, 177–179

Demonstration environments, definition, 28–29
Desktop metaphor

interface evolution, 3–4
and RITE method, 220

Direct-touch systems
display properties, 174
feedback, 81, 89–90, 92
multiple capture states, 86
number of contacts, 184–185
social NUI, 41
and spatial memory, 10
state-transition model, 65, 66f
tracking state emulation, 69

Discoverability, scaffolding concept, 56
Discrete hover, contact data, 193
Discrete pressure, contact data, 194–195

Display properties, input capability, 173–174
Divide and conquer, definition, 40
Dots per inch (DPI), display properties, 173–174
Double-click, as primitive, 121–122
DPI, see Dots per inch (DPI)
DT Mouse, state-transition model, 69–70

E
Echo feedback, vs. semantic feedback, 83
Ecological niche

computing history, 15–17
lessons from past, 18–19
and NUI, 17–19
PC sales, 16f

E-mail
gesture language, 214–215
iPhone gestures, 134t
social computing, 39

Englebart, Doug, 177–178
Entry primitive, definition, 120–121
Environments, see also Contexts

affordance, 30
design guidelines, 31–32
design/research questions, 27–28
NUI elements, 29
spatial NUI, 33–34
super realism, 50
2-D planar space, 35
types, 28–29

Errors
clutch reserving, 101
in-air gestures, 98–99, 102
multi-step gestures, 128–129
scaffolding concept, 57

Error sources, feedback
accidental activation, 85–86, 88–89
activation, 85
activation event, 85, 88–89
basic considerations, 84–88
fat fingers, 85, 89
interaction at a distance, 86, 89, 90–91
Microsoft Surface Contact Visualizer, 87, 87f
multiple capture states, 86, 89
nonresponsive content, 85, 88–89
overcaptured state, 89–90
physical manipulation constraints, 86, 89,

90–91
stolen capture, 86–87, 89
tabletop debris, 87, 91

Escape primitive, definition, 120–121

232 Index

Escape technique
example, 78f
fat fingers problem, 77–78

Ethernet, social computing, 39
Expert users

Alt hotkeys, 149
chess mechanics, 112
contextual environments, 28–29
Control hotkeys, 147
marking menu system, 149–150
primitive count, 122
primitive sets, 121–122
scaffolding, 53
super realism, 50

Exploration
scaffolding concept, 53–54, 56
super real NUI, 50
UI language, 124

F
False-gesture recognition

application, 212
balance, 213–214
basic considerations, 211–212
design guidelines, 216–217
false-negative, 213
false-positive, 212–213
gesture language inconsistencies, 215
gesture language pruning, 214–215
historical perspective, 212–216
superstitious behavior, 216
user guessing and learning, 214

False negatives
basic considerations, 213
clutch, 101
definition, 211
gesture language inconsistencies, 215
gesture language pruning, 214–215
guessing/learning, 214
superstitious behavior, 216
touch vs. in-air gestures, 98–100

False positives
basic considerations, 212–213
clutch, 101
definition, 211
gesture language pruning, 214–215
gesture system flow, 160
mouse click, 117–118
touch vs. in-air gestures, 98–100, 102

Fat fingers problem
application, 73–74

basic issue, 73
control size, 75
design guidelines, 75–79
Escape technique, 77–78, 78f
feedback error, 85, 88–89
finger/object interactions, 77f
historical perspective, 74–75
iceberg target technique, 76–77, 76f
land on technique, 77–78
real world example, 79–80
user perception, 75–76

Features
DT Mouse project, 69–70
scaffolding concept, 55–56

Feedback
ambiguity problem, 84
animation visualizations, 89f
application, 82–83
basic considerations, 81–82
contact visualization, 90f
design guidelines, 88–95
echo vs. semantic, 83
error sources

accidental activation, 85–86, 88–89
activation, 85
activation event, 85, 88–89
basic considerations, 84–88
fat fingers, 85, 89
interaction at a distance, 86, 89, 90–91
Microsoft Surface Contact Visualizer, 87, 87f
multiple capture states, 86, 89
nonresponsive content, 85, 88–89
overcaptured state, 89–90
physical manipulation constraints, 86, 89–91
stolen capture, 86–87, 89
tabletop debris, 87, 91

false-gesture recognition, 216
Freddy Krueger effect, 91
gesture design, 134
historical perspective, 83–84
lag, 92, 93f, 94f
multi-touch example, 90f
scaffolding concept, 56
and seamlessness, 45
social NUI design, 41
superstitious behavior, 83–84
tethers, 92f, 93f
touch visualization states and transitions, 88f
unexpected responses, 82t

Finger/object interactions, fat fingers problem, 77f
First-person shooter (FPS), fat finger problem, 74
Flick gesture

233Index

ambiguity, 128, 133
example stages, 129t

Foreshadowing
contextual environments, 30
scaffolding concept, 55

Freddy Krueger effect, definition, 91
FUI, see Fun user interface (FUI)
Function-click, as primitive, 121–122
Fun user interface (FUI), vs. GUI, 17

G
Game play

contextual environments, 28–29, 31
designing for users, 185
ecological niche, 17–18
engineering issues, 224, 226
fundamental considerations, 180
game vs. NUI interfaces, 24
gesture language properties, 139–140
MDA, 107–108, 110, 113–114
multi-touch as multi-cursor, 197
platform knowledge, 168
seamlessness, 43–44
social NUI, 37
spatial NUI, 33–34
touch vs. in-air gestures, 98
user differentiation, 60
Wii, 174

Gestural user interface, development, 145
Gesture language

application, 138
community, 143f
commutativity concept, 142–143
definition, 137–138
design guidelines, 143–144
historical perspective, 138–143
identity concept, 139–140, 140f
inconsistencies, 215
negation concept, 140–141, 142f
pruning, 214–215
reciprocal concept, 141
reversibility concept, 141f

Gestures
ambiguity, 128–134
ambiguity solutions, 131–133, 133f
application, 128
classification, 130, 131f
design guidelines, 134–136
example implementation, 129
example stages, 129t
iPhone, 132t, 134t

multi-step problems, 128–129
self-revealing, see Self-revealing gestures
stages, 127, 127f, 128t
states and phases, 130f
super realism, 48f, 49
UI as language, 124

Gesture systems, mode and flow model
application, 157–158
definition, 157
design guidelines, 163–164
flow action tweaking, 162–163, 163f
flow options, 160
Safari gesture language, 158–163, 159f
splitting/combining modes, 160–161, 162f

Graffiti text input language
description, 12
example, 12f

Graphical user interface (GUI)
checkbox example, 119f
commutativity, 142
computing history, 3–4
contextual environments, 29, 31
desktop, 5
ecological niche, 16–18
element size, 73
evolution, 177–178
gesture language properties, 138–139
land on, 77
MDA development, 114
mouse-based, 85, 117–118, 170–171
NUI engineering, 223
number of contacts, 184
RITE, 219–220
scaffolding, 54
simplicity, 23, 25
social computing systems, 37–38, 41
“space” concept, 34
super real, 48
traditional models, 33
UDI, 209
WIMP, 4, 67, 71, 86, 119, 121–122, 124, 182

Gulf of competence
Alt hotkey, 149f
avoidance, 152
and Control hotkeys, 146–148
definition, 147
learning curve, 148f

H
Halo, 74–75
Hand gesture, states and phases, 130f

234 Index

Hardware platforms
computing history, 18
contact data, 189
ecological niche, 15, 17–18
number of contacts, 181–182

Harpsichord, contact data studies, 191, 191f
Hawkins, Jeff, 11
HCI, see Human–computer interface (HCI)
Highly coupled tasks

definition, 40
scaffolding, 55–56
social NUI, 41
spatial NUI, 35

Hotkey languages
Control vs. Alt hotkeys, 146–151
learning, 147

Hover
contact data, 193
input capability, 173
requirements, 195

Hover Widgets, 99–101, 100f
Human–computer interface (HCI)

application, 225–227
computing history, 16
engineering considerations, 223–224
evolution, 3–4
functionality gains, 4–5
historical perspective, 224–225
social NUIs, 38
UI as language, 124
user differentiation definition, 59

I
Iceberg target technique, 76–77, 76f
Identity (I)

application, 138
concept, 139–140
design guidelines, 144
example, 140f
gesture language properties, 137
INRC definition, 137–138

Idle mode, Safari gesture language, 158
IM messaging, 39
In-air gestures

application, 97
clutch reserving, 100–101
design guidelines, 102–103
historical perspective, 98–102
multi-modal input, 101–102
reserved actions, 99–100
touch computing comparison, 97

Indirect-touch systems
display properties, 174
number of contacts, 184–185

Information architecture, software design, 115
Input capability

contact differentiation, 171–173
display properties, 173–174
vs. quality, 170
sensed information, 171
sensed objects, 171
sensing properties, 172f

Input devices, see also Joystick- Mouse
echo vs. semantic feedback, 83
fat finger problem, 74
gesture stages, 127f
MDA framework, 112–113
state-transition model

application, 67–69
definition, 65–67
design guidelines, 69–71
example, 66f
historical perspective, 67–69
impoverished devices, 70–71
mouse example, 68f
mouse and touch, 67–69
tracking state, 69–70

INRC group
application, 138
commutativity concept, 142–143
design guidelines, 143–144
historical perspective, 138–143
identity concept, 139–140, 140f
negation concept, 140–141, 142f
properties, 137
reciprocal concept, 141

Instructions, scaffolding concept, 57
Interaction design, definition, 115
Interaction at a distance, 86, 89–91
Interaction language, primitives, 116
Interaction metaphors

scaffolding concept, 54, 56
seamlessness, 45
software design, 115

Internet
engineering issues, 225
NUI fundamentals, 3
social computing, 39

Inter-user task coupling, social computing,
39–40

Inversion
gesture language properties, 143–144
INRC application, 138

235Index

iOS (Apple)
chassis vs. touch gestures, 202
hierarchy issues, 201
list gestures, 135f
windowed/non-windowed interactions, 201

iPad (Apple)
contact sensing, 170f
gesture models, 158
HCI applications, 226

iPhone (Apple)
false-gesture recognition, 217
fat fingers problem, 80
gesture language inconsistencies, 215
gesture language pruning, 214
gesture models, 158
gesture set, 134t
input devices, 65
move/zoom gestures, 132, 132t
multi-modal input, 101
recognition balance, 213–214
self-revealing multi-touch gestures, 152
super realism, 47
superstitious behavior, 216

iPod Touch (Apple), gesture models, 158

J
Joystick, see also Input devices

ecological niche, 18
fat finger problem, 74, 75
primitives, 117–118

Just-in-time chrome, 152, 154f

K
Keyboard

accelerators/modifiers, 182
Alt hotkeys, 149
contact data, 192
Control hotkeys, 146
ecological niche, 17–18
gesture ambiguity, 129t
land on, 77
MDA, 108, 112–113
NUI basics, 9
NUI design fundamentals, 179
NUI engineering issues, 224–226
platform knowledge, 175
pressure sensing, 194
primitives, 121–122
social NUI, 37
spatial NUI, 34

touch vs. in-air gestures, 97, 102
WIMP primitives, 121–122

Kindle, 226

L
Lag

ambiguity, 133
feedback visualization, 92, 93f, 94f
super real, 50

Land on technique, fat fingers problem, 77–78, 77f
Learning options

Alt hotkeys, 149
false-gesture recognition, 214
scaffolding concept, 54–55

Lightly coupled tasks
definition, 40
social NUI, 41

Links
interaction design, 115
NUI engineering issues, 223–224
WWW, 17

“Live mic” problem
definition, 98
design guidelines, 102–103
multi-modal input, 101–102

Localized pressure, contact data, 194

M
Mac OS X

Control vs. Alt hotkeys, 146
primitives application, 117
primitive types, 121–122
tracking issues, 68

Macro interaction metaphors, scaffolding concept,
54

Magnet metaphor, and RITE method, 220–221
Manipulation-based gestures, and false-gesture

recognition, 217
Marking menu system

example, 150f
as first self-revealing gestures, 149–150
self-revealing multi-touch gestures, 151–152

MDA, see Mechanics–dynamics–aesthetics (MDA)
framework

Mechanics–dynamics–aesthetics (MDA)
framework

aesthetics definition, 109
application, 111–113
chess application, 111–112
design guidelines, 113–114

236 Index

Mechanics–dynamics–aesthetics (MDA) framework
(Continued)

dynamics definition, 109
example, 110f
historical perspective, 113
mechanics definition, 107
natural mechanics, 111
product applications, 110
skill development, 112

metaDESK system, 183, 183f
Micro interaction metaphors, scaffolding concept,

54
Microsoft Surface

contact sensing, 170f
Contact Visualizer, 87, 87f, 88
contextual environments, 31
RITE tests, 220–221
self-revealing multi-touch gestures, 151–152
SimPress technique, 194f
stolen capture, 86–87
super realism, 50
tabletop debris, 87
user perception, 75–76
windowed/non-windowed interactions, 201

Midas touch problem, definition, 68–69
Modal spaces, social NUI, 42
Mode and flow model, gesture systems

application, 157–158
definition, 157
design guidelines, 163–164
flow action tweaking, 162–163, 163f
flow options, 160
Safari gesture language, 158–163, 159f
splitting/combining modes, 160–161, 162f

Modifiers
Control hotkeys, 146
number of contacts, 182–183

Moore's law, 3, 224
Mouse

accelerators/modifiers, 182
activation event, 85
contact data, 189
contextual environments, 31
Control shortcuts, 147, 148f, 149
emulation, 70
false-positive recognition, 212–213
fat finger problem, 73, 74
feedback considerations, 81, 83
feedback types, 83
vs. fingers, 23
interaction at a distance, 86
inventor, 177–178

MDA framework, 108, 112–113
NUI basics, 9, 10, 179
NUI engineering, 226
platform knowledge, 167, 175
primitives, 115, 117–122
second-finger touch, 184
self-revealing gestures, 152
social NUI, 37
spatial NUI, 34
state-transition model, 67–69, 68f
vs. touch, 67–69
touch vs. in-air gestures, 98, 102
tracking state, 69
weaknesses, 118
WIMP, 67, 86

Mouse pointer
Control hotkeys, 147
feedback, 81, 82, 82t
hover, 193
pressure, 195
social NUI, 41
stolen capture, 86–87

Move object gesture
classification, 130
example, 131f
iPhone example, 132, 132t

Multi-cursor, multi-touch as, 197
Multi-finger interfaces

Adobe Photoshop, 182
example, 184f
MacBook trackpad, 184
number of contacts, 183–185

Multi-modal input, live mic problem, 101–102
Multiple capture states, feedback error, 86, 89
Multiple users

number of contacts, 182, 187
vs. one-user design, 185
scaffolding concept, 57
social NUI, 37, 39

Multi-touch systems
accidental activation, 85–86
application, 199–200
as multi-cursor, 197
basic considerations, 199
basic issues, 89
biomechanics, 200–203
chassis vs. touch gestures, 202
contact area, 200f
contact data, 190, 190f
contact shape, 200–203
contact visualization, 89
design guidelines, 200–203

237Index

gesture ambiguity, 132
gesture applications, 128
historical perspective, 200
impoverished input device, 70
input device design, 70
interaction areas and privacy, 201
multiple capture states, 86
second-finger touch, 183
self-revealing gestures, 151–153
social NUI, 41
stolen capture, 86–87
tabletop debris, 87
visual states and transitions, 90f
windowed/non-windowed, 201

Multi-user gestural
number of contacts, 182
vs. single user, 185

N
Naturalness

contextual environments, 30
feedback types, 83

Natural user interface (NUI) basics
Apple Newton vs. Palm Pilot, 11–12
computing history, 16
creation framework, 7f
design guidelines, 13
design issues, 10–11
design/research questions, 27
elements, 29
engineering considerations, 223–224
vs. GUI, 17–18
interface considerations, 13
interface evolution, 5
“natural” definition, 9–10
UI as language, 124

Negation (N)
application, 138
concept, 140–141, 142f
design guidelines, 144
gesture language properties, 137
INRC definition, 137–138
vs. reciprocal concept, 141

Nonresponsive content
feedback error, 85, 88–89
unexpected behavior, 82t

Non-windowed interactions, multi-touch systems,
201

Novice users
Alt hotkeys, 149
chess mechanics, 112

Control hotkeys, 147
marking menu system, 149–150
primitive count, 122
primitive sets, 121–122
scaffolding, 53, 56
super realism, 50

NUI, see Natural user interface (NUI) basics
Number of contacts

accelerators and modifiers, 185
application, 181–182
basic considerations, 181
design guidelines, 185–187
one user vs. multiple, 185
second-finger touch, 183–185, 184f
toolbar example, 186f, 187f

O
Objects

gestural user interface, 145
identity concept, 139–140
mechanics definition, 107
negation concept, 140–141
rules of operation, 108
sensed objects, 171

One-bit discrete pressure, contact data, 195
Orientation

contact data, 192–193
display properties, 173

Out of range (OOR)
gesture stages, 127f
self-revealing gestures, 151f

Overcaptured state, feedback error, 86, 89–90
Ownership, social NUI design, 41

P
Pad-wide pressure, 194
Palm Pilot, 11–12, 12f
PCs, see Personal computers (PCs)
Pen

marking menu system, 149–150, 150f
strengths, 119
weaknesses, 118–119

Personal computers (PCs), sales growth, 15–16,
16f

Personal identification, see also User
identification

user differentiation, 60
Physical manipulation constraints, feedback error,

86, 89–91

238 Index

Physical repsonses
and seamlessness, 45
super realism, 49

Pigtail gesture
reserved actions, 99
selection with, 99f

Pinch
gesture applications, 128
primitives, 121
as reserved clutch, 101
self-revealing gestures, 156

Platform knowledge
application, 167–168
capability vs. quality, 170
demonstrated vs. as-yet-undemonstrated

capabilities, 170–171
design guidelines, 169–175
display properties, 173–174
importance, 167
real-world advice, 175–176
sensed objects, 171
surface computing sensing properties, 172f
tailored design, 174
Wii vs. Power Glove, 168–169

Point and click
as primitive, 122
contextual environments, 31
gesture system mode/flow, 158
mouse strengths, 117–118
mouse vs. touch, 67
vs. scroll, 122

Pointer, see Mouse pointer- WIMP (Windows,
icons, menus, pointer)

Pointing
as button push, 98–99
as primitive, 118–122
feedback, 83
mouse strengths, 117–118
mouse weaknesses, 118
multi-modal input, 101–102
pen weaknesses, 118–119
primitive design, 119–120
reserved actions, 100
state-transition model of input, 70f

Pointing devices
contextual environments, 31
ecological niche, 17–18
joystick as, 74
MDA, 108, 112–113
NUI basics, 3–4

Points of contact
basic considerations, 181

second finger touch, 183
Power Glove, 168
Precise pressure, contact data, 193–194
Pressure

as NUI enabler, 194
contact data, 193–195
requirements, 195

Pressure proxies, contact data, 193–194
Primary objects

learning, 111–112
mechanics, 110
rules of operation, 108

Primitives
application, 117
checkboxes example, 119f
construction/evaluation, 122–123
crossing, 119–120, 120f
definition, 116
design, 119–121
design guidelines, 121–124
design rules, 123
escape/entry, 120–121
example, 116f
historical perspective, 117–121
mouse strengths, 117–118
mouse weaknesses, 118
multi-touch systems, 202
novice/expert overlap sets, 121–122
number count, 122
pen strengths, 119
pen weaknesses, 118–119

Privacy, and interaction areas, 201
Programming languages, social computing, 38
Public environments, definition, 28–29
“Put that there” system, multi-modal input,

101–102

R
Radio buttons

function, 48–49
NUI basics, 10–11
primitives, 120–121

Rapid Iterative Testing and Evaluation (RITE)
method

application, 219–220
definition, 219
design guidelines, 221–222
gesture system mode and flow model, 160
historical perspective, 220–221
primitive design, 123

Rate control device, joystick as, 74

239Index

Real-world experience
MDA, 113
and seamlessness, 44, 45
super real, 47

Reciprocal (R)
concept, 141
design guidelines, 144
gesture language properties, 137
INRC definition, 137–138

Reference documentation, scaffolding concept, 55
Registration phase

as gesture stage, 127, 127f, 128t
gesture ambiguity, 133f
gesture design, 134
hand gesture, 130f
Safari gesture language, 158
self-revealing multi-touch gestures, 151

Relative pressure, contact data, 194
Rename gesture

classification, 130
example, 129t, 131f

Reserved actions, in-air gestures, 99–100
Reversibility

example, 141f
negation operation, 137–138

Right-click
pen weaknesses, 118–119
primitives, 117, 121–122

RITE, see Rapid Iterative Testing and Evaluation
(RITE) method

Role assignment, user differentiation, 60
Rules of operation

MDA, 107
objects, 108

S
Safari gesture language

flow action tweaking, 162–163
flow options, 160
mode and flow model, 158–163, 159f
recognition balance, 213–214
splitting/combining modes, 160–161, 162f

Scaffolding concept
application, 53–54
definition, 53
design guidelines, 55–57
historical perspective, 54–55

Scroll bar
interaction at a distance, 86
NUI basics, 10–11
primitives, 116f, 122

Scroll gesture
ambiguity, 133
false-gesture recognition, 213–214
flow options, 160
flow tweaking, 162
iOS, 135f
iPhone, 133, 134t
mode and flow, 158
modes, 162f
Safari, 158, 161, 162f

Scrolling
via drag, 201
feedback, 91, 92f
number of contacts, 184
vs. point and click, 122
primitive count, 122
primitives, 121–122
recognition balance, 213–214
scaffolding, 55
tabletop debris, 87
UI affordances, 154f

Scroll wheel
modifiers, 182
mouse, 122
primitives, 122

Seamlessness
Alt hotkeys learning, 149
concept application, 44–45
definition, 43
fragility, 44
historical perspective, 43–44

Secondary objects
MDA, 110
NUI chess, 111–112
rules of operation, 108

Selection event, land on, 77
Selection process

Escape technique, 78f
fat fingers, 75
feedback visualization, 88–89
hover, 173
with joystick, 75
pigtail gesture, 99f
tap as, 138–139
UI as language, 124

Self-monitoring, and seamlessness, 44
Self-revealing gestures

Alt hotkeys background, 149
application, 145–146
Control vs. Alt hotkeys background, 146–151
Control hotkeys background, 146–148
definition, 145

240 Index

Self-revealing gestures (Continued)
input stages, 151f
just-in-time chrome, 152, 154f
marking menu system, 149–150, 150f
multi-touch design, 151–153
photo resizing example, 153f
real-world advice, 155–156

Semantic feedback, vs. echo feedback, 83
Sensed information

biomechanics, 201
fat fingers, 75–76
in-air gestures, 97
input capability, 171
number of contacts, 181
pressure, 194–195
primitives, 123

Sensed objects, input capabilities, 171
Simplicity

application, 23
approach to, 23
design guidelines, 25–26
and fundamental system interactions, 24
lessons from past, 23–25

SimPress technique, 194f, 195
Single display groupware, social computing, 39
Single-user gestural

vs. multiple users, 185
number of contacts, 181

Single-user manipulation, number of contacts, 181
Single-user session, social NUI, 42
Size property, displays, 173
Skill development, MDA framework, 112
Sliders

feedback, 89–90, 93f
interaction at a distance, 86
multiple capture states, 86
primitives, 116
WIMP, 67

Social computing
historical perspective, 38–39
inter-user task coupling, 39–40
standard GUIs, 37

Social contexts
definition, 28–29
MDA, 108–109

Social design, social NUIs, 38
Social natural user interfaces

design guidelines, 40–42
historical perspective, 38
inter-user task coupling, 39–40
overview, 37
social design principles, 38

Sony EyeToy, 97
Spatial natural user interfaces

environments, 33–34
3-D space utilization, 35–36
traditional GUI types, 33
2-D planar space, 34–35

Speech input
with gesture, 101–102
platform knowledge, 175

Sphere metaphor, and RITE method, 220–221
State-transition model, input device

application, 67
definition, 65–67
design guidelines, 69–71
example, 66f
historical perspective, 67–69
impoverished devices, 70–71
mouse example, 68f
mouse and touch, 67–69
tracking state, 69–70

Stolen capture
feedback, 86–87, 89
iOS, 82t

Stylus input
Hover Widgets, 100f
platform knowledge, 167–168, 175
for pointing, 118–119
reserved actions, 99
sensed objects, 171

Super realism
application, 49–51
definition, 47–48
finger gesture example, 48f
historical perspective, 48–49

Superstitious behavior
false-gesture recognition, 216
feedback considerations, 83–84

Suspension of disbelief, and seamlessness, 43–44

T
Table PCs (Windows-based), pen weaknesses,

118–119
Tabletop debris, feedback error, 87, 91
Tap event

gesture system mode and flow model, 160
stolen capture, 86–87

Task coupling
contextual environments, 28–29
definition, 40
levels, 39–40
scaffolding, 55, 56

241Index

social computing, 39–40
social NUI, 40–42
spatial NUI, 35

Televisions
menu-only systems, 4
platform knowledge, 175–176

Termination phase
as gesture stage, 127, 127f, 128t
gesture design, 135
self-revealing multi-touch gestures, 151

Tethers, feedback visualization, 87f, 90–91, 91f,
92f, 93f

Three-bit discrete pressure, 195
Three-dimensional techniques

early GUIs, 34
spatial NUIs, 33–36
traditional GUI types, 33

Toolbar example, 186f, 187f
Top-down approach, primitive design, 122–123
“Touch at a distance”, see In-air gestures
Touch computing

application, 97
clutch reserving, 100–101
design guidelines, 102–103
feedback considerations, 81
historical perspective, 98–102
in-air gesture comparison, 97
vs. mouse, 67–69
multi-modal input, 101–102
pressure input, 173
real world example, 79–80
reserved actions, 99–100
scaffolding concept, 56
sensed objects, 171
social computing, 39
social NUI design, 41
touch area vs. touch point, 77
touch vs. chassis, 202
and user perception, 75–76
visualization states and transitions, 88f

Touch point
feedback, 86
NUI fundamentals, 179
and user perception, 75–76
Windows 7 touch device, 170f

Tracking data, input capability, 173
Tracking state

clutch reserving, 100
emulation, 69–70
to engaged state, 101–102
feedback, 82–83
input models, 71

MDA, 114
mouse/tablets, 67
multi-touch as multi-cursor, 197
touch vs. in-air gestures, 98

Trackpad
accelerators, 184
feedback, 85
and hotkeys, 146
multi-finger interfaces, 184
one-bit pressure, 195
pressure detection, 194, 195
scrolling, 122
tracking state emulation, 69

“Training wheels,” scaffolding concept, 54–55
Transfer of learning problem, INRC group, 139
Transitions

ambiguity, 128–129, 134
contact visualization, 90f
Contact Visualizer, 87
feedback, 89f, 90f, 94f
gesture system mode/flow, 158
multi-modal input, 101–102
multi-touch systems, 90f
reserved actions, 99, 101
scaffolding, 55
seamlessness, 45
single-touch systems, 88
sources of error, 85
spatial NUI, 33
state-transition model, see State-transition

model
super real, 49, 50
touch feedback, 88f

Two-and-a-half dimensional techniques, traditional
GUI types, 33

Two-dimensional techniques
spatial NUI, 34–35
traditional GUI types, 33

U
Uncoupled tasks

definition, 40
social NUI, 40, 41
spatial NUI, 35

Unfold metaphor, and RITE method, 220–221
URP, super realism, 47–48
User-derived interface (UDI)

application, 207–208
definition, 207
design guidelines, 209
historical perspective, 208–209

242 Index

User differentiation
application, 59
definition, 59
design guidelines, 61–62
environments and contexts, 60
historical perspective, 59–61

User guessing, false-gesture recognition, 214
User identification, see also Personal identification

and user differentiation, 61
User movement, modeling, 65
User perception, touch point adjustments, 75–76

V
Virtual objects

MDA framework, 108
RITE, 220–221
seamlessness, 44, 45
super real, 48

Virtual-world experience, and seamlessness, 44
Visual design

multi-touch interaction, 202
software design, 115

Visual states
application integration, 92
Contact Visualizer, 87
feedback, 88
multi-touch systems, 90f

Voice commands
NUI basics, 9
social NUI, 38

W
Walk-up-and-use interfaces

contextual environments, 28–29
self-revealing gestures, 145–146
user differentiation, 59–60

Wii (Nintendo)
engineering considerations, 226
HCI applications, 226
MDA, 114
platform knowledge, 174
vs. Power Glove, 168–169

WIMP (Windows, icons, menus, pointer)
GUI, 4

mouse vs. touch, 67
multiple capture states, 86
number of contacts, 182
platform knowledge, 167–168
primitive sets, 121–122
state-transition model, 67, 68, 71

Windowed interactions, multi-touch systems,
201

Windows, icons, menus, pointer, see WIMP
(Windows, icons, menus, pointer)

Windows Mobile 7, self-revealing multi-touch
gestures, 151–152

Windows operating systems
contact sensing, 170f
Control vs. Alt hotkeys, 146
primitives application, 117
primitive types, 121–122
self-revealing multi-touch gestures, 151–152
tracking issues, 68

World Wide Web (WWW), and HCI, 225–226
WYSIWYG

early GUIs, 34
social computing, 38–39

X
Xbox Kinect, 97
Xbox platform, 75

Z
z-axis, spatial NUIs, 35–36
Zoom gesture

anatomy, 128
gesture system mode/flow, 158, 160
iPhone, 132, 132t
multi-finger interfaces, 184
number of contacts, 181–182
primitives, 121
Safari gesture language, 158
seamlessness, 44
self-revealing gestures, 156
social NUI, 41
spatial NUI, 34–36
super real, 47
UI affordances, 154f

	Dedication
	Preface
	Acknowledgments
	About the Authors
	Introduction
	The Natural User Interface
	Description
	Application to NUI
	Lessons from the Past: The First Apple Pad
	Design Guidelines
	Must
	Should
	Could

	Summary

	Ecological Niche: Computing, the Social Environment, and Ways of Working
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should
	Could

	Summary

	Less Is More
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should
	Could

	Summary

	Contextual Environments
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should
	Could

	Summary
	Further ￼Reading

	The Spatial NUI
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Support Using 2-D Planar Space
	Must
	Should
	Could

	Adhere to Principles of 3-D Space Utilization (the z-Axis)
	Must
	Should
	Could

	Summary
	Further ￼Reading

	The Social NUI
	Description
	Application to NUI
	Lessons from the Past
	Inter-user Task Coupling
	Design Guidelines
	Must
	Should
	Could

	Further ￼Reading

	Seamlessness
	Description
	Lessons from the Past
	Application to the NUI
	Must
	Should
	Could

	Summary
	Further ￼Reading

	Super Real
	Description
	Lessons from the Past
	Application to the NUI
	Must
	Should
	Could

	Summary
	Further ￼Reading

	Scaffolding
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should
	Could

	Summary
	Further ￼Reading

	User Differentiation
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should
	Could

	Summary

	The State-Transition Model of Input
	Description
	Application to NUI
	Lessons from the Past
	Mouse and Touch: How They’re the Same and How They’re Different

	Design Guidelines
	Emulating a Tracking State
	Designing for an Impoverished Input Device
	Must
	Should
	Could

	Summary
	further ￼reading

	Fat Fingers
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Make Stuff Bigger
	Consider User Perception to Adjust the Touch Point
	Iceberg Targets
	Reduce the Role of Land On
	Must
	Should
	Could

	Summary
	Further ￼Reading

	No Touch Left Behind: Feedback Is Essential
	Description
	Application to NUI
	Echo Feedback vs. Semantic Feedback

	Lessons from the Past
	Superstitious Behavior

	Sources of Error
	Activation Event
	Fat Fingers
	Activation
	Nonresponsive Content
	Accidental Activation
	Multiple Capture States
	Physical Manipulation Constraints
	Interaction at a Distance
	Stolen Capture
	Tabletop Debris
	The Contact Visualizer

	Design Guidelines
	Must
	Should
	Could

	Summary

	Touch versus In-Air Gestures
	Description
	Application to NUI
	Lessons from the Past
	Reserved Actions
	Reserving a Clutch
	Multi-Modal Input

	Design Guidelines
	Must
	Should
	Could

	Summary
	Further ￼Reading

	Mechanics, Dynamics, and Aesthetics: The Application of MDA
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Summary
	Further ￼Reading

	New Primitives
	Description
	Application to NUI
	Lessons from the Past
	What the Mouse is Good At
	What the Mouse Is Bad At
	What a Pen Is Bad At
	What a Pen Is Good At
	Designing New Primitives

	Design Guidelines
	Overlap Primitive Sets for Novices and Experts
	How Many is the Right Number of Primitives?
	Constructing and Evaluating Primitives
	Must
	Should
	Could

	Summary
	Further ￼Reading

	The Anatomy of a Gesture
	Description
	Application to NUI
	Lessons from the past: Ambiguity
	Solving Ambiguity

	Design guidelines
	Must
	Should
	Could

	Summary

	Properties of a Gesture Language
	Description
	Application to NUI
	Lessons from the Past
	Identity
	Negation
	Reciprocal
	Commutative

	Design Guidelines
	Must
	Should
	Could

	Summary
	Further ￼Reading

	Self-Revealing Gestures
	Description
	Application to NUI
	Lessons from the Past: Control vs. Alt Hotkeys
	Control Hotkeys and the Gulf of Competence
	Alt Hotkeys and the Seamless Novice-to-Expert Transition
	Marking Menus: The First Self-Revealing Gestures

	Design Guidelines
	Self-Revealing Multi-Touch Gestures
	Must
	Should
	Could

	Summary
	Further ￼Reading

	A Model of the Mode and Flow of a Gesture System
	Description
	Application to NUI
	Lessons from the Past
	Adding and Removing Flow Options
	Splitting and Combining Modes
	Tweaking Flow Actions

	Design Guidelines
	Must
	Should
	Could

	Summary

	Know Your Platform
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Capability vs. Quality
	Demonstrated vs. As-Yet-Undemonstrated
	Sensed Objects
	Touch
	Objects
	Stylus

	Sensed Information
	Contact Differentiation
	Hover
	Tracking Data
	Touch Pressure

	Display Properties
	Orientation
	Size
	DPI
	Direct vs. Indirect Touch

	Summing Up
	Must
	Should
	Could

	Summary

	The Fundamentals Have to Work
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should
	Could

	Summary
	further ￼reading

	Number of Contacts
	Description
	Application to NUI
	Lessons from the Past
	Accelerators and Modifiers
	Design for Touch with a Second Finger
	Designing for One User vs. Multiple Users

	Design Guidelines
	Must
	Should
	Could

	Summary
	Further ￼Reading

	Contact Data: Shape, Pressure, and Hover
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Contact Data
	Hover
	Continuous vs. Discrete Hover

	Pressure
	Pressure as a NUI Enabler: Why Bother Sensing Pressure?
	Precise Pressure vs. Pressure Proxies
	Absolute vs. Relative Pressure
	Localized vs. Pad-Wide Pressure
	Continuous vs. Discrete Pressure
	One-Bit vs. Three-Bit Discrete Pressure

	Bringing It All Together
	Must
	Should
	Could

	Summary
	Further ￼Reading

	Vertical, Horizontal, and Mobile
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Biomechanics and Contact Shape
	Interaction Areas and Privacy
	Windowed and Non-Windowed
	Chassis vs. Touch Gestures
	Must
	Should
	Could

	Summary

	The User-Derived Interface (UDI)
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should

	Summary
	further ￼reading

	Lessons in False-Gesture Recognition
	Description
	Application to NUI
	Lessons from the Past
	False-Positive Recognition
	False-Negative Recognition
	Tweaking to Balance Recognition
	User Guessing and Learning
	Pruning your Gesture Language
	Inconsistent Gesture Languages
	Superstitious Behavior

	Design Guidelines
	Must
	Should
	Could

	Summary
	further ￼reading

	RITE with a Purpose
	Description
	Application to NUI
	Lessons from the Past
	Design Guidelines
	Must
	Should
	Could

	Summary
	Further ￼Reading

	A Word About Engineering
	Description
	Lessons from the Past
	Application to NUI
	Summary

	Index

