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Preface

If you have already purchased this book, thank you. We hope you find it interest-
ing and useful. If you’re planning on building an application or platform for next-
generation input hardware, we hope that this book convinces you of the necessity, 
as well as the opportunities and challenges, of creating fundamentally new user 
interfaces for that hardware. We hope that our vision of the NUI helps shape your 
thinking, and that you take the ideas and guidance contained within and apply and 
extend them.

If you haven’t purchased this book yet, then what are you waiting for?
However, regardless of whether you are an owner, a possible purchaser, or a 

user, it will be helpful for you to know something about our view of the NUI and 
how it evolved.

Decades of cumulative experience in creating interfaces for new technology 
led us to two important realizations. First, that new input devices do not, in and 
of themselves, facilitate a better user experience—we argue that the iPhone and 
Microsoft Surface UIs are highly successful in spite of, rather than because of, the 
use of a touchscreen. The second realization is that these input devices, while not 
themselves creating a better user experience, could be enablers for the creation of a 
UI that is more natural to use, and could fundamentally change the way we interact 
with technology. We dub this the natural user interface.

Ironically a natural user interface does not occur naturally. In our view creating 
a natural user interface is a design goal. To achieve that goal takes a clear viewpoint, 
hard work, careful design, rigorous testing, and some luck. The clear viewpoint 
starts with an understanding and vision of what a natural interface is. Our vision is 
that a natural user interface is one that provides a clear and enjoyable path to unre-
flective expertise in its use. It makes skilled behavior seem natural in both learn-
ing and expert practice. It makes learning enjoyable and eliminates the drudgery 
that distracts from skilled practice. It can make you a skilled practitioner who enjoys 
what you are doing. Natural in this sense does not mean raw, primitive, or dumbed 
down. The meaning is best captured by the phrase “that person is a natural.” When 
we hear a person referred to in that way, we have the sense that their performance 
is ideal and that it seems effortless and graceful.

We came to this view over time as a result of painful lessons. This book incor-
porates our learning from those lessons. They are embodied in both the guidance 
we provide at the end of each chapter and our discussion of the history and back-
ground that opens each chapter. The book represents not only our learning but also 
the learning of the teams at Microsoft that created Microsoft Surface and a slew of 
other touch- and gesture-based products. As such, it represents the hard work and 
lessons of many. Our acknowledgment of them and their work does not do them 
justice; hopefully this volume does.
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x Preface

Perhaps this preface has convinced you to buy this book. But more importantly 
it will have succeeded if it convinces you to use the book as a starting point for your 
thinking about and/or building a NUI, as an ongoing reference for your work, and as 
a basis for reflection on your particular design and on natural user interfaces in gen-
eral. We challenge you to take the design, development, research, and philosophy 
of natural user interfaces to the next stage. After all, you’ve already gotten this far.

Daniel Widgor

Dennis Wixon
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CHAPTER

1Introduction

All things will be produced in superior quantity and quality, and with greater ease, 
when each man works at a single occupation, in accordance with his natural gifts, 
and at the right moment, without meddling with anything else.

—Plato

In the decades since the first digital computers were programmed using mechani-
cal switches and plug boards, computing and the ways in which people interface 
with computers have evolved significantly. Some aspects of this evolution have 
both been anticipated and withstood the test of time. Moore’s law is an example. 
The law states that the number of transistors that can be placed inexpensively on 
an integrated circuit will double approximately every two years. The trend that 
this law describes has created opportunities for the growth of computing and its 
adoption into many aspects of our lives. As computers have increased in power and 
decreased in size and cost, new form factors have been created (e.g., smart phones, 
PDAs, and digital cameras), new platforms have evolved (e.g., the Internet), new 
infrastructures have become widely available (e.g., GPS), new industries have 
arisen (e.g., computer games), and new application families (e.g., spreadsheets, 
document processing, image creation, modification and sharing) have flourished. 
All of these trends have resulted in the democratization of computing as the num-
ber of people directly interacting with computers has steadily increased. This pro-
liferation of computing has transcended national boundaries and permeated nearly 
all economic classes. It has changed the way people work, play, and interact with 
one another.

While the increase in computing power has been more or less continuous, the 
interfaces between human and computers have evolved more discontinuously.  
A widely held perspective is that interfaces have passed through phases. These 
phases are loosely defined but can be thought of as the phase of typing commands 
(the command line), followed by the graphical user interface (GUI). More specifi-
cally, most computers with which people interact regularly are based on the desktop 
metaphor (so called because windows are allowed to overlap, like paper atop a desk) 
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and rely on a known set of user interface elements, commonly referred to as WIMP: 
windows, icons, menus, and pointers.

During that evolution some other contenders for the predominant interface, 
such as menu-only systems, did not attain dominance or widespread use. Instead, 
they were limited to niche applications, such as ATMs and televisions. A deeper 
analysis would show that many popular applications contain elements of each style. 
In effect, they are hybrids. For example, typical GUIs make use of menus (pull-
down menus) and forms (dialog boxes and property sheets). In some cases, such as 
spreadsheets, the interaction style includes command-like elements, that is, complex 
formulas and sophisticated functions. Similarly, another class of successful applica-
tions, document processing, also introduces new concepts such as “what you see is 
what you get,” (WYSIWYG) that is, what is on the screen is a reasonably faithful ren-
dition of what will be printed. In both cases, the elements of the GUI are accompa-
nied by particularly useful and appealing aspects that propelled these applications to 
wide adoption. It is important to be cognizant of the fact that these approaches are 
neither preordained nor task neutral. WYSIWYG, for example, fundamentally shapes 
the way people spend their time composing text—simultaneously focusing on both 
form and content.

While a thoughtful interpretation of the history of human-computer interaction is 
complex and nuanced, certain generalizations are evident. The way in which humans 
interact with computers has evolved. That evolution has enabled more people to do 
more things with computers. It has led to a vast and rapid increase of the volume, 
scope, and diversity of the computer business.

There are many perspectives from which we could view this evolution. Some 
are merely tautological. For example, a common view is that more people use 
more computation because the barriers have been reduced and the functionality of  
the machines has increased. While true, that characterization provides precious 
little insight. To provide it some intellectual weight, we need to be clearer with 
respect to what barriers have been reduced and which functions have been pro-
vided. It is also useful to examine closely the development of certain computing 
“niches,” which thrive in limited but well-defined contexts.

Some of the early analysis of the GUI provided just this kind of deeper insight. 
Analysts pointed out that recognizing and choosing were easier than remembering 
then typing. In other words, with its menus, dialog boxes, icons, and familiar work 
spaces, the WIMP GUI represented a lower barrier for users than a command line 
interface. This difference becomes clearer if we consider specific applications. By 
and large, it is easier to learn and use a word processor to create simple documents 
than to edit in a markup language. In addition, the often-overlooked advantage of 
the computer, that is, that it produces revisable work products, was fully realized 
with a word processing system.

Functionality gains are also apparent for most users. Before the computer, a 
skilled typesetter could produce formatted documents, but the average citizen was 
confined to typing final work products in a mono-spaced font, with cumbersome 
correction tools. The combination of reduced thresholds for learning, easier recall, 
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increased functionality for the average user, the reduced cost promised by Moore’s 
law, and the widespread capability to revise one’s work without redoing it signaled 
the explosive growth of a number of well-featured and -designed applications that 
adopted the desktop computer and the subsequent consignment of more traditional 
approaches to specialized niches.

When the desktop GUI was first created and made widely available, its ultimate 
fate was unclear. It was derided by many experts who coined its current name: the 
WIMP interface. Although WIMP stood for windows, icons, menus, and a pointer, it 
implied that the users of the GUI were not the manly men who had mastered the pre-
vious, more arcane ways of interacting with computers. Ultimately, those supposedly 
more manly folks were consigned to the social position of specialists or hobbyists. 
We can see this pattern in many other domains: personal transport, cooking, pen-
manship, and CB radio operators.

Now we stand at the brink of another potential evolution in computing. Natural 
user interfaces (NUIs) seem to be in a position similar to that occupied by the GUI 
in the early 1980s. Like the desktop GUIs, NUIs promise to reduce the barriers to 
computing still further, while simultaneously increasing the power of the user, and 
enabling computing to access still further niches of use. But just as GUIs did not sim-
ply make command systems easier, NUIs are not simply a natural veneer over a GUI. 
Instead, like GUIs, NUIs have a set of strengths based on what they make easier, 
how they make those things easier, how they shape the user’s interaction with tech-
nology, which niches they fit in, and whether or not these niches expand to dwarf 
the space occupied by traditional GUIs.

When examining this history and anticipating the future, we should not be dis-
tracted by single instances. Many of these will be failures and will not represent any 
overall trend. The failure of makes and models of some cars did not end the phase 
of personal transport. The failure of many GUI products and the inevitable consoli-
dation of the marketplace did not impede the overall growth of personal computing  
or prevent GUIs from pre-eminence. It is as dangerous to generalize to the future 
based on a few examples as it is hard to anticipate the future when looking from 
our current perspective.

In this book we do not aim to provide an exhaustive overview of the NUI. We 
do not predict the future of human-computer interaction. We do not assume the 
predominance of NUI-based designs. We do not provide a complete set of rules for 
creating a successful NUI, because NUI is not yet at a state of evolution or standardi-
zation to allow for such a definition.

We can make some relatively safe predictions. NUIs are here to stay. They either 
will find a successful niche, like menu system ATMs, or will come to dominate the 
computer landscape. If the latter comes to pass, we can still expect GUIs to persist 
in specialized environments. The ultimate evolution of the NUI will be determined 
not by the analysts and the critics, but by those who step forward and take the risk 
to build true NUI applications. Here we offer a way to think about NUIs that is coun-
ter to the predominant metaphor. This perspective on the NUI suggests that NUIs 
provide an enjoyable way for novices to move quickly and seemingly effortlessly 
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to skilled practitioners. This approach involves more than being “natural” or intui-
tive. It means that the domain of use and the requirements of context are care-
fully assessed. It also means that the conventions of the GUI should be studiously 
ignored. It requires careful design and rigorous research. We give some guidance on 
how to do those things and how to re-conceptualize the NUI.

We offer a number of essays on the NUI and on methods that can be utilized to 
achieve it, written from the perspective of two journeyman user experience experts 
who have had the opportunity to immerse themselves in the nitty-gritty of design-
ing, engineering, building, testing, researching, and shipping multiple products 
that have come to define the category. Overall, the essays are intended to provide a 
nuanced set of perspectives on NUI systems. These perspectives range from specific 
descriptions of the syntax and semantics of the NUI to broad analyses of the NUI 
in terms of the history of computing. Each essay is composed of the same essential 
elements. Each concludes with specific, concrete design guidelines meant to help 
take words into action. Those guidelines are divided into three types: must, those 
that we believe are necessary conditions to achieving a natural-feeling experience; 
should, those elements that, while nonessential, have been found to add greatly to 
achieving such an experience; and could, those guidelines that may apply only to 
certain contexts or situations.

To frame our collection, we offer a framework that we have evolved for the 
general process of the creation of a gesture-based natural user interface. The sec-
tions of this book reflect the phases of this process, and individual chapters provide 
thoughts, tools, and methods for implementing it. This framework is an evolution 
of classic methods for designing interactive systems, with the addition of elements 
unique to the creation of a fundamentally new way of interacting (Figure 1.1).

Different elements of this book will appeal to different pieces of team build-
ing a touch- and gesture-based product. Chapters 2 and 3 will best be consumed 
by planners and business managers. Chapters 4–11 will feel most familiar to design-
ers, who think broad thoughts early and whittle toward the final product. Chapters 
12–15 might seem most approachable by program managers, who seek quickly to 
understand where they are, where they need to be, and the pitfalls along the way. 
Chapters 16–21 may seem best suited to software developers and testers, who seek 
to carefully define goals and test cases. Chapters 22–26 might, at first glance, be tar-
geted to hardware engineers, who are seeking to find the uses for different sensing 
capabilities in the hardware. And Chapters 27–29 might be seen as targeting user 
researchers, who seek methods for guiding the design process and goals.

Approaching this text with such a discipline-centric viewpoint, however, would 
be a missed opportunity. This book has been lovingly composed by a philosopher-
researcher and a computer scientist-designer who had the opportunity to work 
together closely in multidisciplinary teams to create something special. We highly 
encourage all members of a team creating a NUI application to deeply engage with 
this material, to understand fully our vision for natural user interfaces and our guid-
ance for how to achieve them.
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Our broader goal is to move both the consideration of the NUI and the imple-
mentation of NUI systems forward. We hope that other thinkers and practitioners 
will take the material here as a starting point for reflection, elaboration, construc-
tion, and, yes, even contradiction. We want to move the conversation of what is a 
NUI and how do we create one forward to more sophisticated discussion. We want 
to make reflection on the NUI more insightful and sophisticated. We are optimistic 
that exciting and popular NUI applications will flourish. More than anything else, 
we wish our fellow NUI explorers, researchers, designers, developers, and business 
leaders well. Together, you will determine the future history of the NUI approach to 
human-computer interaction.

FIGURE 1.1

Our framework for the creation of natural user interfaces (NUIs).
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CHAPTER

2The Natural User Interface

Free like freedom, not like beer.
—Richard Stallman

DESCRIPTION
The term natural is often understood to mean mimicry of the “real world.” In our 
view, it is a design philosophy and a source for metrics enabling an iterative process 
to create a product. In this book, we discuss touch and gestural interaction as one 
modality enabling the construction of a natural user interface. However, we believe 
that a NUI can be created with other input modalities as well. Indeed, one could 
imagine following the design guidelines we lay out to create a new kind of inter-
face for the mouse and keyboard, voice commands, in-air gesturing, mobile phones, 
and so on. Input and output technologies offer us the opportunity to create a more 
natural user interface; they do not, in and of themselves, define or guarantee it. The 
natural user interface lies in the UI and experiences we create for use with those 
technologies and how we leverage the potential of new technologies to better mir-
ror human capabilities, optimize the path to expert, apply to given contexts and 
tasks, and fulfill our needs.

The term natural is a powerful one, in that it quickly evokes a range of imag-
ery in those who hear it. The first, and most important, thing to understand is that 
we use it to describe a property that is actually external to the product itself. The 
natural element of a natural user interface is not about the interface at all. Quite 
the opposite. We see natural as referring to the way users interact with and feel 
about the product, or more precisely, what they do and how they feel while they 
are using it.

Most of us can only imagine how a major-league pitcher feels while standing 
atop the mound. He works the dirt with his foot so that it does exactly what he 
expects it to when he moves. He grips the ball in a way so familiar, it feels like part 
of his body. He stares down at the catcher’s mitt. He feels at home.

http://dx.doi.org/ 


10 CHAPTER 2  The Natural User Interface

This is exactly the feeling we want to evoke in our users. Your product must mir-
ror their capabilities, meet their needs, take full advantage of their capacities and fit 
their task and context demands. The trick, of course, is in helping them to feel that 
way the moment they pick it up, instead of after decades of practice (the UI minor 
leagues?).

The introductory quote by Richard Stallman of the free software movement illus-
trates a similar point in the ambiguity in the word free. In the natural user interface, 
natural refers to the user’s behavior and feeling during the experience rather than 
the interface being the product of some organic process. The production of this 
conclusion is the end result of rigorous design, leveraging the potential of modern 
technologies to better mirror human capabilities.

Direct, multi-touch devices hold the promise as a natural input modality. 
Potentially dozens of degrees of freedom allow a level of expressiveness not pos-
sible with a mouse alone. Work in the field has demonstrated that direct-touch 
systems better leverage spatial memory, and multi-touch shows the promise of eas-
ily wielded high-bandwidth input from the user. The goal of those creating a NUI, 
therefore, is properly leveraging this potential. It is far too easy to fall into the trap 
of simply copying the WIMP GUI, which is designed for mouse-based interaction. 
Instead, an all-new interface must be designed with new input actions, new affor-
dances—in short, a new paradigm.

A device that feels truly natural to the user means taking full advantage of the 
user’s bandwidth, a device that behaves as a sort of appendage. By designing and 
building natural user interfaces, taking advantage of modern input technology, we 
stand at the brink of a new era, one in which technology can truly integrate into our 
lives, liberating us from the past of frustration and mediocrity.

APPLICATION TO NUI
It is with this understanding that we begin our exploration of natural user inter-
faces. While natural is an emergent property, it can be reliably achieved by follow-
ing the various principles, processes, and examples we will describe in this book. 
Achieving the goal of creating a user interface that, to its user, feels natural is NOT 
best achieved by mimicry of some other experience, by relying on familiar meta-
phors, or even by directly asking users what kind of experience they would like to 
have.

We must design, research, and engineer these user interfaces. This will be a 
challenge. Most designers have never had to truly design a user interface. Instead, 
they have relied on the designs of others, provided within the connective tissue of 
decades of iterative design. Buttons. Scrollbars. Check boxes. Radio buttons. Each of 
these comes from this iterative design process, started by Engelbart and English, and 
continued by the designers at PARC, Apple, Microsoft, and elsewhere. Creating nat-
ural user interfaces, which leverage new technologies and human capabilities, will 
require no less. Similarly, many researchers are familiar with techniques that refine 
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or evaluate designs within an existing paradigms. While the techniques of research 
may not change in a fundamental way, their goal and their specific application may 
change dramatically.

The main point of this chapter is to help designers, researchers, and managers 
avoid a dead-end street: the belief that a NUI can be created by simply mimicking 
existing experiences. This dead end avoided, we will then examine the many les-
sons that we and others have learned in the process of creating some of the very 
early work in natural user interfaces.

LESSONS FROM THE PAST: THE FIRST APPLE PAD
In 1989, Apple Computer began work on a new kind of platform—one that would 
provide a device that would fit easily into the user’s lifestyle by, among other things, 
recognizing the natural means of output for a human: handwriting. Well, we all 
know what happened: the Newton Message Pad was fraught with problems, among 
them that the handwriting recognition was insufficiently robust—so bad, in fact, 
that it earned a place of honor as the butt of a Doonesbury cartoon (Figure 2.1). The 
Newton has been long forgotten, except by those of us who follow the industry. Its 
successor, however, found far more success.

In 1997, Jeff Hawkins and his team at US Robotics, gave us the Palm Pilot, and his-
tory seemed ready to repeat itself. Once again, a product promised to fit itself neatly 
into our mobile lifestyles and featured handwriting recognition as the method of 
entry. Unlike the Newton, however, the Palm Pilot was a critical and popular bonanza. 
Millions were sold worldwide, and several versions were produced over many years.

A key difference was that Hawkins and his team recognized the limitations of 
their technology. Instead of trying to build a robust recognizer for regular hand-
writing, they developed a special input language, known as Graffiti—a variation of 

FIGURE 2.1

When Doonesbury dedicates a strip to your UI, you really want it to be for a good reason.

(From http://images.ucomics.comics/db/1993/db930827.gif.)

http://www.images.ucomics.comics/db/1993/db930827.gif
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the Unistroke technique invented by David Goldberg of Xerox’s Palo Alto Research 
Center (Figure 2.2). Graffiti simplified the input language in a number of ways, 
but was similar enough to standard Roman characters that it was easy to learn. By 
shifting the burden of learning from the device to the user, the Palm was no less  
natural than the Newton. Indeed, because the recognizer worked so well, it 
enabled an experience that could be felt to be natural, if only by experts who had 
mastered the language. This is one of the goals in creating a NUI—that your system 
continues to feel natural to its most expert users, rather than have them feel per-
petually stuck in beginner mode. A NUI requires learning.

It must be understood that this does not give free reign to the engineer to ignore 
user needs and prior knowledge. What it does, however, is free us from the poten-
tial pitfall of believing that mimicry of an existing experience or phenomenon will 
necessarily yield a natural user interface.

This lesson embodies the key thesis underlying our definition of the natural user 
interface: that our goal is a product that creates an experience and context of use 
that ultimately leads to the user feeling like the pitcher atop the mound: completely 
comfortable, expert, and masterful—a virtuoso of the user experience. The goal is to 
achieve this from the very beginning, for complete novices, and to carry this feeling 
through as the users become experts. And a product that creates the potential for this 
experience at minimal cost in learning time and effort.

space

(•) Heavy dot indicates starting point.

Punctuation Shift = tap once

Extended Shift = Accented Characters Advanced Strokes
Refer to your handbook for details

ShortCuts

Command stroke

Move cursor left

Move cursor right

Next field (Address Edit Screen)

Previous field (Address Edit Screen)

Open record (Address List Screen)

back space return capshift caplock

FIGURE 2.2

The Palm Pilot’s Graffiti text input language.
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How this is achieved is the subject of this book. With a deep understanding of 
human capabilities, technologies, and unique design processes, you will be armed 
to create them.

DESIGN GUIDELINES
The complete design guidelines for NUI are embodied in the various chapters of this 
book. For now, it will suffice to understand that the goal is to build a user experi-
ence that is natural to your user, rather than somehow intrinsically natural.

Must
l	 Create an experience that, for expert users, can feel like an extension of their 

body.

l	 Create an experience that feels just as natural to a novice as it does to an 
expert user.

l	 Create an experience that is authentic to the medium—do not start by trying to 
mimic the real world or anything else.

l	 Build a user interface that considers context, including the right metaphors, 
visual indications, feedback, and input/output methods for the context.

l	 Avoid falling into the trap of copying existing user interface paradigms.

Should
l	 Forget your understanding of what natural means.

Could
l	 Leverage innate talents and previously learned skills. Making an interface that 

mimics some other experience at which your user is already an expert is one 
technique for making them feel like a natural—but it’s not the only one.

FIGURE 2.3

Creating this type of experience is the topic of the chapters that follow.
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SUMMARY
A NUI is not a natural user interface, but rather an interface that makes your user 
act and feel like a natural. An easy way of remembering this is to change the way 
you say “natural user interface”—it’s not a natural user interface, but rather a 
natural user interface (Figure 2.3).
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CHAPTER

3Ecological Niche: 
Computing, the Social 
Environment, and  
Ways of Working

Adapt or die.
—Anonyomus

DESCRIPTION
There is an interdependency between any system and the environment in which 
that system operates. While many would regard this conclusion as obvious, it is all 
too often obscured when we look at the history of computing.

Even considering biological evolution, there is no uniform march forward 
with new species reliably replacing older species. Some species die. New species 
emerge. Some species survive countless years. Cockroaches, horseshoe crabs, and 
tube worms live for millions of years as other species die. In addition, some species 
change so much that their ancestors would be almost unrecognizable today, eohip-
pus, for example.

It might be more productive to think of species as fitting into a niche and surviv-
ing if their niche endures and if they face “manageable” competition or predation 
in that niche. This is very different from a “conventional” view of evolution, which 
sees life as becoming ever more “advanced” and “adapted.” We could call this view 
the niche view and contrast it with the unidirectional view, that is, more advanced 
species uniformly replace less advanced ones.

We can look at the history of computing in a similar way. Conventional wisdom 
sees computing as “unidirectional,” that is, with each new “generation” the previ-
ous generation of computing is swept away, like an extinct species. Applying this 
viewpoint to hardware platforms, we could conclude that the mainframe was sup-
planted by the minicomputer; the minicomputer was supplanted by the personal 
computer in its various forms; and the personal computer will be supplanted by 
the smaller connected computers or mobile phones. This is a unidirectional view of 
evolution of hardware.

Some data would seem to support this view, for example, a view of the growth 
of PC sales in unit numbers and dollar volume in the United States (USA) and the 

http://dx.doi.org/ 
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world (WW) as shown in Figure 3.1—depicts increases of between 4200 and 
15,000%!

But did mainframes actually go away? In human-computer interaction (HCI), was 
the command language replaced by the graphical user interface (GUI)? Will the GUI 
be replaced by the natural user interface (NUI)?

FIGURE 3.1

Sales of PCs.

(From http://www.thefreelibrary.com/ComputerIndustryAlmanac%3A25-YearsPCAnniversary
Statistics%3B...-a0149450229.)

http://www.thefreelibrary.com
http://www.thefreelibrary.com
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A more careful examination of this history leads to a more nuanced and complex 
view. In fact, the various forms of computing morph, adapt, and coexist with new 
forms of computing. For example, the mainframe did not go away as the smaller and 
more personal computers became popular. Instead, the mainframe continued to exist 
in its domain, processing large-scale routine jobs (e.g., payroll). The size of the main-
frame market (measured in revenue) has been surprisingly stable over the years. The 
mainframe market and range of its use just seem tiny because they have been dwarfed 
by an incredible explosion of smaller and more flexible computers. Factors such as 
low cost, wide range of applications, and an ever-increasing ease of use worked in 
true synergy to make these personal computers ubiquitous. Ironically, medium-size 
computers morphed into server arrays where they connect smaller and cheaper com-
puters into useful networks. So we see great growth in the number of and value of 
new hardware platforms that support a wider range of activities.

The same kind of evolution exists in the human-computer interface space. 
Command languages continue to exist in the form of programming languages and 
command procedures and as a way to execute more specialized and technical opera-
tions. Considered broadly, there are more commands running computers than there 
ever were. Every equation in every spreadsheet is a command, and the universality 
and power of command systems are surprisingly large. Within spreadsheets, this “com-
mand ecology” coexists with a GUI ecology of pull-down windows, icons, and menus.

The apparent ubiquity of the graphic user interface stems from several sources. 
First, the GUI is well suited to office work, where it is ubiquitous and obvious. 
Many people labor in cubicles and offices using GUIs and are painfully aware of the 
interface they are using to access functionality they need. Interestingly, there is as 
much or more computing power and as many hours of use in the population of 
gaming consoles as there are in personal computers. Gaming is very widespread. 
The consoles are very powerful. Game players spend a lot of time playing games. 
We might group the various gaming system interfaces as the fun user interface, or 
the FUI. Unlike the GUI, the FUI is mostly invisible to players. They are immersed in 
the game. Similarly, almost everyone who uses a computer today interacts with the 
World Wide Web in one form or another. The web presents its own unique inter-
face of links that change the content of the display and the available choices (links). 
The interactive element links are spread throughout the page and not confined to a 
menu bar or button ribbon. We could call this interface the web user interface, or 
the WUI. The WUI and the FUI peacefully coexist and in some cases (e.g., World of 
Warcraft) work together to the users’ delight.

APPLICATION TO NUI
The historical context outlined above gives us a vantage point from which to  
consider any natural user interface.

First, despite the enthusiasm of its proponents, the natural user interface will not 
supplant the GUI. The GUI is too well adapted to its ecological (i.e., business and 
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social) niche of office work. Keyboards and pointing devices serve the office worker 
very effectively. A NUI would be out of place. Imagine typing a long report on a 
virtual keyboard. That said, the NUI will create a new “niche” of computing. How 
large that niche will be is impossible to say at this time. The NUI is like the GUI in 
that both are examples of an underlying driver that is expanding the overall comput-
ing universe in terms of both size and range/diversity. This underlying driver is the 
reduction in time and effort that users incur in adopting new ways of interacting 
with machines. In other words, as the barriers to functionality contained within, or 
the fun enabled by computing, are reduced, the scope of computing is expanded. 
Second, the NUI and the GUI will likely coexist, leading both to prosper. For exam-
ple, the NUI is well adapted to the niche of leisure and entertainment. There the 
NUI contributes to the fun of viewing content, for example, pictures, or playing 
games. At the same time, the content comes from the GUI world of transferring 
photos from cameras to computers. The games are developed using GUI and com-
mand systems. Considering NUI in the home, we are likely to see an even tighter 
integration, for example, someone browsing the web for pictures, downloading 
them, then manipulating them using the NUI.

The NUI itself may well exist in different “flavors,” much as the GUI systems do. 
For example, the GUI controls of buttons are readily transferred to control systems 
on touchscreens in cars. In contrast, the hierarchy of GUI menus and a separate 
pointing control (usually a joystick-like control that employs pushing and twist-
ing) is not well adapted to a driving environment. Similarly, a NUI interface that 
works well for horizontal interfaces will be used differently when placed vertically. 
Horizontally, it is a table well adapted to games like hockey or bowling. Vertically, 
a NUI would be used more like a white board on steroids, for example, moving and 
merging content from other sources, or even writing. But we would not expect the 
sustained and intense use in the vertical form as we see in the horizontal form. Here 
we see a fundamental principle in action—the new interface accommodates to the 
traditional use that existed in the “old” environment.

LESSONS FROM THE PAST
As we have seen, the past is often misread by the causal observer and the superficial 
historian. A deeper examination leads to the following generalizations:

l	 Hardware platforms and forms of interaction do not replace each other as the 
universe of computing grows. They continue to exist in the “niche” in which 
they always prospered. Their absolute size (revenue) and range (uses) may be 
undiminished in an absolute sense but may seem reduced dramatically as new 
ways of computing and interaction emerge and dwarf them.

l	 Types of computing often combine into useful hybrids that borrow interface 
elements from each other to form systems that are well adapted to a particular 
niche. The spreadsheet, for example, contains command and NUI elements.
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l	 New types of computing often evolve into subspecies that are well adapted to 
one particular environment or another. Horizontal NUIs will be used differently 
than vertical ones. This adaptation reflects the constraints of the context and 
the possibilities that the new interface and technology bring.

DESIGN GUIDELINES
In the context of an ecological niche, the design guidelines for the NUI are not  
different than the design guidelines for any genre of computing. That is, the same 
general principles apply.

Must
l	 Consider the context of use and the new possibilities that the interface brings 

to interaction in that context.

l	 Do not simply translate from one genre of computing to another. For example, 
copying a web application to a NUI will result in an interface that does not 
exploit the possibilities of the NUI.

Should
l	 Be aware that in different environments the patterns of use of an interface may 

be dramatically different.

Could
l	 If the context demands it, consider a judicious mixing of interface elements 

from various styles. This is risky and needs to be done with care.

SUMMARY
The NUI may represent a revolution in computing, not because it replaces existing 
ways of interacting with computers, but because it enables computing to expand 
into new niches that could be of tremendous size and importance. Like previous 
interfaces, the NUI draws its power from reducing interface learning cost. Finally, 
the NUI will evolve into subspecies that will be well adapted to given social and 
business niches.
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CHAPTER

4Less Is More

Everything you always wanted in a beer and less.
—Light beer advertising slogan

Small is beautiful.
—E. F. Schumacher

DESCRIPTION
Start simple and look for every opportunity to build on simple interactions to  
support more complex tasks.

APPLICATION TO NUI
With each new generation of interfaces, developers and designers are faced with a chal-
lenge—building applications that exploit the advantages that the new interface offers. 
A risk in building these new applications is that the designers and developers rely on 
concepts and approaches that worked in the past. In the most extreme case, the unin-
tended result is that the new application is merely a transcription of an old application 
interface to the new genre. Often clients who have an existing application will directly 
ask for a translation. In that case the NUI becomes a GUI with touch. Replacing the 
mouse with fingers does not make an interface a NUI and is not likely to work very 
well for users. Even when there is no pre-existing interface to copy, the team is likely 
to simply not consider the more novel aspects of the new medium and thus is likely to 
produce a pedestrian interface embedded in an undistinguished application.

LESSONS FROM THE PAST
While it may seem unbelievable, I have seen GUIs that drew from the program-
mers’ experience with command interfaces. In one particular example the user 
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was expected to select an operation first, which would render objects as selectable. 
This proved very confusing to users since it introduced a kind of mini-mode, that 
is, when I choose the print function only printable objects are selectable. In fact, 
this interface abandoned a fundamental tenet of the GUI: select first then choose an 
operation. Needless to say, users found it very confusing.

Given the challenge of building an application in a new genre, teams should start 
with the fundamental interactions of a system, perfect them, and then extrapolate 
them to more advanced functionality. When considering a family of applications, a 
team would be wise to start with small and simple applications, and when those are 
perfected, take on more complex applications. Together, these two approaches will 
help the team develop insight about designing for a NUI and increase the likelihood 
that each application is successful.

Admittedly, we are advocating a very “conservative” approach to developing a 
GUI application or a family of such applications. One motive for this approach is that 
when other approaches such as copying an existing interface have been tried, the 
projects have either failed completely or had to restart with a focus on fundamentals. 
However, examining the “definition” we have offered for a NUI application also sug-
gests such a conservative approach. The NUI promises a relatively rapid and enjoyable 
progress from novice to skilled practitioner. In addition the NUI “promises” that the 
process of developing skills and the interaction itself will be fun. It also promises that 
this transition will begin with interaction primitive, a simple action accompanied by 
system feedback that is fundamental to interacting with the system, that are derived 
from interactions in the real world. Those requirements make the development of 
a NUI a daunting task. In contrast, the essential promise of a GUI is that it will use 
some fundamental interaction conventions (e.g., menus, dialog boxes, “what you see 
is what you get”) to build a system that supports a given set of tasks. From its incep-
tion, the inventor of the GUI did not think of it as a way to create easy-to-use systems 
or systems that were “fun” to interact with. Rather, it was a way to “augment” human 
capabilities. Analogously, developing a NUI system is more like creating a game. That 
is, the interaction should be fun, and should introduce new challenges in a gradual 
way. However, game interfaces differ from NUIs in that most games offer a challenge 
as part of the game. In contrast, NUI only offers a path to skilled practice. The devel-
opment of skilled practice may be challenging in and of itself. But the NUI promises to 
make that transition as progressive and seamless as possible.

The recommendation of starting with the fundamental interactions begs the 
question of how does one distinguish fundamental interactions from other required 
interactions. There is no simple rule, but there are three good “clues” for identifying 
such interactions. The first is what interactions are the most frequent, the second 
is what interactions are most likely to be done first, and the third is what interac-
tions can serve as building blocks for more advanced actions. For example, a hypo-
thetical NUI program for landscape design would begin by presenting the user with 
a number of possible designs for different contexts. Landscape elements could be 
moved only to appropriate places. Goals for the design would such as cost would 
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be tracked as the design was created. The growth of all the plants used could be 
simulated over time so that the designer could see how her design would look 10 or 
20 years into the future. Only plants appropriate for a given environment would be 
offered on “plant pallets” (e.g., no tropical plants for northern climates).

We have focused on how a team “should” approach the development of NUI appli-
cation or a family of NUI applications. We are not saying that the NUI can only be 
applied to relatively simple tasks such as viewing pictures or playing simple games. 
Instead, because it removes the additional complexity of describing actions in terms 
of a complex language (command systems), or expressing interaction through a rela-
tively artificial but conventional interaction paradigm (GUI), it promises to make com-
plex tasks and rules easier to learn and perform. For example, the design of complex 
architectural drawings could be made more accessible by allowing users to manipu-
late the architectural objects directly. Their constraints are expressed in how they 
behave, for example, an object that cannot be resized in the real world cannot be 
resized in the application. Objects can only be moved to where they logically fit. 
Objects will by default do the “right” thing when placed in the proper context.

DESIGN GUIDELINES
The design guidelines for NUIs are similar to those for any new genre or medium.

Must
l	 Forget past interaction styles. Don’t simply transcribe an application rendered 

in a traditional medium (web or GUI) as a NUI.

l	 Choose a promising niche for developing a family of NUI apps. Thus far, the 
NUI has shown the most success in social and entertainment contexts. Its 
application to other domains requires an analysis of the way in which the inter-
action would support and teach the rules of the interaction domain.

l	 When developing a single NUI application, start with the most fundamental 
interactions. Perfect them through careful design and testing. Then extrapolate 
those designs to more complex regions in an interaction domain.

Should
l	 Test the fundamental mechanics of the primary interactions before building 

out the entire interaction. When these are working well (i.e., users enjoy doing 
them), build on them.

l	 In building a family of NUI applications, start with simple ones (i.e., those with 
few possibilities and a clear and familiar model of interactions) and perfect 
them. Apply those learnings to more advanced applications.
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Could
l	 Study existing NUI applications. Are they fun to use? Do the interactions seem 

seamless and intuitive? Did users hate to stop using them? If the answer to all 
these questions is yes, then apply what you have learned to your application.

SUMMARY
Creating successful NUI applications requires attention to the mechanics of inter-
action and the constraints of the domain. Imagining a skilled practitioner in the 
domain and designing the system to work the way she does is a good approach.
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CHAPTER

5Contextual Environments

All science is experiential; but all experience must be related back to and derives its 
validity from the conditions and context of consciousness in which it arises, i.e., the 
totality of our nature.

—Wilhelm Dilthey

DESCRIPTION
In Chapter 2 we provided a definition of the NUI. NUIs are not thoughtless applica-
tions of new modalities of input that either mimic actions in the real world or mimic 
existing interface paradigms. Instead, NUIs reframe design and research in terms of 
the following questions:

1.	 How can I create an interface in which users quickly become expert while 
using actions that feel natural to them and build on and extrapolate from nat-
ural actions? (the design question)

2.	 How can I be sure that I succeeded in creating an interface that feels natural 
to the user? (the research question)

In that chapter we used the example of the major league pitcher. To him, stand-
ing on the mound, choosing the pitch, and throwing it are “natural,” that is, they 
feel natural and his behavior is natural. The challenge of the NUI is to move users 
from clumsy and self-conscious novice performance to accomplished, fluid, and 
comfortable performance as quickly as possible. NUIs do this by beginning with 
“self-evident” evident actions, for example, defining the ways of propelling a sphere 
(underhand or overhand) using only one’s body and shaping these actions quickly 
and continuously in the context of skilled performance by the professional.

In Chapter 3, we examined the contextual environment. Drawing on the example 
in Chapter 2, pitching is “natural” in baseball. It fits in the context of baseball. The 
same action would be unnatural in cricket or American football and illegal in soccer.  

http://dx.doi.org/ 
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Each of these environments is highly artificial and stylized with arcane rules and  
traditions. How could the behavior in any of these environments be construed as  
“natural”? What natural means to us is not primitive or unrefined. A natural user inter-
face is not one that magically responds to any action, somehow correctly guessing the 
user's intent. Instead, a NUI fosters the development of skilled behavior and engen-
ders a feeling of mastery by eliciting appropriate actions from users and shaping them 
into skilled behavior smoothly, efficiently, and enjoyably.

But what role do context and environment play in creating a NUI? Practically, 
the team creating a NUI is faced with three questions.

1.	 What are the characteristics of contexts in which a touch-based NUI is likely 
to be ultimately successful?

2.	 What about the environment is likely to elicit actions that will be initially 
successful and that can be shaped and extended to meet the ultimate task 
requirements in a way that is quick and fosters a sense of mastery and enjoy-
ment in the user?

3.	 What does skilled and fluid action look like in a given context?

It follows that careful reflection on the context and environment in terms of 
how they elicit action that is congruent with the actions of the skilled practitioner 
and enjoyable is the key to the success of that particular NUI in terms of gaining  
initial acceptance, promoting rapid learning, and achieving skilled performance.

APPLICATION TO NUI
When we look at specific contexts in which touch-based NUIs have shown  
promise, they tend to embody some common characteristics. First, they are social  
contexts—leisure environments, where people gather to interact, retail environments, 
where people meet to transact business, demonstration environments, where the 
user employs technology to perform before an audience, and public environments, 
where people are enticed to walk up and explore the technology. These latter envi-
ronments are a kind of interactive public art. The NUI enhances those interactions. 
So the NUI works well for tightly “coupled” tasks, where multiple people are work-
ing closely together toward a common goal. Playing games, sharing experiences, 
and completing a complex transaction are good examples. These environments are 
also characterized by intermittent use of indeterminate duration. Again, playing a 
game, sharing experiences, and completing complex social/commercial transactions 
are good candidates. Some of these are social contexts where groups gather and 
dissipate spontaneously and at will. Others are contexts in which people gather to 
complete a shared task that involves complex information and multiple possible out-
comes (e.g., buying a product that has multiple alternatives.) They often take place 
in public places. The intermittent and indeterminate use of these systems necessi-
tates easy introduction and a quick ascension to “expert” use. The fact that they are 
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mostly voluntary means that the interaction must be fun and rewarding for all. In 
many cases the technology will offer enhanced capabilities that make the interac-
tion more enjoyable. Another characteristic of these environments is that users are 
focused on content—the representation of the game pieces, the sharing of photos 
or other content, or the examination or configuration of products.

In addition to these obvious characteristics of the areas where the touch-based 
NUIs seems to work well, there is a more subtle aspect of the contexts in which 
NUIs are effective. That is, the deep context of interaction is a relationship between 
the two or more parties in which the interface is acting as facilitator not only for the 
outcome of the transaction but also for the relationship between the actors.

These contexts contrast sharply with the domain in which the traditional graphi-
cal user interface (the GUI) has been most successful. The typical GUI environment 
is one where users are working in isolation, with their interactions occurring not 
here and not now. For example, they are sending email to each other or they are 
interacting through instant messaging, which has been characterized as “CB radio 
for typists.”

At this point we should review the definition of the NUI in relation to our discus-
sion of context. The “leading skilled effortless practice” aspect of the definition of NUI 
is in some tension with the “most appropriate for context,” and both of those are in 
tension with “social”. Interestingly, “content first” is just another way of saying con-
trols disappear, which is congruent with all the aspects of the NUI definition.

For example, wouldn’t a voice interface for giving commands be more “natural” 
in the context of driving a car? The argument would be that typing while driving is 
not natural. Few would disagree. Would that make speaking while driving “natural”? 
It’s certainly more appropriate to context. You can keep your eyes on the road and 
your hands on the wheel. We’ll leave aside the subtlety of where your attention is 
focused. (The researchers argue that talking on the phone [or dictating] is almost as 
bad as typing, but for some reason listening to the radio or talking with passengers 
is not as cognitively demanding as those activities.)

However, the NUI is defined by three elements:

l	 Enjoyable

l	 Leading to skilled practice

l	 Appropriate to context

These elements are joined by “and.” A NUI must have all of these elements in 
varying degrees. Games are enjoyable, but many have nothing to do with NUI. Many 
training systems (e.g., Mavis Beacon teaches typing) lead to skilled practice, but are 
not NUIs. An ATM is appropriate to context but is not a NUI.

This could be seen as an elaborate evasion, but it’s true of most sophisticated 
definitions. Chess is not defined by any single attribute but by all its elements in 
combination. This is a type of definition that prevents one from falling into intellec-
tual cul-de-sacs. These cul-de-sacs are common with definitions that rely on a single 
attribute. For example, “humans are defined by tool making.” Okay, then monkeys, 
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Japanese otters, and many birds are also humans since they make and use tools. This 
explains why all these species also build cathedrals, create theories of the universe, 
and have wars. In fact, if we consider what makes a human a human to be a com-
bination of many characteristics, we can escape such absurdities. The same logic 
applies to the definition of the NUI.

LESSONS FROM THE PAST
Thinking from a NUI perspective, how do we elicit behaviors that are likely to be 
successful and can form a trajectory of learning that leads to mastery? In creating a 
truly natural user interface it’s helpful to consider the original definition of “affor-
dance.” While some recent authors have narrowed that definition, originally it was 
conceived quite broadly and was rooted in a spontaneous and holistic relationship 
between the actor and the environment, that is, “an affordance is a property of 
whatever the person interacts with, but to be in the category of affordances it has 
to be a property that interacts with a property of an agent in such a way that an 
activity can be supported.” The statement is complex and requires some unpacking. 
First, it says that an affordance is a property of the environment or context. Second, 
the affordance elicits an action. Third, the action elicited by the environment is sup-
ported by the environment. Stated simply, the user is likely to “do the right thing” 
without training. The “right thing” is an action that is successful in the near term 
and increases the likelihood that the next action will be successful.

The naturalness of the NUI begins with a symbiotic relationship between the 
actor and the acting system (the environment). This symbiosis is the starting point for 
design, the touchstone for evaluation, and the determinant of initial success. The NUI 
system reacts in such a way as to show the user the next step or foreshadow the final 
outcome. For example, cupping one's hands allows one to “pick up” liquids to drink. 
The success of retrieving liquids with one hand leads one to try two hands. The way 
in which the hands are held is gradually shaped by the way the water reacts.

This symbiosis between the environment and the user leads to several implica-
tions for design and evaluation.

DESIGN GUIDELINES
As we noted, the first step is forget what you know about designing for GUIs or the 
web. The GUI is interaction mediated by a mouse (or some other pointing device). 
The web interaction is very simple: just point and click. The challenge of web 
design is knowing where to click to get the desired result. The NUI designer should 
forget all she knows about the these highly successful designs and should instead 
begin with a clean sheet. But how do you “fill that paper”?
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Must
l	 Begin with what actions are elicited in this environment. For example, a game 

can begin with the environment and actions typical of that game. Where to 
begin in designing a NUI game of checkers is relatively clear.

l	 Next, consider content. Users focus on content and so should the interface. 
Provide the absolute minimal number of interface elements that are required 
for the interaction. For some interactions that is no interface beyond the 
content.

l	 Third, consider how these interactions might be logically extended so that the 
new actions are easily learned and present the expected result.

For example, one of the popular application on Microsoft Surface is a bowling 
game. The only interface is the pins, the bowling ball, and the lane. The action is 
obvious: roll the ball to knock down the pins. The game is enhanced by the fact 
that you can stretch the bowling ball to cover the entire lane. It is also enhanced  
by the fact you can knock over pins by hand. (Note: An astute reader will object 
that this simple bowling game does not prepare one to be a skilled bowler. That is 
true. In this case the game is an end in itself, just as “pong” or Tetris are games that 
are ends in themselves: the goal of the NUI in this case is to facilitate playing of this 
game, and not of the physical game which it represents).

Should
l	 Interface control elements should not be presented if they are not needed. For 

example, if the user is resizing an object, he simply stretches it with by touch-
ing it in two places and moving his fingers apart.

l	 Most interface elements should emerge in response to user action only to com-
municate the state of the system and suggest the next action or the conse-
quence of the current action.

l	 The number of system states should be few, and the gestures required to 
invoke them should be obvious.

l	 The system should be judicious about changing state mid-gesture.

Could
l	 Start with the beginning and end state of an application, remove all the inter-

face controls, and imagine how the user would interact with the objects of the 
application to move from the start state to the end state.
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SUMMARY
We considered the relationship of environmental context to a gestural NUI. In doing 
so we described the characteristics of environments where a gestural NUI would 
be successful. We also considered the environment inside the application itself. 
What elements would elicit responses from the user? How could we shape those 
responses to teach the user the entire system?

FURTHER READING
Gibson’s theory of affordances offers an important and useful alternative to the cognitive per-

spective often assumed by researchers and practitioners in HCI. Its importance and usefulness 
derives (in part) from its emphasis on the environment as eliciting behavior. This focus on the 
environment steers researchers and designers to look to the visual and interactive design of a 
system for incremental improvements and breakthroughs. At the same time, the theory uses 
a specialized and somewhat arcane language to describe affordances. The third chapter, “The 
Theory of Affordances,” in Perceiving Acting and Knowing (Lawrence Earlbaum, 1977) pro-
vides a good overview of the theory and a perspective on its origins in Gestalt psychology.

For an early and prescient overview of the future of computing, Mark Weiser’s article  
“The Computer of the 21st Century,” which appeared in a special issue of Scientific American 
in 1991 (Sept. 1991, pp. 94–104), shows considerable insight into the future of touch comput-
ing. It can be read to predict the iPhone (active badge), the iPad (pad), and Microsoft Surface 
(live board).
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CHAPTER

6The Spatial NUI

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is.  
I mean, you may think it’s a long way down the road to the drug store, but that’s just 
peanuts to space.

—Douglas Adams

DESCRIPTION
Traditional GUI interaction models are flat, planar, and two-dimensional (2-D). You 
can use some two-and-a-half dimensional (2.5-D) techniques (such as skewing 
planes, adding shadows, and overlapping elements) to make some objects look as if 
they have depth. In contrast, in a touch NUI interaction, models go beyond a simple 
plane to provide depth, encourage immersion, and make objects appear to have vol-
ume or take on real-world three-dimensional (3-D) behaviors so people can navigate 
spatially in all dimensions.

APPLICATION TO NUI
You should not always use 3-D environments. Sometimes, 3-D environments are disori-
enting and overly complex, but your application’s behaviors, transitions, and navigation 
should always consider the z-axis. For example, photos and videos in the Photos appli-
cation on Microsoft’s Surface are inherently resting on a flat canvas, but they rise to the 
surface when users touch them to give the feeling of depth and realism.

Experiences can represent objects volumetrically and leverage a user’s depth per-
ception and spatial memory. Environments can extend well off screen, and users can 
drag the environment around to relocate content. Objects can be stacked in 3-D space, 

http://dx.doi.org/ 
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using depth to sort, distribute, or focus on content. As long as users can use gestures to 
navigate the environment and orient themselves, they can create a mental model of the 
space, its content, and the gestures that they need to access that content without need-
ing to see it all on-screen. Users naturally develop associations between what they want 
to do (for example, play a game) and where they do it (for example, in a game applica-
tion) from memory-triggered context.

LESSONS FROM THE PAST
For many users the GUI was their first experience of “space” on a computer. The 
desktop and the icon view of folders allowed them to use two-dimensional space to 
organize objects. In addition, the WYSIWYG elements of a new generation of appli-
cations (word processors, drawing programs) allowed them to use space in input. 
Previous editors used markup languages to format text; as a result, the text was just 
a series of commands and text objects. The commands controlled layout and appear-
ance and thus manipulated the output space. GUIs and the generation of applications 
associated with them changed that. Users could now interact with documents in the 
same two dimensions (horizontal and vertical) that the document would be rendered 
in. The same was true (more or less) of drawing programs.

Systems that used 3-D representations of objects have been tested in experi-
ments. The results have been encouraging, even though these interfaces used a  
traditional mouse and keyboard.

DESIGN GUIDELINES
Support Using 2-D Planar Space
Depending on your application’s scenarios and context, the viewable space might be 
constrained. In some cases, the canvas is fixed, with a limited content presentation. 
In other cases, the canvas is flexible, enabling users to zoom in and out. Use spatial 
memory in situations where the canvas is larger than what appears in the screen. 
In either case, backgrounds, objects, and controls must consider the z-axis for their 
behaviors and movements.

Must
l	 Create an environment that is optimized for touch in its layout, feedback, meta-

phors, and behaviors. Any item that responds to users’ touch must be at least 
15 mm in size in all directions, and there must be at least 5 mm between mini-
mally sized touch targets.

Should
l	 Leverage spatial memory by enabling users to change the screen layout them-

selves, and consistently position content and controls within your application. 
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In situations with large canvases, make sure that the spatial relationship of 
objects is clear and consistent.

l	 Consider the meaning of spatial relationships. Geographical and other naturally 
spatial content lends itself well to spatial relationship. For nonphysical informa-
tion, consider carefully how the spatial relationship between elements is con-
sidered and remembered. (For example, an organizational hierarchy’s levels are 
strictly hierarchical, because the physical distance between elements has no 
meaning. However, viewers tend to associate vertical position with power, so the 
relative position of two equally “ranked” individuals should be the same, and not 
necessarily moved up because one person reports to a more senior leader.)

l	 In a multi-user system do not allow one user to shift the views of all users, 
unless the task is highly coupled. In loosely coupled or uncoupled tasks, users 
are disrupted if the entire canvas moves because of one user’s actions.

Could
l	 Use spatial navigation (flat and wide) in place of hierarchical navigation (that is, 

menus).

l	 Make sure that the application does not become too cluttered or too sparse. 
Enable users to quickly and dynamically repopulate the screen with an optimal 
information density for the task that they are performing (for example, if users are 
viewing hierarchical data visualizations, provide preferred views of the data and 
note important information such as organizational or educational boundaries).

Adhere to Principles of 3-D Space Utilization (the z-Axis)
Users can clearly see and recognize objects, content, and other elements from a dis-
tance. When users view them at a closer distance, they see more detail, such as addi-
tional information, subtle textures, or hints of reflected light. When users interact 
with interface elements, they reveal an even finer level of detail through sound, visual 
feedback, and movement. For example, icons in Launcher transform into applica-
tion previews when they are touched, and then they change into the live application 
when they are touched again. These actions all provide progressively more detail with 
deeper interactions. As users zoom in closer to objects, the objects should reveal unex-
pected visual or audible details.

Must
l	 For all movable and free-form elements, use visual feedback (depth) to acknowl-

edge objects or controls that users successfully touch by moving the item 
toward the user along the z-axis. (The exception to this guideline is when the 
z-axis is already being used for another purpose, or where precise placement is 
required.)

l	 Adhere to the standard gesture for moving forward and back in the z-axis.
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Should
l	 Use an appropriate 3-D projection. A standard perspective projection does not 

work because users can approach a display from any side.

l	 Use 3-D space in a semantic way, so that the relative z-axis position of each ele-
ment has meaning to the user.

l	 Make the structure of every element feel like it has volume. The experience 
must feel exploratory and invite users to navigate through the volume as if it is 
their own world.

Could
l	 Use the zoom gesture to move the view in and out, rather than to change the 

size of content. The functional difference is that all elements move toward the 
viewer, rather than a single element growing larger relative to the others.

l	 Give 3-D behaviors to 2-D elements, so that, for example, users can turn over 
flat elements and interact with the other side.

l	 Remember that the potential volume of interactive space can be larger than 
what users can view on the screen at any given moment. Allow users to under-
stand that volume can be a vast 2-D canvas and also a fully 3-D volume in which 
content is located and activities occur.

SUMMARY
The use of effective 3-D space can significantly enhance the experience with a NUI. 
Some of these benefits could also be present in GUI interfaces also if it was decided 
to use them. However, in addition to the fact that the use of 3-D space aids in find-
ing documents for the NUI, they are even more significant. NUI systems make users 
comfortable by providing environments similar to the real world. This ability moves 
the NUI beyond the traditional desktop.

FURTHER READING
 Three-dimensional interfaces can provide a wide variety of benefits regardless of where 

they are realized on a NUI or a GUI. These benefits are well documented in two papers 
by George Robertson et al. See Data Mountain: Using Spatial Memory for Document 
Management, G. Robertson and M. Czerwinski, UIST, San Francisco, 1998; http://delivery. 
acm.org /10 .1145/290000/288596/p153 - rober t son .pd f ?key1288596&key2
3134091821&collACM&dlACM&CFID98229772&CFTOKEN82307336; and The Task 
Gallery: A 3D Window Manager, G. Robertson, M. van Dantzich, et al., CHI 2000, The Hague, 
Amsterdam; http://delivery.acm.org/10.1145/340000/332482/p494-robertson.pdf?key1332482
&key24114091821&collACM&dlACM&CFID98229772&CFTOKEN82307336.

 A projection is the mathematical mechanism by which 3-D images are mapped onto a 2-D plane, 
usually in such a way that the images appear to be in 3-D.
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CHAPTER

7The Social NUI

A dream you dream alone is only a dream. A dream you dream together is reality.
—John Lennon

DESCRIPTION
In standard GUIs, social barriers occur because of the input and output system. 
For example, experiences are inherently single-person when users have only one 
mouse, one keyboard, and no touchscreen. The standard GUI supports a classic 
view of the information worker; she is alone in her office working on various docu-
ments (e.g., spreadsheets, reports) or analyzing data. In contrast, many modern 
NUIs are designed for multi-person input, so multiple users can gather around the 
display and interact with it. For example, they can play the same instance of a game 
at the same time. In this way they elevate the activity from a solitary experience to a 
social experience.

The social experience is not limited to the interactions between people and 
the user interface. For a “social interface,” the less communication that happens 
between an individual and the UI, the better. The more communication that 
happens between the people around it, the better. People focus more on each 
other than the computer, so the computer becomes secondary to the group 
using it.

In the video game industry, competitive and cooperative games rival tradi-
tional single-player games as the exciting games in the market. Console games have 
increasingly become the mediator for social interaction that occurs between people 
who are engaged in a game. These cooperative and competitive games occur in two 
forms: “shoulder to shoulder,” where people play side by side, or mediated, where 
people are distant from each other in space or time or both.

You can reuse cooperative techniques from video game design to make other 
NUI applications more engaging, fun, and social.

http://dx.doi.org/ 
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APPLICATION TO NUI
Not all NUI interfaces are designed for shoulder-to-shoulder social interaction. Some 
use NUI principles and approaches to facilitate solitary consumption of content 
such as electronic books or movies online. Other NUI devices are designed to sim-
plify tasks in specific environments, such as using a touchscreen or issuing voice 
commands while driving. Conversely, much of social computing does not involve 
the use of a NUI. Often social computing systems use a classic GUI to provide shar-
ing of information and enable collaborative working with other members of a work 
team who are displaced in space or time or both. In this chapter we focus on NUIs 
that are intended to support shoulder-to-shoulder social interaction.

In order to succeed, the designer of this type of NUI, the social NUI, needs to sup-
plement her NUI design principles with some “social design” principles. Similarly, 
the researcher needs to evaluate the system using pairs or groups of people. Below, 
we list some of these principles for testing and designing social NUI.

LESSONS FROM THE PAST
Considering the history of HCI since the early 1980s, some consistent themes are 
breaking down the barriers between humans and technology and breaking down 
the barriers between people. An overall trend in interface design has been to move 
away from interfaces that require people to express their requests in a specific, 
detailed, precise syntax and an arcane semantics that closely mirrors the way the 
system operates. Instead, the trend in interface design has been toward systems that 
allow for more immediate and natural communication.

For example, early programming consisted of plugging wires in patch panels of 
circuits. As such, it required the programmers to express themselves in the “lan-
guage” of current flow. A great step forward occurred with command languages, 
which allowed people to express their desires in a symbolic way using arbitrary 
and precise command languages that the user mastered over time. Initially these 
languages were often awkward to use—they were logical, with regular syntax and 
systematic semantics—and complete—they covered a domain of work/action. They 
were often intended for specific domains of human activity as reflected in their 
names, for example, COBOL (COmmon Business Oriented Language) and FORTRAN 
(FORmula TRANslation). Command languages for operating systems, for example, 
UNIX and VMS, had similar properties. Most importantly for our purposes here, it 
should be noted that they reflected a “relationship” between a single user and a 
machine (others were involved only peripherally). In addition, interaction was often 
temporally displaced, for example, the user input a long series of commands (a pro-
gram or command file) and the system responded with voluminous output.

With the modern GUI the gulf between the user and the computer decreased. 
With menus and dialog boxes, the GUI eliminated syntax and simplified semantics. 
The user did not have to memorize and recall commands but could recognize menu 
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items. The syntax of commands was totally eliminated or effectively subsumed in a 
dialog box. Combined with the personal computer and its WYSIWYG (what you see 
is what you get) environment, the user could see the immediate effects of her inter-
action. With the introduction of “undo,” the cost of experimentation was greatly 
reduced. However, the GUI was no more “social” than the command systems that 
preceded it.

Computing became more social with the broad adoption of the Internet and 
Ethernet technology. Providing a relatively fault tolerant and standard way for com-
puters to share information naturally resulted in people being able to share infor-
mation. The architecture and its protocols were particularly suited to sharing by 
people who were separated by space and time (not here, not now). Applications 
such as mail (anywhere, anytime) and IM messaging (anywhere, now) exploited 
this technology and were widely adopted. While these developments represented 
a significant advance in bringing people together, they involved a mediated and dis-
placed kind of sharing.

The advent of touch computing and relatively large sharable screens combined 
to produce systems that are not limited to relatively specific and routinized transac-
tions (like grocery check out). This enables a new kind of computing: the social 
NUI, where people can share experiences in the here and now and use the com-
puter simply as a supporting mechanism.

The field of supporting multiple users on a single screen is known as single dis-
play groupware, a term coined by James Stewart and his colleagues. Of particular 
interest is a piece of work done by Mark Hancock and his colleagues, who where 
investigating how to give audio feedback to multiple users simultaneously. Their 
paper provides a variety of recommendations and some surprising findings worth 
reading more about. Another issue of particular interest is known as “inter-user task 
coupling,” which is of critical importance whenever an application is intended to 
be used by more than one user simultaneously.

INTER-USER TASK COUPLING
A critical element of social computing is considering the issue of task coupling. At 
any given time, multiple users who are working around a multi-user device might be 
engaged in multiple levels of task coupling. There are three distinctive levels of task 
coupling:

l	 Highly coupled tasks: Users help each other accomplish the same task. For 
example, two users touch two portions of the same object to perform a mani-
pulation, or two users look for the same album in a large collection.

l	 Lightly coupled tasks: Two users try to achieve a result that depends on them 
both, but they are engaged in different tasks to achieve it (sometimes called 
divide and conquer). For example, one user searches for an album in a large 
collection while the other user searches for album art to apply to it. Another 
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example is when the Chief of Fire and Chief of Police can manage different ele-
ments of a crisis.

l	 Uncoupled tasks: Users share the same space, but they are engaged in separate 
tasks. For example, two users search through the same collection of photo-
graphs, but each user is looking for different pictures, or one user is searching 
for photographs, while the other user is checking his e-mail.

How well your system supports these different levels of inter-user task coupling 
will affect how successful it will be as a social NUI.

DESIGN GUIDELINES
Must

l	 Test designs with multiple users simultaneously interacting.

l	 Consider how you want to support different levels of coupling in the tasks, and 
how to support varying levels of coupling within the same application. Consider 
how multiple users will utilize your application. Will it be on a mobile device that 
is passed around? Will it be on a single screen that multiple users will view shoul-
der to shoulder? Will it be on a table where users will sit across from one another?

Should
l	 Create an experience that comes alive with several users, so that the experi-

ence is more fun or efficient when many hands are working simultaneously.

l	 Enable a single user to enjoy the experience without requiring other users.

l	 Enable new users to join, so that the approval of additional users allows them 
to easily engage with your application, without disrupting other users already 
present.

l	 Be able to continue with fewer users, allowing one user to leave without dis-
rupting all others’ experience.

l	 Support multiple coupling levels by enabling users to perform tasks together to 
varying degrees. Do not segment the space into areas for particular functions 
(for example, this side is for performing task A, and the other side is for task B). 
Allow any function to be performed in any space.

l	 Enable many users to simultaneously use content and controls. Do not block 
progress by requiring all users to use a common set of controls. Instead, allow 
users to break up portions of the task by dividing up the controls.

l	 Do not break from the paradigm of direct-touch input when users are per-
forming highly coupled or lightly coupled tasks because direct manipulations 
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beneficially create consequential communication. For example, if users are 
searching through objects by physically moving them, their progress is clear 
by the speed of their movement and its location on the screen, and can be seen 
effortlessly by other users through peripheral vision. Changing this to a virtual 
device removes this communication.

l	 Support consequential communication by making system changes clear to all 
users. For example, when a person uses two hands to zoom in on a map, any 
observer can clearly see how and why the zoom changed.

l	 Avoid the use of ambiguous audio feedback by making sure that the success 
or error of a touch is not tied to an audio cue. There is no mechanism to help 
users distinguish the cause of two simultaneous audio cues.

l	 Do not provide multiple system modes for input touches. For example, in a GUI 
application, when a user selects a property to apply to an object, the mouse 
pointer changes mode (such as turning into a paint brush). This concept does 
not work with any multi-touch system: which of the 52 contacts should become 
a paint brush? This is an important, fundamental difference between single-
touch and multi-touch systems. This problem is worse in multi-user applications, 
because one user who puts the system into a particular mode can significantly 
disrupt all other users.

l	 Do not attach shared controls to one side of the display, because users will be 
forced to reach uncomfortably close to another participant to use the control. 
Instead, enable users to move controls and share them or to dedicate the control 
to a particular user while he performs some lightly coupled or uncoupled task.

l	 Communicate ownership through the location of content. If new content is 
“owned” by a particular user, place it in front of that user. If the group shares 
ownership, place the content in the center.

Could
l	 Enable users to divide up their tasks and to decide for themselves whether they 

will be engaged in a shared-display, single-user session, or in a truly multi-user 
session.

l	 Provide methods of dividing up a task with various levels of coupling so that 
users can work in parallel. For example, enable users to define interaction 
areas that they can dedicate to a particular function, by specifying what is per-
formed in a particular region of the screen.

l	 Provide modal spaces that allow input to change modes based on the location 
of the touch. For example, if you want users to be able to paint and annotate 
an object, provide regions of the screen where they can drag the object and 
where touches are then mapped to either paint or annotate. Make sure that 
users can also move these regions to enable users to divide their task.
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FURTHER READING
Stewart, J., Bederson, B., and Druin, A. Single display groupware: A model for co-present collabora-

tion. Proceedings of Human Factors in Computing Systems (CHI 99). ACM Press, 286–293. In 
this work, Stewart et al. define the term single display groupware, discuss the model, and com-
pare it to traditional computer collaboration with remote participants. They also describe the 
requirements that SDG places on computer technology, and their understanding of the benefits 
and costs of such systems. They also present the results of tests run with 60 elementary school 
children using their technology.

Hancock, M. S., Shen, C., Forlines, C., and Ryall, K. Exploring non-speech auditory feedback at an 
interactive multi-user tabletop. Proceedings of Graphics Interface 2005, 41–50. In this work, 
Hancock et al. point out the inherent ambiguity of giving audio feedback to multiple users 
simultaneously. They examine various methods of personalizing the audio feedback to reduce 
cross-talk.

Consequential communication occurs when the behavior of users who are interacting with the 
system also provides another user with information about that interaction.
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CHAPTER

8Seamlessness

There are unknown forces in nature; when we give ourselves wholly to her, without 
reserve, she lends them to us; she shows us these forms, which our watching eyes 
do not see, which our intelligence does not understand or suspect.

—Auguste Rodin

DESCRIPTION
Seamless experiences enable users to be immersed so they embrace new experi-
ences. You can create seamless experiences by creating an environment that leads 
users to suspend their sense of disbelief, no longer comparing their actions to a 
defined pattern, and experience a direct connection between their actions and the 
objects and operations of the system.

LESSONS FROM THE PAST
Seamless experiences are those in which users are cognitively and emotionally 
immersed so that they embrace these new experiences and rapidly progress to skilled 
practice. You can create seamless experiences by designing a system that leads users 
to suspend their users’ sense of disbelief.

The suspension of disbelief refers to a person's willingness to accept something 
as true or sufficiently real even if it is fantastic or impossible in the real world. The 
combination of the suspension of disbelief and interactivity makes video games 
appealing and makes them seem even closer to real life. For many years, the game 
industry has focused on building immersive worlds that simulate a living, breathing 
environment in an emotionally engaging and approachable way.

A second element of a seamless experience is that the self-monitoring that is 
often part of learning new skills has disappeared. The actor no longer monitors her 

http://dx.doi.org/ 
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actions, comparing them to an idealized template. New learners often approach new 
skills with a strategy of “objectifying” themselves and monitoring their actions on a 
moment-by-moment basis. (They may also develop strategies—verbal formulas that 
“trick” them into skilled performance.) In contrast, experts act as if there is a direct 
connection between their actions, any tools that they are using, and the resulting 
effect. Their actions are fluid and whole rather than halting and particularized.

APPLICATION TO THE NUI
One way to suspend disbelief and encourage fluid action is by mimicking real-world 
objects and using virtual-world capabilities to extend the objects beyond what is 
possible in the real world. Imagine an object that initially appears as a globe that 
you can spin by flicking it with your finger. You touch a location on the globe to 
zoom in closer. Each touch zooms in further until you see points of interest that you 
touch to create a personalized itinerary. The object is not a spinning globe that can 
create itineraries, but disbelief is suspended when the virtual object mimics its real-
world counterpart.

To suspend disbelief successfully, erase the line between the physical and vir-
tual worlds in a way that is seamless and in which the performance of the technol-
ogy is flawless. A NUI experience must respond continuously to fingers and physical 
objects that are placed on it and must immerse users in a better-than-life experience. 
For example, exploring a virtual database of treasured objects is both real (these are 
representations of real objects) and magical (I can control them in exciting ways). 
These actions themselves enhance any experience.

When users directly manipulate objects on-screen and with their fingers the 
experience can quickly feel seamless and thrilling. The representation of physical 
objects makes the experience feel seamless between the physical and virtual worlds 
and between one’s self and one’s actions. To perpetuate the suspension of disbelief, 
the system must respond continuously to fingers and by displaying information on 
the screen in expected ways.

A final word about seamlessness—it is fragile. Any seemingly small disturbance 
and the entire illusion is broken and the experience is now disjointed. If the system 
is slow, or if it responds in an unexpected way, then the experience is no longer 
seamless. The same principle applies in the real world. To use our baseball meta-
phor, a bat that is too heavy or too light leads to a feeling of clumsiness and inhib-
its both performance and the experience of seamlessness. Ironically, highly skilled 
practitioners may be more sensitive to subtle differences in the tools or instruments 
they use. In a way their senses are more attuned.

Must
l	 Respond to every contact. Feedback shows that the system is responding, and 

people will not wonder whether the object is broken or malfunctioning.
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l	 Respond immediately to every contact. This immediate response blurs the line 
between the real and the virtual.

l	 Make every transition fluid. Every object and visible property change must 
smoothly animate and transition into and out of existence, or between changes. 
Nothing should abruptly appear or disappear.

Should
l	 Make feedback whimsical, magical, and either expected or/and informative. By 

expected we mean that it should make sense to the user. Moving an object by 
touching and dragging is a good example. Informative means in a subtle but 
effective way show the users what they should do next. That kind of feedback/
feedforward makes learning seamless.

l	 Create transition animations that communicate state and relationship changes 
and contribute to a consistent interaction paradigm. This ultimately provides 
the personality of the application.

l	 Mimic the real world in your transitions by using notions such as mass, accel-
eration, friction, viscosity, and gravity.

l	 Make sure the controls for starting and ending and for major state changes are 
always visible. This visibility is in contrast to systems that embed major func-
tions within menus.

l	 Break from real-world behavior to match user intent. All interaction metaphors 
start with physical manipulation, and then extend it. (For more information, 
see Chapters 9, Super Real, and 10, Scaffolding.)

Could
l	 Play with physical reactions. Users accept a lot of reinterpretations of reality 

when they are interacting with virtual objects. You can modify the physical 
responses to meet the needs of your application.

SUMMARY
Seamlessness is one of the necessary characteristics of the NUI. An interface with 
obvious discontinuity or one the breaks the user’s sense of connection to the 
objects and her own behavior cannot be a NUI. While any interface can become 
seamless, with practice NUIs are designed to migrate the user quickly and with plea-
sure to skilled practice. Making seamlessness a goal of the design is a path to the 
NUI. We have outlined several techniques to design a seamless interface. However, 
perception of seamlessness is in the hands of the user, so seamlessness must be 
tested with users.
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FURTHER READING
Seamlessness is easy to grasp but difficult to fully explain. One reason is that once one starts to 

explain seamlessness, it becomes a construct and loses its essence. One of the early attempts 
to characterize the broad implications of seamlessness was a narrative written by a philoso-
pher who studied archery in an attempt to better understand Zen philosophy: Zen in the Art of 
Archery, by Eugen Herrigel, Pantheon Books, 1953. The book is short and easy to read, but its 
meaning can be difficult to grasp.
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CHAPTER

9Super Real

Any sufficiently advanced technology is indistinguishable from magic.
—Arthur C. Clarke

DESCRIPTION
Because touch is inherently physical, it creates a sense of direct interaction with and 
control of technology. You can create more fluid, natural experiences by mimick-
ing real-world physical interactions and augmenting them beyond what is possible 
in the real world. Super realism pushes beyond what is physically natural so that 
experiences do more than is possible in the real world. At the same time, super 
real is an intuitive extension of the real. Super interactions are both grounded and 
magical.

For example, on the iPhone one can contract or expand an image by touching it 
with two fingers and then moving one’s fingers together (contract) or apart (expand) 
(Figure 9.1). It is as if the image were made of rubber and can be stretched. This 
ability to zoom in and out by just touching represents a kind of naive physics and is 
delightful to users

In other applications such as the URP (Urban and Rural Planning system), one can 
use actual physical models to simulate an urban environment. One can simply pick up 
buildings and place them on the screen. The system enhances the experience by allow-
ing the user to simulate and change the angle and intensity of sunlight (for example) 
as the day progresses. One can also inspect the model from different viewpoints, for 
example, pedestrian vs. birds-eye view. Similarly, one can change the building material 
by touching the virtual building with a material wand.

These examples and many others illustrate the power of the super real. The 
system works as we might expect it to because it mimics the way objects work in 
the world, that is, it’s real. At the same time, we can interact with these objects in 
extraordinary ways (the super) that do not require an abstract language with arcane 
syntax or a series of interactions with cumbersome controls.
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To create natural interactions, create the base of the interactions in the real 
world and then extend them in intuitive ways. To create super real interactions, 
leverage the possibilities of virtual objects in digital environments to exceed what is 
possible in the real world.

LESSONS FROM THE PAST
It has been a well-established tradition to design systems that draw from people’s 
knowledge and experience but extrapolate that knowledge and experience in 
desirable ways. More “traditional” systems like the GUI follow work practice but 
extend it in ways made possible by technology. These systems and products are also 
enticing to users because they greatly increase the rate of productivity, create new 
possibilities for work/creativity, can provide an immediate and positive emotional 
experience, or some combination of the three.

The GUI and its associated generation of applications were more likely to 
increase productivity and create new possibilities for work than to excite users. 
More precisely, experiencing the “thrill” of using a typical GUI application involved 
learning a new way of working. Admittedly, many GUIs drew on some elements of 
the user's prior experience and eliminated the need to memorize and correctly type 
arcane commands with prescriptive syntax. They also capitalized on our knowledge 
of the electromechanical world. For example, they had buttons that one pressed 
to activate functions. Even the names of these types of controls drew on analogies 
from the physical world. For example, “radio buttons” mimicked the action and 
logic of buttons on electromechanical radios. That is, you push one button and the 
others are “deactivated” as the station is changed.

However, this approach, while very powerful, creates its own challenges. For 
example, I no longer have to remember commands; I just have to recognize them. 

FIGURE 9.1

A user scales a photo by using a two-finger gesture.
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But I do need to remember where they were in a large maze of menu choices. Even 
more subtly, the commands often change the user's understanding of their work 
products. For example, on an electric typewriter the user could hit a return key and 
simply move the paper up and the point of typing down. In contrast, hitting the 
return key in a full-screen editor inserts “invisible” characters (carriage return and 
line feed) that also serve to mark the end of paragraphs. Use of the tab key was even 
more confusing to the new user.

As the interface and implicit model of a text editor were learned, one could 
experience the joys of spell-checking, search and replace, and revisable documents. 
Even more thrilling was the new possibility of creating professional-appearing docu-
ments by using fonts, inserting figures, and creating styles.

A NUI promises to shorten the learning curve by replacing a maze of controls 
and menus with simple actions, gestures, affordances, and feedback. It also prom-
ises to keep the interaction fun by making the interaction itself fun. You don’t need 
to wait for a final work product to feel the joy.

But all these goals are easy to discuss and hard to achieve. Below is a set of prin-
ciples to help the development team create an interface worthy of the NUI title.

APPLICATION TO THE NUI
Must

l	 Create immediate responses to all user input that will receive a response. Pre-
buffer content, provide a transition, or use other mechanisms to make sure that 
every touch receives an immediate and meaningful response. An application 
without immediate responses detracts significantly from the user experience.

l	 Enable single-finger drag and flick movements on movable content. You must 
always define a single-finger drag and flick to make sure that users can always 
apply these basic manipulations to all content.

l	 Enable inertia on objects and content that users can move about the screen. 
Inertia contributes significantly to the sense of a natural environment.

l	 Do not use time-based gestures on content. Time-based activations introduce 
mandatory delays for expert users, and they also detract from the sense of a 
natural environment.

l	 Enable users to manipulate content directly, rather than through user interface 
controls. For example, use a scale manipulation instead of a zoom button.

Should
l	 Begin the experience with a familiar environment and behaviors, so users 

quickly feel comfortable in performing explorations. For example, to create 
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this type of experience, mimic the metaphors of Surface Shell or the natural 
environment around the Microsoft Surface unit.

l	 Enable quick discovery of delightful interactions, so users can quickly accom-
plish simple tasks or simply play with the system. Early success creates famil- 
iarity, confidence, and a willingness to explore.

l	 Consistently use transitions and make sure the application does not slow the 
processor unit. Lagging due to processor saturation makes the screen and input 
display seem to suffer from random movements.

l	 Make the experience feel user-driven by ensuring that each state change is 
clearly in response to user actions. For example, if a user prefers a particular 
orientation of content, do not "snap" to that orientation. Instead, use a slowing 
technique that does not employ a step function.

l	 Do not innovate for the sake of novelty. All interactions in your application 
should be based on the foundations in the toolkit you are using including both 
the manipulation and inertia processors or should be natural extensions of the 
interactions that your users perform.

l	 Always show signs of life, even when the user is not interacting. For exam-
ple, the Water attract on Microsoft Surface was designed to be constantly in 
motion, but it is never distracting.

l	 In creating this feeling of life, make sure that the behavior is subtle to avoid 
being annoying or distracting. Do not cause the application's state to actually 
change; instead, change only background and graphical elements.

Could
l	 Consider what advanced, expert functionality you want to enable in addition 

to natural interactions. Provide a mechanism that extends natural behavior 
to transition the user from a novice to an expert. For more information, see 
Chapter 10, Scaffolding.

l	 Provide continued delight and discovery over time, in minutes, hours, days, or 
months. For example, the Water attract application begins with gentle ripples 
to entice users, responds to every touch to give them success, and ultimately 
draws their attention to the access points to enable deeper engagement.

l	 Provide a path to transition novices to experts. If the same user will use your 
application for an extended period of time, create distinct usage patterns and 
methods for novices and experts, so experts can interact more efficiently. 
Enable novices to become experts without instructions so they use the applica-
tion for the long term.
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SUMMARY
One part of the promise of the NUI is to make interaction with technology seem 
like magic. Magic is delightful. The magician makes the impossible seem easy and 
wondrous. Her magic often is an extension of the real that seems impossible but 
that we might extrapolate. It is a kind of “plausible impossible.” When cartoon char-
acters run off a cliff but do not fall because they have not realized they have passed 
the cliff edge, they are making the impossible seem plausible (you won’t fall if you 
don’t realize you are in space). The extension of the joke is that the protagonist can 
“compensate” by running back to the cliff edge quickly and thereby delay the fall 
just long enough to grab the edge of the cliff before falling.

The same principles apply to our interaction with NUI technology. It works in 
delightful ways that we might hope and expect. But then when we try something 
that is plausible but impossible, we discover to our delight that that works, too.

That’s easy to say and hard to achieve. But by applying the principles above, 
being creative, testing your interface, and being fortunate, it can be done.

FURTHER READING
The paper Reality-Based Interaction: A Framework for Post-WIMP Interfaces, CHI 2008 

Proceedings, April 5–10, Florence Italy, pp. 201–210, by Jacob et al., provides an excellent dis-
cussion of the super real. The authors analyze the ways in which an interaction can be reality 
based, for example, use naive physics to employ body awareness, and build off skills and the 
like. It also compares these aspects of reality-based interfaces to the enhanced capabilities that 
technology typically brings, such as expressive power and efficiency. Often these are thought of 
as being in opposition. What is natural cannot also be powerful. The concept of the super real 
invites design teams to try to synthesize both ends of the polarity. It promises that an interface 
can be both intuitive and powerful.
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CHAPTER

10Scaffolding

When one puts up a building one makes an elaborate scaffold to get everything into 
its proper place. But when one takes the scaffold down, the building must stand by 
itself with no trace of the means by which it was erected. That is how a musician 
should work.

—Andres Segovia

DESCRIPTION
Scaffolding is the creation of a design that promotes autonomous learning by 
employing actions that encourage users to develop their own cognitive, affective, 
and psychomotor skills.

APPLICATION TO NUI
Our vision of NUIs is relatively simple to state in principle, but can be very hard to 
achieve in practice. That vision is that the user moves from “novice” to “expert” 
quickly and with pleasure. By novice we simply mean someone who uses the sys-
tem for the first time. By expert we mean someone who uses the system in the way 
that the designers intended, feels pleasure in those activities, and has achieved that 
level of competence without the slow and tortuous learning that is typical of mas-
tering many new interfaces. We also imply that the intended use is not a trivial one, 
for example, using an ATM, where the functions are very limited and the user is led 
through the interaction step by step and only needs to push the “correct” button. 
(Note: We don’t mean to minimize the importance and challenge of creating and 
testing effective designs for these types of interfaces; they are just not NUIs.)

One good way to achieve this vision is to use scaffolding. Scaffolding is a 
teaching method that breaks down bigger challenges (such as “How does this 
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whole system work?” or “What are all the possibilities of this system?”) and focuses 
on smaller problem-solving challenges (such as “How do I initiate this one action?” 
or “What can I do next?”). These small problems are addressed through specific 
prompts, hints, and leading questions. Scaffolding provides supportive structures and 
situations that encourage active exploration. It differs dramatically from approaches 
that use memorization and repetition (the “drill and kill” approach). Scaffolding also 
eschews the use of reference information in favor of immediate and simple cues that 
lead the user to the next action. In other words, when done well, scaffolding inte-
grates learning and doing. The user is rewarded by performing successfully through-
out the learning process. Using scaffolding requires deconstructing tasks into small, 
self-evident steps that minimize trial and error and preclude the cul-de-sacs typical of 
learning functionally rich computer systems.

As part of scaffolding, present users with only the fewest reasonable choices at 
a given moment. Those few choices should be supported by affordances to lead the 
user’s next action. The action can then be reinforced by confirmation and/or the 
next affordance. With a relative few and obvious choices, this approach simplifies 
decision making, discloses information or required choices over time, and simplifies 
a user’s decision making and action. As a result, the system is easier to use and enjoy.

However, simplicity need never mean simplistic; simple processes and tasks can 
be incredibly rich and powerful.

LESSONS FROM THE PAST
Many of the effective ways of learning to use interfaces can be characterized as scaf-
folding. For example, the use of familiar metaphors at either the macro or micro 
level can be thought of as scaffolding. A macro example is the use of columns and 
rows in a spreadsheet. This representation builds on the ledger book, which also 
used columns and rows of figures and which was familiar to the existing popula-
tion of financial analysts. At the micro level, the typical GUI contains scaffolded ele-
ments, such as buttons. The virtual buttons look like physical buttons and elicit the 
intended behavior (pressing) from the user.

Another scaffolding concept is the idea of presenting limited options to the learner. 
That approach is also characterized as “training wheels.” The system prevents the user 
from “falling” into the deeper complexities of a system’s full capabilities. New con-
cepts are introduced when the user has mastered more basic functions and is ready to 
learn new things. In other words, the training wheels are slowly removed.

This approach contrasts sharply with some traditional approaches in which the 
user is exposed to a full system model via “reference documentation.” It also differs 
dramatically from many overly simplistic help systems that simply restate the terms 
already used in the interface, for example, “Use the file menu to save documents.” 
Finally, this approach diverges from video instruction. Video instruction requires 
users to stop what they are doing, watch a video, and then transfer that knowledge 
to their task at hand. While the video may make the transfer more straightforward, it 
still requires that the user switch out of context.
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DESIGN GUIDELINES
Must

l	 Ensure that all likely actions lead to either prompting for the next step in the 
action sequence or foreshadowing of the state of the system/object when the 
action is finished.

l	 At the appropriate time, show users affordances that guide users to access the 
unseen content or functionality. For example, animate a list of songs when it 
appears. Users should see the additional content beyond the last song title, for 
example, a song title partially displayed. This implies that more songs are listed 
below; in other words, the shown list is incomplete. If the user touches the 
content, then it should move slightly to show that it can be scrolled.

l	 Require explicit and intentional user input to activate destructive functions or 
to cause larger changes or transitions. This input is especially important for 
transitions that affect more than one user, and even more so when users are 
engaged in tasks that are not highly coupled. For example, to launch an appli-
cation, users must touch the application once to see the application preview, 
and then touch it again to open the application.

l	 Foreshadow upcoming results so that users can reverse their actions. For 
example, during the resize of an image, if the image is about to jump to full 
screen (obscuring other images), show an outline of the image or a transparent 
version of the image at full-screen size. Then the user can either reverse and 
negate that action (the image will not jump to full size) or remove her fingers 
so that the image becomes full size.

Should
l	 Reduce the number of features in your applications. Additional features add 

both power and complexity. Instead, provide a premium experience in the pri-
mary task that the application offers. Once the primary experience is working 
well, that is, you have tested it with the intended audience, then judiciously 
add new features, testing as you go.

l	 Make sure that the set of features is focused on the particular task. Many appli-
cations provide lots of functionality that enables many separate tasks. Make 
sure that your application’s task is clear and that its features focus on perform-
ing that task well.

l	 Provide a clear path from novice to expert so users can move from the initial 
view of the application to where you ultimately want them to go. For example, 
if the novice users are individuals who are working on highly coupled tasks, 
and you want them to perform different loosely coupled tasks, you should visu-
ally divide your application with tools to support each task on separate sides of 
a rectilinear interface.
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l	 Make sure essential features are immediately discoverable, so that users can 
begin using the system without rote learning. For example, if your application 
is about creating a document, provide a blank document for creating content 
immediately. Do not require the user to access a menu to create the blank 
document or to access the most common tools for document editing. Do not 
explain saving files and folders until the user has something to save.

l	 Encourage discovery through exploration, so that further functionality is 
revealed as users continue through the experience. For example, in a music-
browsing application, make album covers become controls, so users can touch 
them and flip them over to reveal the contents of the album.

l	 Use consistent interaction metaphors within your application. For example, if 
you use the flipping technique that is described in the preceding item, make all 
objects use the flipping technique, providing additional interaction capabilities 
on the back of each object.

l	 Hint at deeper possibilities, without taking the focus away from the content. 
For example, when users first launch a music application, have the albums 
appear on the display and a few flip over to demonstrate the functionality.

l	 Make sure visual indications of touch are accurate so that the users are never 
misled as to what is touchable. For example, disabled buttons must be visually 
distinct from enabled buttons.

l	 Make sure feedback contributes to a better understanding of the system and its 
state. For example, when users touch a control, it moves to the front, grows, 
and displays a drop shadow, indicating a change in its position along the z-axis 
and reinforcing its position and demonstrating that it is on top of the content.

l	 Put users in control, so that they can always understand the state of the appli-
cation and how to proceed. Do not provide too many automated actions. Keep 
controls enabled and logical at all times.

Could
l	 Reduce the number of available paths and choices, so that the next step and 

available options are always available to users. Achieve the correct balance 
between the number of choices and paths to ensure that your application 
meets the functionality needs of its users. The balance is often apparent only 
by conducting user testing.

l	 Consider how multiple users will learn together. Users, especially children, 
invite others to explain the use of the system.

l	 Provide instructions within the flow of the application, instead of requiring 
users to break their concentration and search through a help system.
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l	 Make all content touchable, so that some visual response is provided no matter 
where the user touches on the screen.

l	 Clarify errors, so that when the users touch the application, they can distin-
guish between hardware errors (the system did not detect the touch), state 
errors (the touch was detected, but the touched item is not in a state where 
it responds the way that they expected, such as being disabled), and semantic 
errors (the touch was detected, the application is in the state they expected, 
but the application’s response to that touch is not what they expected). You 
can clarify these errors by providing clear visual feedback with information 
about all of these levels.

SUMMARY
Scaffolding is a powerful approach for creating rich NUI applications that are a 
pleasure to learn and use. Like many powerful approaches, it requires a deft design 
touch and a sophisticated understanding. It involves an in-depth understanding of 
the context of use and of users’ expectations. It also necessitates a clear vision of 
skilled performance. The temptation to put reference information in the help sys-
tem or use video or extensive tutorials should be resisted. By focusing on learning 
by doing and using a step-by-step approach, users can attain skilled performance 
enjoyably and feel a sense of accomplishment throughout the learning process.

FURTHER READING
In the 1950s Jerome Bruner introduced the scaffolding approach to describe language learning. 

This work was based on the seminal thinking of the famous psychologist Vygotsky. A defini-
tion of scaffolding and a review of the history of the concept is provided by Susanne Lajoie in 
Extending the Scaffolding Metaphor in Instructional Science (2005), 33, 541–557.

Richard Catrambone and John Carroll provide the first description of a training wheels approach 
to learning a system in Learning a Word Processing System with Training Wheels and Guided 
Exploration in CHI  GI 1987, Proceeding of the CHI Conference, 1987, 169–174. Available through 
the ACM Digital Library, http://delivery.acm.org/10.1145/280000/275625/p169-catrambone.pdf?key
1275625&key24722813821&collACM&dlACM&CFID99878216&CFTOKEN71839147.
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CHAPTER

11User Differentiation

Know thy user, for they are not YOU.
—Ancient usability proverb

DESCRIPTION
The classic dictum in HCI, “know your users,” has broader implications than is gener-
ally realized. Users don’t exist in isolation. They live and work in contexts. They have 
roles, responsibilities, and tasks. All these elements—users themselves, their contexts,  
their responsibilities, and their goals—shape both the design possibilities and con-
straints of not only applications but also the rendering of any new interface paradigm.

APPLICATION TO NUI
Working from our definition of the NUI, we can see that it means different things 
to different people in different ecological, social, and business contexts. A NUI 
that responds to in-air gestures would make no sense in a car. For most people, the 
evolved interface for automobiles requires one or two hands and one or two feet to 
drive. Thus many NUIs in autos employ voice input or rely on simple touchscreens 
not far away from the common sight lines. This simple example illustrates the inter-
dependence of context, user capabilities, and task goals. Our discussion here is lim-
ited to the touch- and gesture-based NUIs offered on an increasing array of products.

LESSONS FROM THE PAST
NUIs that enable touch, gesture, and object recognition are well suited to contexts 
where users will walk up and use the system and where an interaction with the 
system is intended to be enjoyable in and of itself. There are many walk up and 
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use interfaces where the interaction is intended to be simply functional. Examples 
include parking meters, ATMs, and automated airport check-in systems. All of these 
are purely functional. The user is therefore a result and woe betide the overzealous 
designer who attempts to incorporate progressive difficulty or arcane mechanics 
into such a system.

In contrast, the walk up and use NUI needs to be attractive in approach and 
engaging in use. That is in part because its use is often discretionary, and in many 
cases its sole goal is to provide engaging diversion while the user waits for some-
thing or someone. This engaged waiting state often serves a larger business strategy. 
For example, for leisure and entertainment businesses, keeping the user amused is 
an important business goal.

In other environments such as retail stores, the NUI provides a simple and intui-
tive interface of mutual interaction by two or more users. Thus a customer and 
salesperson can interact in a natural way much as they would across a desk. But in 
this case, the “desk” is enhanced by computer technology that allows both users to 
interact with the content on a equal basis.

In these environments there are different kinds of differentiation and numerous 
mechanisms to differentiate users when that is required in the interaction. There 
may also be contexts where user differentiation is not required or even desirable.

l	 Differentiation by flexible role assignment. This is most readily demonstrated 
in game interfaces, which are common in leisure and entertainment environ-
ments. Here user roles are flexible at the beginning of the game and are often 
assigned by agreement or simple physical position. The system does not need 
to identify a specific person.

l	 Fixed role definition. Sales environments are typical examples. By definition 
there is a seller and a buyer. They interact across a table. While their task is 
tightly coupled, their interaction is fluid. The system may or may not need to 
identify a specific person or role. The buyer and the seller interact with the 
system in the same way. For those systems that provide information, individual 
identification is not needed. The further the system moves into the typical busi-
ness transaction, the more requirement there is for personal identification. The 
system may need to identify the seller so that he or she can be credited for 
engaging the customer and making the sale. If the system is designed to com-
plete the transaction, then in most cases the seller and the buyer (or more pre-
cisely the payee and the payment source) need to be individuated.

l	 Personal identification. In this case, the unique user must be indentified at an 
early stage in the transaction because the nature of the transaction depends on 
knowing who the user is. A typical example is a loyalty card. Identification of 
the person cues the system to provide customized options based on who the 
user is. In some cases, the user may be identified not as an individual but as a 
member of a class of people, for example, people who bring in a circular or 
special offer coupon. They are unique only in being part of a class; high rollers 
are another example.
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l	 Identifying a user for the duration of the interaction. In this case, the user is 
uniquely identified in relation to the system, for example, this is the user on 
the “north” side of the system. This capability allows for role-differentiated 
interactions. For example, the person on the north side will be the goalie in a 
tabletop hockey game.

l	 Differentiated roles. All the role differentiation we have discussed so far applies 
to end users. Any NUI system will also need to identify users in relation to roles 
with respect to the unit itself. These include end users, system managers, and 
support and maintenance staff. The system managers need access to tools and 
capabilities that are barred to end users.

DESIGN GUIDELINES
The class into which users and their actions fall is determined by the type of identifi-
cation used and in many cases the method of identification.

Must
l	 Don’t attempt to identify users if you don’t need to. Except in widely accepted 

contexts (for example, ATM systems), users prefer to remain anonymous. They 
are highly suspicious when asked to identify themselves for a system.

l	 If users are asked to identify themselves, they must see a clear benefit and be 
assured that there will be no negative consequences to identifying themselves. 
For example, users readily accept the need to identify themselves when they 
make a purchase. However, they are reluctant to identify themselves to an 
automated system early in the shopping process.

Should
l	 When users are asked to identify themselves, the process should be easy, 

private, and secure.

l	 For users with system management roles, user identification can use more 
traditional methods.

Could
l	 In some cases, mixing modalities of interaction may be the best way to 

approach the problem of identifying a specific person. For example, the inter-
face may read a credit card that was supplied as the payment source and key 
into a database of customers indexed by that card number.
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SUMMARY
The challenge of identifying users in the NUI is made more complex by the follow-
ing facts:

l	 The system with the NUI is often in a public place.

l	 The systems with NUIs are relatively novel and therefore don’t benefit from 
traditional social conventions.

l	 For NUIs to use their native technology, for example, optical recognition, that 
technology needs to be sufficiently developed to read objects such as credit, ID 
cards or biometric elements.
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CHAPTER

12The State-Transition Model 
of Input

So Midas, king of Lydia, swelled at first with pride when he found he could 
transform everything he touched to gold; but when he beheld his food grow rigid and 
his drink harden into golden ice then he understood that this gift was a bane and in 
his loathing for gold, cursed his prayer.

—Claudian, In Rufinum

DESCRIPTION
Input devices come in a staggering array of shapes, sizes, degrees of freedom, and 
capabilities. But all can be modeled using a very simple tool: the state model of 
input devices. By understanding this way of thinking, you will immediately transi-
tion from thinking about devices in isolation to thinking about them holistically, 
and will quickly realize that most input devices, while staggeringly different, can 
all be thought of as fitting into a rather small number of categories. To understand 
these categories, you will first need to start building some intuition about the state-
transition model. First, consider a typical direct-touch input device, like the iPhone. 
When the user is not touching it, it is sitting idle—it has no idea where the user’s 
fingers are. Even when the fingers are hovering just a fraction of an inch above  
the screen, it still has no idea. We think of this state as the idle state. Using a state-
transition diagram, we model this state as a simple circle with a label.

FIGURE 12.1

Beginning to model the state/transition diagram of a typical direct-touch input device.
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Now, we’re missing just one element: modeling user movement within each 
state that does not yield a change to another state (e.g., the user moves her hand 
while touching the screen—this is a change that the system might pick up, but it 
doesn’t actually change the state). We model this movement using transition arrows 
that reference back to the original state.

FIGURE 12.2

A more complete model of the state/transition diagram of a typical direct-touch input device.

FIGURE 12.3

A complete model of the state/transition diagram of a typical direct-touch input device.

Of course, this isn’t the only state. When a user touches the device, suddenly 
it becomes aware of the position of the fingers. We add this engaged state to the 
model, along with arrows, denoting the transitions, between each of the two states.

State-transition diagrams are a simple tool that allows us to abstract simple but 
important elements of the behavior of the input device. If you have done develop-
ment work, you might begin to note interesting things about the above diagram, 
such as the fact that each transition arrow (with one exception) corresponds to 
events in a typical touch input system. We will expand upon this further by using 
this tool to model the mode and flow of a gesture system in a later chapter. For 
now, though, you now have a basic understanding of its use for a touch system. 
Let’s start to play with it.
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The states of an input device fundamentally affects the design space of gestural 
systems. Mice and tablets have the luxury of a tracking state, which is used a great 
deal in the underlying applications. Typical gestural systems do not, as you may 
have noted in the above figure. Using a model of the states and transitions between 
states of the input device, and the system’s responses, the designer can better 
understand two things: first, how systems driven by touch input must behave funda-
mentally differently from those that are driven by other input devices with different 
state-transition models, and second, how all input devices, from mice to tablets to 
touch to in-air gesture systems, all share common properties, and how the sophisti-
cated designer can approach them similarly.

APPLICATION TO NUI
The classic WIMP (windows icons menus pointers) GUI is based on not only a 
set of metaphors (buttons, sliders, check boxes, etc.), but also a particular input 
device: the mouse. Understanding the states of a mouse will provide an application 
designer with great insights into how those states map (directly!) onto the states of 
the graphical user interface. Further, understanding how touch and gestural devices 
differ in their states will allow a deeper understanding of fundamental issues that 
require different design.

LESSONS FROM THE PAST
Mouse and Touch: How They’re the Same and How They’re Different
Much of this book is dedicated to helping the reader break out of the mindset that 
touch interfaces are the same as mouse interfaces. This chapter is different. Our 
intention is to help you to place touch input on a spectrum of input devices defined 
by the number and nature of the states they support. To understand this, let’s con-
sider the state-transition model for a one-button mouse. Like the touch device we 
describe above, it includes both an out of range and an engaged state. But it also 
includes another state: tracking.

The difference between tracking and engaged is a simple one: the mouse 
is tracking when it’s on the table and in the user’s hand. As the mouse is moved 
around, tracking data are sent to the operating system and to the active application. 
When the user pushes down on the button, the mouse transitions from tracking to 
engaged; when the user releases the button, the mouse transitions back to tracking. 
In old WIMP parlance, tracking is the “pointing,” and the transition from tracking 
to engaged is the “click.” The out of range state of the mouse is more important 
than it appears at first glance: think about how often you lift the mouse in the air to 
move it somewhere else on the table. You probably do this so often it has become 
automatic.
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As you begin to place input devices on the spectrum, you can begin to think of 
touch input as equivalent to a mouse that lacks a tracking state. Put in this context, you 
can begin to see how input devices are really quite similar to one another in terms of 
their fundamental affordances. This is how touch and mouse input are the same.

How touch and mouse input are different from one another is also obviated by 
the above figures: most touch devices lack the tracking state present in a mouse.  
A question worth asking is “Does this matter?” At first glance, it looks like it might 
not: after all, the purpose of the tracking state is to show you where your disem-
bodied virtual finger (that is, the mouse pointer) is in the system. Direct touch, in 
contrast, has the user’s own actual, embodied (hopefully) finger to serve as a visual 
representation of itself. But deeper examination reveals that the WIMP GUI has 
actually been designed with an engrained assumption of the presence of a track-
ing state. In the Mac OS X, icons grow and shrink as the mouse passes over them. 
In Windows, buttons are highlighted when the pointer is over them. Hover long 
enough, and a tooltip pops up to tell the user just what will happen when she tran-
sitions to the engaged state. Further, hovering over menu headings, once any one 
menu is open, causes them to expand to show more options. In all flavors of Linux, 
the mouse pointer itself serves as a preview of not just the target object, but also the 
actual pixel that will be selected when the user depresses the button. All of these 
examples (and many others) point to a generalized definition of the use of the track-
ing state: it serves as a preview to help guide the user toward successful activation.

So here we are, trying to build a natural user interface, which means we want 
to make our users feel like naturals, which means we need to guide them toward  
success—and we’re giving away one of the most important guides that our users 
rely on today to be successful. We can think of this as the “Midas touch” problem.

King Midas discovered that his blessing was really a curse when he tried to 
lift his food to his mouth and got only gold. What he needed was a way to have 
two types of touches—those that transmorphed objects and those that simply 

FIGURE 12.4

The state-transition model for a one-button mouse.
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manipulated them and those that didn’t. Touch input suffers from precisely the 
same problem. Every touch counts, and this leads to a whole host of complexity not 
present in mouse-based WIMPs, which can (and, it turns out, do) rely rather heav-
ily on the tracking state of the mouse. Our design guidelines, therefore, address the 
lack of this state and point out the importance of designing software well despite its 
absence. This is also taken up in Chapter 17, when we describe the need for new 
primitives, and again in Chapter 21, when we will model the mode and flow of the 
gesture language, again using state-transition diagrams as a tool.

DESIGN GUIDELINES
Our design guidelines generally fall into two categories: how to recreate a de facto 
(or logical) tracking state despite the input device’s inability to differentiate one, 
and that it’s actually a better idea to design fundamentally new UI that does not rely 
on a state not actually provided by the input device.

Emulating a Tracking State
As we have seen, touch lacks a tracking state. A lingering question in your mind 
may be, if touch lacks a tracking state, why is it that the trackpad on my laptop 
seems to have one? The answer, of course, is that it doesn’t actually have one. But 
someone has done a pretty good job (in hardware, software, or both) of making 
you think it does. A trackpad emulates a three-state input device (such as a mouse) 
in software; the transitions between the tracking and engaged states are managed 
entirely by the OS. This can be done with a physical button beside the trackpad 
(common), or operated by a gesture performed on the pad (tapping the pad is 
the most common). It can also be done by putting the whole pad atop a pressure 
switch, as has been done on recent Apple laptops, but this obviously works only for 
single and not for multi-touch.

So, can we do the same thing for direct touch? Clearly, it’s trickier, since  
adding a button to the side of a direct-touch input device makes it, well, less direct. 
One previously explored trick lies in being creative in how states of the various 
touchpoints are mapped onto mouse states in software. The naive approach is to 
simply overlay the touch model atop the mouse one. This model is the most direct, 
because system events will continue to happen immediately beneath the finger. It is 
not the best, however, because it omits the tracking state and is imprecise.

The DT Mouse project from Mitsubishi Electric Research Labs is the best exam-
ple of a good mapping between physical contact and virtual mouse states. Built for 
the popular DiamondTouch multi-user tables, DT Mouse was developed over the 
course of several years and was entirely user-centrically designed, with tweaks done 
in real time. It is highly tuned, and includes many features. The most basic is that 
it has the ability to emulate a tracking state—this is done by putting two fingers 
down on the screen. When this is done, the pointer is put into a tracking state, and 
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positioned between the fingers. The engaged state is entered by tapping a third fin-
ger on the screen. An advanced user does this by putting down her thumb and mid-
dle finger, and then tapping with the index finger (Figure 12.5).

A project from AutoDesk research explored a plethora of methods for emulating 
mouse input using multi-touch. Suffice it to say, there are a lot of them, and each 
has advantages and disadvantages, but most add a logical tracking state. So there are 
sophisticated ways of doing mouse emulation with touch. But this has to lead you to 
ask the following question: if all I’m using touch for is mouse emulation, why not 
just use the mouse?

Designing for an Impoverished Input Device
So, touch input is impoverished in terms of the number of states supported by the 
input device. Of course, this is just one point of view. Many designers of touch 
software make this mistake. They begin by designing for the mouse, find their new 
device to be impoverished, and then tweak their software to compensate. In order 
to be successful, designers of systems for multi-touch applications should start by 
applying rules about touch and assigning state changes to those events that are eas-
ily generated using a touch system, designing fundamentally new interaction meth-
ods in the process.

States and transitions in a touch system include the contact state information we 
have shown above. In a multi-touch system, we can start to think about combining 
the state and location of multiple contacts, and mapping events onto those. This 
requires a fundamental rethinking of the graphical user interface.

By now you should have picked up a main message of the book, which is that 
to achieve a natural user interface we are going to require a new kind of graphical 
user interface. There is no contradiction here: Users feel the most like a natural with 
your software when they have affordances to lead them and feedback to guide them. 
The trick is to build a graphical user interface that properly takes advantage of and 
is designed for your hardware. In the case of touch input, that means designing for 
a two-state input device. The balance of this book will serve as a series of lessons in 
how to do this. Take this chapter as a cautionary note about the importance of fun-
damentally new UI design.

FIGURE 12.5

Left: The pointer is displayed between the middle finger and thumb. Right: the transition from 
tracking to engaged is simulated when the index finger is touched to the display.
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Must
l	 Understand the limitations of your input device and realize that touch input 

deprives you of a tool that the WIMP GUI relies on heavily. Design your soft-
ware so that it does not assume the presence of a tracking state in order for the 
user to be successful. Use the balance of this book as a guide to do this well.

Should
l	 Go a step further, and design your UI from the ground up for touch, rather 

than thinking of it simply as an impoverished mouse.

Could
l	 Emulate a three-state (or more!) input device in software using multi-touch 

input. But do this with great care. Simply emulating one input device using 
another is a recipe for disaster.

SUMMARY
The state-transition model of input devices provides an extremely useful tool to 
help you to understand the true utility of your input device, how it is the same as a 
mouse, and how it’s different from a mouse. Embracing these similarities and differ-
ences not only makes you a better designer of touch and gestural software, but also 
will equip you to become a designer of software for all manner of hardware.

FURTHER READING
Matejka, J., Grossman, T., Lo, J., and Fitzmaurice, G., The design and evaluation of multi-finger 

mouse emulation techniques. CHI 2009 Conference Proceedings, pp. 1073–1082. In this paper, 
Matejka et al. examine several mappings of multi-touch input to emulating a mouse. This is 
worth reading, as it thoroughly explores the space. Do so with the important caveat that the 
goal of this book is to break you from the habit of thinking of mouse input (and its associated 
GUI) as the starting point for all software design. 

Buxton, W., A Three-State Model of Graphical Input. In D. Diaper et al. (Eds.), Human-Computer 
Interaction—INTERACT ‘90. Amsterdam: Elsevier Science Publishers B.V. (North-Holland),  
pp. 449–456. This chapter draws heavily from Buxton’s definitions of the state model of graphi-
cal input. Our recasting it as the state-transition model is meant to highlight the importance of 
transitions.
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CHAPTER

13Fat Fingers

The fingers you have used to dial are too fat. To obtain a special dialing wand, 
please mash the keypad with your palm now.

—The Simpsons (“King Size Homer”)

DESCRIPTION
The mouse is a tool that easily supports movements that are both precise and rapid. 
A single pixel among millions can easily be selected with a mouse, meaning that 
graphical user interface elements can be as small as a single pixel in size. Indeed, 
some such elements in modern GUIs are almost that small—for example, the han-
dles that allow resizing of windows in both of the most popular operating systems 
are no larger than 4 pixels in size. This is a small target to select with a mouse—and 
a nearly impossible one for a touch UI.

The “fat finger” problem is actually a mix of two issues. First, when the user 
touches her finger to the device, a relatively large area of the finger comes into con-
tact with it. All currently existing touch platforms, however, including the iPhone 
and Microsoft Surface, use only a single point within this area to do their hit testing. 
The consequence is that a user can be in physical contact with the item she wishes 
to target, but the system believes she is not (Figure 13.1).

In and of itself, this wouldn’t be such a big deal—after all, the mouse is an object 
even larger than the finger and is represented as a particular pixel (the tip of the 
mouse pointer). This brings us to the second portion of the fat finger problem: that 
because the user’s finger is in the way, she can’t see the pixel that is being targeted—
and because most devices can’t sense the finger until it’s touching, the pixel can’t be 
shown to the user before it’s being occluded.

http://dx.doi.org/ 
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APPLICATION TO NUI
Designing around this problem, at first, seems relatively straightforward: Make 
everything in the UI large enough that the user can select it with confidence. 
Indeed, design guidelines for touch platforms typically include a minimum size that 
an element can occupy. We see quickly, however, that this does not scale—if every-
thing needs to be a of a minimum physical size, this means we must either severely 
limit on-screen elements or have very large screens. Further, it ignores the very real 
possibility that every single pixel, such as on a map, is equally targetable. So, we 
need to enable precise interaction—and we need to solve the fat finger problem.

LESSONS FROM THE PAST
A problem similar to the fat finger problem has actually reared its head before, but in 
a totally different context. This came when the producers of the game Halo tried to 
move the incredibly popular first-person shooter (FPS) genre from the PC to the con-
sole. In so doing, they faced a significant challenge: In an FPS, the user must quickly 
select objects and click on them (that is, shoot them). Rapidly selecting objects is 
exactly what the mouse was designed for, so this is a genre that lived quite well on 
the PC. In contrast, when the Halo team attempted to move to the console, they were 
attempting to move a UI idea from one input device (the mouse) to another (the joy-
stick). And the joystick is a terrible pointing device. Where the mouse is meant to 
control position (x/y), a joystick is a rate control device: It controls orientation and 
speed. Anyone who has a laptop with a little eraser head controller on it understands 
the pain that these designers were about to inflict on their users. The common wis-
dom was that first-person shooters could never make it onto the console, because a 
joystick could never be used to control the position of the crosshairs.

Undeterred, the designers set about their task. They quickly realized that they 
had an advantage over the eraser-head-to-control-the-mouse-pointer problem. Unlike 

FIGURE 13.1

Left: The area of the user’s finger which is in contact with the display is rather large. Right: The 
Contact Visualizer, described in detail in Chapter 14, shows the user this contact area when they 
lift their finger.
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the designers of that device, they knew exactly where on the screen the user was 
likely to want to point the crosshairs: at the enemy!

With this in mind, they did two things. First, they expanded the area where the user 
could point their gun and still hit the enemy (in the game, this shows up as the shrap-
nel flying at the enemy in an arced path, with a “heat seeker”-like quality). Second, they 
modified the movement of the crosshair as it slides across the screen: When the gun is 
pointing in the direction of an enemy, the speed of movement slows down, so that the 
player has a little bit of time to let go of the stick and leave it still pointing at the baddie.

The exact amount that these two tweaks were applied was adjusted through 
dozens of rounds of play testing. The goal, of course, was to make sure that the 
users felt like they were the ones pointing their weapons at the bad guys—to make 
the users feel like a natural.

Of course, we all know how this turned out: Halo turned out to be a flagship 
game for the Xbox platform, helping to sell millions of consoles.

How this lesson applies to the fat finger problem is clear: Precise selection with 
a joystick is hard, so the developers of the experience adjusted the physics of their 
world to make it easier. Touch UI requires no less refinement.

DESIGN GUIDELINES
A lot of work that has attempted to address this problem, and it generally falls into 
one of two categories. The first is to design the UI in such a way that the fat finger 
problem is irrelevant. The second is to provide a mechanism to allow users to vary 
their precision: quick movements for large targets, but add a tool to allow them to 
select things more precisely.

Make Stuff Bigger
The first, and easiest, guideline is to always make stuff in your UI big enough to touch. 
As we saw above, you can’t base the size of your controls on pixels, since displays 
vary widely in terms of the density of pixels. Instead, you must determine the physical 
size of your screen, and design controls and objects to a minimum size. In our testing, 
we have found that for large touchscreens, where users will be moving their entire 
arms, a target size of 1.6 cm is the minimum that they can hit reliably. On smaller 
touchscreens that users hold in their hand, and thus move only their fingers or thumb 
to make a selection, a smaller target size of 0.9 cm is sufficient.

Consider User Perception to Adjust the Touch Point
Smaller on-screen objects can be selected if you take into consideration the user’s 
perception of the precise touch point under the user’s finger. In one extreme, a pair 
of researchers at the Hasso Plattner Institute in Berlin used fingerprint scanners to 
carefully model that perception, taking into account the roll, pitch, and yaw of the 
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finger to decide on the touch point. A more simplistic version can be seen as part of 
the Microsoft Surface platform. When the user touches the device, the entire con-
tact area is sensed. Rather than taking the simple center of the contact area to be 
the point, the point is pushed out toward the tip of the user’s finger.

You can do something similar by asking users to come and perform basic tasks 
on your device. Provide objects on the screen that you ask your user to select, and 
record the point that your system reports for the touch. After several users, you will 
have a reliable data set to give you a good understanding of where the users believe 
they are touching versus where your system believes they are touching. Using this 
data, you can easily compute a calibration that you can apply to your device to 
make its reported touch point more closely mimic users’ expectations. Holtz and 
Baudisch’s data collection technique can be applied generically to your device.

Iceberg Targets
Also worth considering is the use of the iceberg targets technique: making the on-
screen object that the user is asked to touch smaller than the actual area that will 
result in it being selected. The extreme version of this would be to compute the 
object closest to every pixel on the screen, so that when the user selects that pixel, 
the closest object is selected. The selection area for each object would then look 
like the one shown in Figure 13.2.

This approach is a bit extreme, since on a screen with a single button the user 
might select it accidentally by tapping a full foot away from it. But you get the idea. 
It also assumes that your system knows where all the touch targets are—believe it 
or not, this is not always the case.

FIGURE 13.2

Iceberg targets can theoretically be so large that touching anywhere on the screen will activate 
the nearest touch visible target.
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Reduce the Role of Land On
Improving the accuracy of the reduction from touch area to touch point and 
expanding target sizes will get you a long way. But even with this accuracy, targets 
will still be missed. To do even better, you should consider changing more elements 
of the user experience.

Two general approaches have been explored before and are worth considering; 
both involve changing the selection event. Consider four possible ways by which  
a finger can come into or leave contact with an object. It can slide onto the object 
(A in Figure 13.3), it can land on the object (B), it can be lifted away from the object 
(C), or it can slide off of an object (D).

Engaging a key on a keyboard requires only (B): Landing on a key causes text 
to be entered. Engaging a button in a GUI usually requires both (B) and (C), so that 
the user has an opportunity to slide off the button. One approach for solving the 
fat finger problem is to require only (C): lifting off of the screen while touching the 
object. Consider the keyboards on the Android, Windows Phone, and iPhone plat-
forms: When a finger lands on the keyboard, no text is entered. The button the user 
is touching grows to show an approximation of where the finger is, so that the user 
can slide around on the keyboard to find the right key. Where the user lifts (C) is 
what counts.

This approach gives users the opportunity to correct their selection before 
they confirm it, but it does have the disadvantage that small targets require a good 
amount of time to be made. An alternative method was described by researchers 
at the University of Toronto. Their technique, dubbed “Escape,” was a variation of 
selection using the (D) event: The selection is made by examining the direction of 
the user’s finger as it slides off of an object.

Figure 13.4 makes the technique clear. The user wishes to select the green 
object (1). She puts her finger on the cluster (2). The actual land-on point is used 
only to make everything nearby a candidate—it doesn’t matter if he actually lands 

FIGURE 13.3

Four different finger/object interactions: slide on (A), land on (B), lift off (C), slide off (D).
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on the little green one. Next, he slides his finger in the indicated direction (3), and 
the object is selected (4). It’s worth noting that traditional selection is also sup-
ported if there are no other objects nearby:

The downside of this technique is clear, in that touch targets in your UI must 
be labeled with a direction for sliding selection. But the advantage is also clear: The 
user sees the direction in advance so doesn’t have to wait for a pop out or other 
method to make small selections.

Whether you use these techniques or others, they point the way towards funda-
mentally redesigning your user interface to account for fat fingers. Do not limit your-
self to a classic selection model; think of redesigning your interface so that selection 
itself might not be necessary at all!

Must
l	 Ensure that users are able to precisely select objects in your UI. This can be 

done in a variety of ways, from adjusting the physical size of content to provid-
ing techniques that enable selection of smaller content.

Should
l	 Consider the physical, not pixel, size of content and ensure that targets the 

user will need to touch are no smaller than 1.6 cm on large touchscreens and 
0.9 cm on small ones.

l	 Use iceberg targets to make actual selection areas larger than what you show to 
a user.

l	 Collect data correlating your users’ perception of where they touch with the 
location collected by your device or platform, and consider adjusting to take 
into account these differences.

FIGURE 13.4

The Escape technique works by requiring the user to slide in an indicated direction in order to 
make selections.
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l	 Consider reducing the role of the land-on event in your system. Consider the 
techniques we have described above or your own techniques using different 
combinations of the finger/object interaction moments we described earlier.

Could
l	 Expand the region on which an object can be selected beyond its graphical 

representation, so that selecting a pixel or two above or below it still selects 
that object.

l	 If small targets are essential, such as for placing the cursor, consider using a 
technique such as cursor placement on the iPhone, where the user is given the 
ability to fine-tune their selection.

SUMMARY
Designing your UI in such a way that users can always reliably select content will ensure 
that they always feel successful, like natural users of your interface. Making content too 
small is frustrating, and providing mechanisms to overcome this small size is essential.

VOICES FROM THE FIELD: THE FAT FINGER PROBLEM
Patrick Baudisch
Hasso Plattner Institute, Potsdam, Germany  

The designers of today's mobile touch devices face a difficult challenge: On the one hand, users 
want tiny devices for maximum mobility, which leaves space for only very small user interface 
elements. On the other hand, users demand interface elements large enough for easy operation. 
Can we achieve both objectives at the same time?

The targeting problem with small buttons is linked to a very specific scale. Targeting works fine 
down to buttons about the size of a fingertip. For buttons smaller than that, the users' fingers cover 
up the button entirely, so that users cannot see the visual confirmation the button might deliver 
to confirm successful acquisition (the so-called fat finger problem). Consequently, users have to 
target without visual control.

Without visual control, users need to remember where the target is located, but it is not the 
uncertainty about the target location that poses a problem for users; it is the uncertainty about the 
location of their own finger. How can this be a problem?

Today's touch devices compute the contact point as the center of the contact area between 
finger and screen. Just like the target is occluded by the user's finger, so is the contact area, so 
that users have no way to observe it directly. Users essentially have to guess the shape of the 
contact area—and our studies indicate that they guess incorrectly. While they expect the center of 
the contact area to be located comparably close to the fingertip, the contact area extends farther 
back along the finger than most users expect. This misconception causes the contact point to be 
located farther "back" along the finger, which manifests itself as targeting error.

Until recently the only way to prevent this type of error was to employ fingertip-sized buttons, 
as evidenced by many commercial designs, such as Apple's iPhone. Just recently, however, my 
team found a way to overcome the problem. We conducted additional studies that revealed that 
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users' misconception about the contact area is systematic in nature, that is, that a given person 
(for a given finger posture) tends to err by roughly the same direction and distance. Based on this 
observation, we constructed an improved touch-sensing mechanism we call Ridgepad. The device 
identifies users and determines their finger posture based on their fingerprint, which it takes 
during every single touch interaction. By compensating for user-
specific offsets, the device allows users to reliably acquire targets 
less than half the size supported by traditional touchscreens. A 
miniaturized version of such technology might one day provide 
the basis for mobile touch devices that are half the size of today's 
devices.

Author Biography
Patrick Baudisch is a professor in Computer Science at Hasso Plattner Institute in 
Berlin/Potsdam and chair of the Human Computer Interaction Lab. His research 
focuses on the miniaturization of mobile devices and touch input. Previously, Patrick 
Baudisch worked as a research scientist in the Adaptive Systems and Interaction 
Research Group at Microsoft Research and at Xerox PARC and served as an Affiliate 
Professor in Computer Science at the University of Washington. He holds a Ph.D. in 
Computer Science from Darmstadt University of Technology, Germany.

FURTHER READING
 Holz, C., and Baudisch, P. The Generalized Perceived Input Point Model and How to Double Touch 

Accuracy by Extracting Fingerprints. In Proceedings of CHI 2010, Atlanta, GA, April 10–15, 2009, 
pp. 581–590. In this project, Holz and Baudisch provide a model for making touch selections using a 
fingerprint scanner far more accurate. While the precision of a fingerprint scanner is beyond most modern 
touch devices, their methodology of collecting the difference between the user’s and the device’s under-
standing of the position of the touch point can be applied broadly to any device.

 Yatani, K., Partridge, K., Bern, M., and Newman, M. W. Escape: A Target Selection Technique Using 
Visually-cued Gestures. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (CHI 2008), pp. 285–294, April 2008. Yatani et al.’s technique uses sliding direction to allow 
users to precisely select very small targets among a large number of dense targets.
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CHAPTER

14No Touch Left Behind: 
Feedback Is Essential

Whenever we present a state of affairs which is known to be reinforcing at a given 
drive, we must suppose that conditioning takes place, even though we have paid no 
attention to the behavior of the organism in making the presentation.

—B. F. Skinner explaining superstitious behavior,  
Journal of Experimental Psychology (1947)

DESCRIPTION
Picture yourself using a traditional PC: you move the mouse pointer to an on-screen 
object, you click the mouse button—and nothing happens. What do you assume 
caused the failure? The overwhelming majority of users in this situation assume 
that they have clicked on something that is disabled, that something happened 
that they did not recognize, or that the software has crashed. Now picture yourself 
using exactly the same application with a touch device. You reach out, touch that 
same object—and nothing happens. What do you assume caused the failure? This 
time, the overwhelming majority of users assume that the hardware has failed in  
some way. They push harder, tap the display more vigorously or slowly, or other-
wise change the way they are touching the screen. Why the difference?

As always, the user is left to interpret this response using the feedback that has 
been made available by the system. In the case of a mouse input, feedback provided 
by both the operating system and the hardware helps the user to quickly isolate 
the cause. Visual movement of the mouse pointer reassures the user that the system 
is still working, the physical activation of the mouse button affirms that the input 
was received, and the position of the mouse pointer makes it apparent where the 
input was delivered. In touch-based systems, this is typically not the case, and so 
it is left to the application to provide feedback for all of these potential causes of 
unexpected behavior. Table 14.1 describes various possible causes of unexpected 
behavior, as well as the source and type of feedback available to dispel that cause in 
both a mouse and a direct-touch system.

http://dx.doi.org/ 


82 CHAPTER 14  No Touch Left Behind: Feedback Is Essential

Most applications do not provide an explicit feedback mechanism that can help 
users to understand why their action was not successful, and the application feed-
back is typically constrained to responses designed to signal the execution of suc-
cessful actions—a lack of success is visually identical to not having done anything at 
all. How the application reacts to the user’s input determines how well the user will 
understand the reasons for the unexpected behavior. The result is applications that 
respond to touch input, but do not provide information about the causes of those 
responses.

That this happens is not overly surprising. Firms accustomed to designing web-
based applications have had the luxury of the mouse pointer, and the feel of the 
mouse buttons, to rely on. These have become such an integral part of the experi-
ence that they are forgotten entirely by designers. When designing a touch and ges-
tural experience, however, these luxuries disappear—and it’s up to the designer to 
provide a replacement for the feedback that disappears with them.

APPLICATION TO NUI
Understanding the connection between cause and effect is a particular problem for 
touch and gestural applications, since, as we have seen, dispensing with traditional 
input devices and visualizations causes a misattribution of error to the input device.

As we described in Chapter 12, the mouse pointer serves as a proxy for the user. 
When using direct input, the user’s finger can function as its own indicator for a 
well-calibrated system’s understanding of the input location. Despite this, there 
are uses for a cursor. In devices that can sense location prior to the input event, a 

Table 14.1  Causes of unexpected responses to input and the feedback given by the 
hardware or OS in typical mouse and touch systems to each, or left to applications (app)

Cause of Unexpected Behavior Feedback Refuting Cause

Mouse Touch

System is nonresponsive OS: Pointer movement (app)

Hardware failed to detect input HW: Activation of button (app)

Input delivered to wrong location (fat fingers) OS: Visible pointer (app)

Input does not map to expected function (app) (app)

Accidental input (arm brushing) N/A (app)

Overconstrained (too many contacts) N/A (app)

Max size reached OS: Pointer moves past edge (app)

Stolen capture (second user captures control) N/A (app)
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cursor can serve as an indicator of the precise location for contact. Further, iconic, 
such as a paintbrush or vertical bar for text entry, cursors serve as an indicator of 
state or mode. Finally, the presence of the cursor and its response to user input give 
feedback to the user that the system is active, tracking, and ready to receive com-
mands. While we would not argue for putting a mouse cursor onto the screen of a 
touch or gestural system, it is critical to understand that your system must include 
a representation of the system’s understanding of the user’s input. Your task will be 
to design this feedback. Sadly, with the notable exception of the Microsoft Surface, 
few UI toolkits designed for touch include it, so even if you are simply designing 
an application to run on a device built by someone else, you’ll need to do this part 
yourself—unlike mouse-based systems, where the physical feel of the mouse and 
visual feedback of the cursor can be assumed.

Echo Feedback vs. Semantic Feedback
Input devices process a stream of sensors to yield a logical result. The system’s feed-
back can be either an echo of unprocessed sensor data back to the user (here’s what 
the system sees) or a semantic representation of the user’s state (here’s what the sys-
tem knows), like the cursor. Traditional systems have trended toward the latter—a 
mouse, for example, senses only movement, but the feedback given to the user is of 
a cursor position, which is a logical state maintained entirely for the benefit of the 
user. In point-based interactions, the alternative (echoing back movement without 
showing a cursor) makes little sense. Richer input streams, meanwhile, might tempt 
the designer to skew the feedback more toward the unprocessed data, since it may 
represent a richer visualization. While richer, such a representation offers less clear 
information to allow the user to understand cause and effect. Making clear connec-
tions between cause and effect is critical in making interactions feel natural—users 
can improve their input and learn to work with the system effectively.

This may be directly the opposite of what your intuition says. You might 
ask, “If our goal is a ‘natural’ interaction, and there are no cursors in the ‘natural 
world,’ why would we include them in a natural user interface?” We remind you of  
Chapter 2, where we explain that the goal of a NUI is not to be natural, but rather 
to feel natural to your users. This is rarely achieved through mimicry. We humans 
need constant feedback in order to accomplish even the most simple task. If you 
want your system to feel natural, feedback is essential. And, as we shall see, clearly 
unnatural feedback is essential in achieving this natural-feeling result.

LESSONS FROM THE PAST
Superstitious Behavior
The mythology of Newton’s formalism of gravity is that an apple fell from a tree 
as he sat outside at Cambridge. Tellings of the story differ as to whether or not the 
apple actually landed on his head—as if physically driving the idea into his mind.  
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It was from an oddly parallel experience that the principle of “no touch left behind” 
came to be. Daniel’s own experience:

At some point in every business traveler’s life, there will come a time where they will 
spend a few hours on a tarmac in a takeoff queue at New York’s LaGuardia airport. It was 
during such an experience, as I sat in my chair, that the teenaged boy behind me pressed 
away on the touchscreen built in to the back of my seat. Whenever an announcement of 
a further delay was made, his movie would stop, and the touchscreen would stop taking 
input. At this, the boy would begin to furiously punch the controls, still visible on his 
screen, in an attempt to resume his entertainment. Each vigorous press on the screen 
would drive my head forward, and my nerve closer to the edge.

This has become such a problem that flight attendants can now often be heard 
reminding passengers that presses to the touchscreens are telegraphed to the pas-
senger in front of them through the rigid medium of the airplane seat.

We are driven to ask the question: Why did this obnoxious little twit believe that 
pressing harder on the screen would get him a different result than touching lightly? 
After careful consideration, it is clear: we have a feedback problem.

We are all hard-wired to believe post hoc ergo proctor hoc—after it, therefore 
because of it. B. F. Skinner’s breakthrough work in operant conditioning taught the 
world that superstitious behavior is the result of an application of this logical fallacy. 
Among his many experiments, it became absolutely clear that creatures are in a con-
stant quest to make connections between cause and effect. When the real cause is 
not apparent, they will make inaccurate associations. In his experiments, the results 
were pigeons that believed they had to perform ritualistic dances to receive food 
(when in truth, the food dispenser was simply on a timer, thus effectively depriv-
ing them of a pigeon-perceptible cause—this led them to attribute the output, occa-
sional food, as a result of what they happened to be  doing, moving around).

Startlingly, early implementations of touch and gestural systems have demon-
strated significant failures to provide sufficient feedback to enable users to understand 
and make proper associations between their input action and the system’s output con-
sequence. We call this the feedback ambiguity problem. We’ll now run through a 
list of possible sources of unexpected behavior and explain how a mouse-based sys-
tem provides this feedback (if it does), and how and why touch systems must do this 
explicitly in the absence of the pointer and physical button provided by a GUI.

In the section that follows, we will describe the feedback mechanisms our team 
developed for Microsoft Surface to address all of these sources of ambiguity.

SOURCES OF ERROR
To understand the problem, we must first understand all of the sources of possible 
error that are leading to a given state. In this section, we enumerate the sources of 



85Sources of Error

such error, many of which are unique to a touch and gesture-based system. This list 
is a formalization and expansion of that shown in Table 14.1.

Activation Event
When interacting with a traditional mouse-based GUI system, users feel a physical 
click when they depress the mouse button. When working with a touchscreen, users 
feel the moment of contact with the display. However, depending on the particular 
hardware, the moment of activation can vary. With some vision-based systems, for 
example, activation occurs before the finger reaches the display, which might result 
in an initial position of the touch contact that differs from where the user thinks the 
contact occurred. With some resistive technologies, a degree of pressure is required 
for activation. There is no consistent physical sensation connected with this transi-
tion. A correct feedback should indicate the activation moment and help the user to 
be accurate in their touches. Another such problem is the fat finger problem.

Fat Fingers
There are two elements of the fat finger problem: occlusion of the screen by the 
finger and the reduction of the contact area to a single point causing users to “miss” 
targets they are physically touching. When the fat finger problem causes a missed tar-
get, the correct feedback must clarify that this failure was due to a miss and, ideally, 
demonstrate how to avoid missing in the future. Activation must also be made clear.

Activation
When a user’s finger lands on the device, it is critical that the system provide imme-
diate feedback as to whether the user has landed on an active element or one that 
will “ignore” their input. When using a trackpad on your laptop, if you tap the but-
ton below it, you feel that it has activated. If you instead miss and hit the chassis 
of the laptop, you know that you have missed because you can feel it. Touch sys-
tems must also provide feedback for both the “active” and “inert” touches. Whereas 
mouse-based systems can rely on the feel of the button to distinguish this, touch 
systems must do this in software. This is also true of nonresponsive content.

Nonresponsive Content
Invariably, applications will include elements that are not intended to respond to 
touch: deactivated controls, background images, etc. Although visual cues should 
afford inactivation to the user, this state nonetheless adds another source of error in 
which the user will receive no reaction, requiring correct feedback.

Accidental Activation
With a multi-touch system, “every touch counts.” Accidental activations are  
common—users might brush the screen accidentally, or point at content during 
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conversation. When this occurs, users are able to observe only the consequence to 
the application. Some accidental inputs are not noticed by the user, and so sudden 
changes in the state of the system cannot be properly linked to their cause. A mean-
ingful feedback would make the causes of accidental activations clear to the user.

Multiple Capture States
In a WIMP-GUI system, UI controls have two capture states: captured (typically 
entered when the mouse is clicked on a control) and uncaptured. When working 
with controls on a multi-touch system, more than one contact can capture controls 
simultaneously. For example, selecting the thumb of a slider with two fingers can 
mean that it will not track directly under a single finger when moved.

When too many contacts have captured a control, its behavior can be well 
defined but inconsistent with the direct-touch paradigm, leading to confusion. We 
term this state overcaptured. To help the user understand overcapture, the contact 
visualization system must include a visual distinction between not only uncaptured 
and captured contacts, but also overcaptured ones.

Physical Manipulation Constraints
The direct-touch paradigm is also broken when movement constraints are reached. 
This can occur, for example, when attempting to move an object past the bounds of 
its container or to resize an object past its size limit.

Interaction at a Distance
Use of controls can extend beyond the bounds of those controls. For example, in a 
traditional GUI, the scrollbar can be captured by selecting it with the mouse. At that 
point, vertical movements of the mouse are applied to the position of the thumb, 
and horizontal movements are ignored. The result is that the mouse pointer can be 
moved away from the slider while still controlling it. This is equally necessary in a 
touch system, but mapping fingers to their controls is a potential source of confu-
sion, with multiple touchpoints, controls, and users all interacting simultaneously.

Stolen Capture
In a traditional GUI, controls are captured by selecting them with the mouse pointer. 
In a multi-touch system, multiple fingers may attempt to capture a control simulta-
neously. How to deal with multiple, possibly contradictory touches to the same con-
trol is an issue decided by framework designers. In the DiamondSpin SDK, “click” 
events are generated every time a user taps a button, even if another finger is hold-
ing it down. In the Microsoft Surface SDK, “tap” events (equivalent to “click”) are 
generated for buttons only when the last captured contact is lifted from the control.  
While both approaches have merit, a consequence of the latter is that buttons can be 
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“held down” by a user. When twinned with the issue of interaction at a distance, it 
is possible that a button can be “held down” by a contact not actually touching that 
button. When a subsequent “tap” fails, the source of failure should be visualized.

Tabletop Debris
Users of tabletop systems have been observed to place objects on the surface of 
the screen. The table used in that study did not sense the presence of objects on its 
surface. This is not true, however, of all sensing technologies used in multi-touch 
systems. The result can be unexpected behavior when the system responds to these 
unintended inputs. In our own internal observations of users, we found that this 
was particularly problematic when an object would act as an additional contact for 
an object being manipulated by the user.

When scrolling a list, for example, the Microsoft Surface SDK uses the average 
distance traveled of all contacts on the list to compute its movement. Because it is 
interpreted as a stationary contact, a beverage placed on the surface of the table has 
the effect of halving the speed of scrolling a list. A visualization framework should 
visualize both when debris on the table is being interpreted as an input, and when 
stationary contacts are placing additional constraints on movement.

THE CONTACT VISUALIZER
In order to address feedback ambiguity, Microsoft Surface employs a Contact 
Visualizer, which provides visual states and transitions to provide clear indications 
of the system’s current state, and the cause of that state (Figure 14.1).

This contact visualizer was found to reduce errors by over 50% and to lead users 
to describe the system as more responsive and better at understanding their inten-
tions. Of course, we in the know understand that, in actuality, it is the user who bet-
ter understands the system’s responses.

FIGURE 14.1

Each contact with the display is given a response and persistent visualization. Left: Photograph of 
the Contact Visualization system. Right: Tethers indicate that the fingers have slipped off the item 
because it reached maximum size.
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DESIGN GUIDELINES
It is incumbent upon the designer to ensure that each and every source of error has 
a distinct response, ensuring that the user fully understands the link between the 
cause and effect of what they are seeing on the screen. This leads to the design goal 
of “no touch left behind”—ensure that every input to the system is meaningful and 
receives a clear response that allows users to link it back to their physical actions.

The Surface contact visualizer provides a layer of visualizations that is divorced 
from applications. When designing an application, you may prefer that the visual 
responses be more in keeping with your own design. Following the guidelines in 
this section will ensure that your system has sufficient feedback to allow users to 
understand their input and the consequences of that input.

Must
l	 It is essential that visual responses be provided to make clear the connection 

between cause and effect.

l	 For single-touch systems, we have developed a set of visual states and transi-
tions that will ensure minimal coverage of the various error causes. Providing 
unique visuals for each of these states and transitions will provide a set of 
responses that is sufficient to disambiguate the various causes of unexpected 
behavior (Figure 14.2).

	 State 0 cannot be visualized in most systems, as it precedes detection. The 
visualizations of transition A and state 1 address the problem of clearly indi-
cating the activation event. They also help to note accidental activations, 
as unintended contacts receive an individual response, allowing the user to 
correct the posture. To help the user to differentiate between fat fingers and 

FIGURE 14.2

Touch visualization states and transitions. 0: not yet touching; 1: stationary contact; 2: moving 
contact.
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nonresponsive content, and to visualize selection, the visual provided for tran-
sition A differentiates between contacts that have successfully captured an 
object, and those which have not (Figure 14.3).

	 To address fat fingers, we also included an animation for transition D (Figure 
14.4). This animation emphasizes the hit testing point. To overcome occlusion, 
transition D delays its feedback subtly, so that it will continue to be visible for 
a moment after the user lifts her finger. Further, as the contact visualization dis-
appears, it contracts to the hit test point, so that this point is the last thing seen 
by the user (Figure 14.4). Unlike previous work, the goal is not to assist the 
user in making the current selection, but rather to improve accuracy over time 
by helping the user to learn the point/finger mapping.

l	 In addition to the basic contact visualization, additional states were added to 
address issues that arise primarily with multi-touch systems. These issues are 
multiple capture states, physical manipulation constraints, interaction at a 
distance, and stolen capture. In examining these problems, we found that all 
could be addressed by adding just two states and their associated transitions. 
These are shown in Figure 14.5.

	 State 3 is described earlier as overcaptured: when the number of contacts cap-
tured to a control exceeds the available degrees of freedom of that control, 

FIGURE 14.3

Left: Two animations are shown for transition A. If an object is captured, a circle shrinks around 
the contact. If not, it “splashes” outward. Right: State 1 is identical for both captured and 
uncaptured.
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necessitating breaking the direct-touch input paradigm. For example, overcap-
turing occurs if two fingers have captured the thumb of a slider, or if three 
have captured an object enabled for two-finger rotate/translate/scale. As in the 
basic contact visualizations, this difference is conveyed through the transitions. 
Transition F receives the same visual treatment as transition A for an uncap-
tured contact, and transition G the same as a captured contact. To differentiate 
these, however, transitions F and G are applied to all contacts captured to a 
control, clearly differentiating states 3 and 1.

	 State 4 is a condition under which the user has met a constraint on transla-
tion, scaling, or rotation of an object. In the Microsoft Surface SDK, these con-
tacts remain captured to the object even though they are no longer touching 
it. An alternative capture model might cause the contact to lose capture of the 
object once the finger is no longer touching it. Whatever model is employed, 
it is critical that a visual be provided to explain why the object is no longer 
under the user’s finger—this addresses the problems of physical manipulation 

FIGURE 14.4

Transition D (see Figure 14.1): When contact is lifted, the visualization shrinks to the hit testing 
point.

FIGURE 14.5

Additional visual states and transitions for multi-touch. 1: engaged (see Figure 14.1); 3: object is 
overcaptured; 4: contact operating beyond constraints.
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constraints and the interaction at a distance. To visualize these constraints, 
we employed a visualization similar to the trails seen in state 2 (see Figures 
14.10 and 14.11). In state 4, the trails become “tethered” to the point at which 
the constraint was reached, illustrating that the contacts are now “slipping” 
from their last point of direct touch (Figure 14.6).

	 A purist’s interpretation of state 4 would yield tethers when interacting with 
the majority of controls, since most map multiple degrees of freedom to a single 
dimension or cannot be moved. What we found, however, was that this could 
produce what we termed the Freddy Krueger effect, where tethers were appear-
ing regularly all over the display. We reduced the frequency of the tethers to the 
minimal set needed to address specific as sources of error (see above).

	 The first such situation was the overconstrained scrolling of a list. It was deter-
mined through iterative design that, in most cases, the reaction of the list 
itself matched user intent and thus did not require visualization of constraints. 
The remaining case involves tabletop debris, which can cause slower than 
expected scrolling of a list. In this situation, determined by the presence of a 
stationary contact, tethers are rendered to demonstrate that the list is scrolling 
slowly because of that contact (Figure 14.7).

	 The final state 4 visualization visually tethers contacts that have slid off of, but 
are still captured to, controls. Again, to reduce unnecessary visuals, we split 
these into two classes. For controls that can be manipulated from a distance, 
the visualization is shown from the moment the contact slides off the con-
trol. For stationary controls, the tether is shown only when another contact 
attempts to actuate the control, addressing stolen capture (Figure 14.8).

FIGURE 14.6

Tethers indicate that a size constraint has been reached on an item being scaled.
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Should
l	 To properly achieve the goals of a NUI experience, we recommend that the 

visual states be integrated into the application. For example, rather than draw-
ing tethers to show that the object has stopped growing, a visual “bounce” 
effect would provide the same results.

l	 Most touch hardware suffers from inevitable lag—an elapsed time between the 
instant the user does something and when the consequence of that action is 
rendered on the screen. A manifestation of this in a direct-touch system is that 
when dragging an object on the screen, it can “lag” behind the finger, so that 
the lag is actually visualized as physical distance between the finger and the 
object it is dragging.

	 The faster the user moves, and the larger the screen, the more significant the 
problem. In a system that provides a visualization of where it “thinks” the 
user’s fingers are, this problem could be exacerbated, since it will be rather 
blatantly pointing out that it is wrong (Figure 14.9)! To address this, you should 
consider adding an additional state to your visualization, so that it changes 
when moving. This change is a tacit acknowledgment of the lag and should 
give the appearance of it being “intentional” (Figure 14.10).

FIGURE 14.7

Tethers indicate that slow scrolling of the list is due to the presence of the stationary contact.
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FIGURE 14.8

Left: Contact controlling the slider is visually tethered to it at all times. Right: For stationary 
controls, such as buttons, the tether is shown only when another contact attempts to actuate the 
control.

FIGURE 14.9

As a user drags a finger on the screen, the lag inherent in any interactive system manifests itself 
as a physical separation between where the finger actually is and where the system “thinks” it is 
at any given moment. Adding a visualization that tells the user “Here’s where I think your finger 
is!” can exacerbate this lag.
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Could
l	 Consider customizing for the particular input device on which the system 

will be running. As we have described elsewhere, touch software is typically 
built on top of a reduction that obfuscates the details of the sensors. While this 
makes development easier, it makes it less likely that software will take advan-
tage of the unique attributes of its hardware. For example, consider displaying 
raw sensor output, such as shown in Figure 14.12.

FIGURE 14.10

By adding a special state for objects when they are moving, any lag appears to be intentional.

FIGURE 14.12

An early attempt to visualize input by displaying raw sensor data. This approach does not 
generalize across device types.

FIGURE 14.11

State 2 is shown as a trail, which reduces the perception of lag. 1: contact is static (state 1);  
2: begins to move (transition B); 3: moving (state 2).
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SUMMARY
While there are great advantages to direct-touch software, and there is a tendency to 
reduce abstraction and to allow direct interaction, as we have described in the early 
chapters, this does not alleviate the need for careful design of system responses. 
Indeed, the burden is actually increased: While designers of yesteryear were able to 
rely on the physical feel of the mouse and feedback of the pointer, touch applica-
tion designers have no such luxury. The result is that they must spend more time 
carefully designing the array of responses to ensure that the user properly under-
stands the various causes of the system responses they will see, lest they become a 
horde of dancing pigeons.
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CHAPTER

15Touch versus In-Air 
Gestures

My fellow Americans, I’m pleased to tell you today that I’ve signed legislation that 
will outlaw Russia forever. We begin bombing in five minutes.

—Ronald Reagan

DESCRIPTION
As we have described in Chapter 3, technologies inhabit an ecological niche, in 
that each represents a set of potential uses and markets. Just as those who failed to 
understand the true utility of touch input predicted the death of the mouse and key-
board, new technologies, such as Xbox Kinect and the Sony EyeToy, that offer touch-
less gesture input might incorrectly be believed to be a replacement for touch and 
touch gestures. Certainly, devices that enable users to gesture in air open a seemingly  
all-new world of interaction potential—and perhaps new ecological niches as well. To  
the well-trained expert, however, it can be seen that in-air interactions share a great 
deal with those based on touch. This difference is easily expressed and understood 
using tools presented in this book, and will enable the quick and easy transfer of 
design knowledge from touch-based to touchless gesturing.

APPLICATION TO NUI
As we have seen, NUI is not a technology, but rather an experience that can be cre-
ated using technology. Different sensing technologies are suited to different situa-
tions. As one rather well-known researcher is fond of saying, “Everything is best for 
something, and worst for something else.” In-air gesturing, which can be sensed by 
devices like the Sony EyeToy and the Microsoft Kinect, is suitable in some circum-
stances where touch input is less so. In living rooms, with digital signage, and in 
other environments where walking over and touching a screen might detract from 
the experience, in-air gesturing helps close that gap.

http://dx.doi.org/ 
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LESSONS FROM THE PAST
The wrong way to think about in-air gesturing is “touch at a distance.” The right 
way to think about it is as a unique input/output paradigm, which must be designed 
separately and differently from a touch one. That being said, many of the tools we 
have described elsewhere in this book are applicable to this input methodology as 
well as to touch input. We will focus on one particular differentiating element: that 
in-air gestures suffer from a “live mic,” similar to the one that Ronald Reagan apoc-
ryphally encountered in the early 1980s when he delivered the quote that opens 
this chapter. In the case of in-air gesturing, this refers to the always-on nature of 
in-air gesturing and the need to “clutch”—to differentiate physical actions that are 
intended to drive the computing system from those that are not. In the case of 
touch computing, the clutch comes when the user lifts her hand from the digitizer. 
In most cases, when the hand is in the air, the system can’t see it. This is true too of 
the mouse: Lifting your hand from the mouse (or lifting a mouse in the air) causes it 
to stop sending position change information to the system.

In Chapter 12, we described the state-transition model of input devices. Using 
this model, we explained that touch is fundamentally different from mouse input in 
one very important way: Typical touch input has no tracking state, or zone where 
the touch is registered by the system, but not yet engaged.

We pointed out that modern operating systems actually rely rather heavily on a 
tracking state and that designing well for touch input would mean designing an all-
new UI that does not rely on the tracking state to provide a preview. If you thought 
that was hard, wait till you see this: in-air gesture systems are typically one-state 
input devices!

You can see now the challenge faced by those designing games and experiences 
for such input devices: There is no mechanism in the hardware that will differenti-
ate between movements that are intended as gestures to the system and those that 
are not. When designing a touch application, there is little concern about this—if 
the user needs to cover his mouth to sneeze, scratch his head, gesture to another 
person in the room, wring his hands, stretch, or any other of a thousand different 
non-input actions, there is little worry that your sensor, the touchscreen, will send 
these to your app as “touches.” You can simply assume that these will be filtered 
out by the simple fact that the user will stop touching the screen while doing them. 
This is not the case for in-air systems. The sensor will be buzzing away, like the cam-
era and microphone pointed at President Reagan, happily sending all of these events 
to your application or platform.

This fact makes it easy to encounter errors in recognition of the types described 
in Chapter 28: where either the user does not intend to perform a gesture but the 
system recognizes one anyway (false positive errors), or the user believes she has 
performed a gesture but the system does not recognize it (false negative errors). 
These two problems can happen just as easily with touch as with in-air systems, but 
because of the “live mic” problem, they are likely to happen more often. To under-
stand this, imagine the simple task of pushing a virtual button using both a touch 
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input and an in-air input device. In the touch case, this is relatively simple to accom-
plish: The user puts a finger on top of the button and lifts it within its bounds. In 
the in-air case, it is decidedly more complicated. The naive designer might say, 
“When the user points at the button, call it ‘pushed.’” But this won’t work—it’s like 
aiming with a fully automatic rifle with the trigger stuck on “fire.” As the user lifts 
a finger toward the screen, it is pointing the whole way and would be “pushing” 
every button as the finger is lifted. How then do we distinguish between aiming and 
firing in a one-state input device? Several approaches have been explored for in-air 
and other similar contexts that are worth examining.

Reserved Actions
The reserved-action approach takes a particular set of gestural actions and reserves 
them so that those actions are always designated as either navigation or command-
ing. For example, Ken Hinckley and his colleagues at Microsoft Research examined 
the problem of how to distinguish between strokes intended as commands and 
those intended as drawings in a pen interface. They reserved the “pigtail” gesture 
for issuing the “invoke menu” command (Figure 15.1).

This approach has the advantage of following an ink-based system without 
requiring a menu or mode. Want to draw a circle around something? Just go ahead 
and do it. Want to select something? Draw that same circle, but add a little pigtail 
to the end, and the system interprets it as a command. The disadvantage of this 
approach is also equally clear: The user of such a system could never draw a pigtail, 
because that is a reserved action. False positives are likely, since users of a drawing 
program are likely to draw strokes that cross themselves fairly often without intend-
ing them to invoke the command.

In-air gesturing has also been shown with reserved actions. Grossman and his 
colleagues invented Hover Widgets, a set of gestures performed by the user of a 
tablet PC with the stylus hovering in the air above the screen (Figure 15.2). Users 
could use the tracking state on the tablet PC as it was intended for a classic UI, as a 
preview for what would happen when they transitioned to engaged by touching the 
pen to the device. If they happened to move the pen in a particular pattern above 
the device, however, they would invoke commands.

FIGURE 15.1

Selection using a pigtail gesture.
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In this case, false negatives are more likely than false positives. This is because 
the “hover” zone above a tablet PC is rather small, and it is likely that the user will 
exit that zone during the gesture. However, the principle is sound: This reserved 
action is unlikely to be performed in the normal course of pointing, and is thus on 
the right track.

Reserving a Clutch
Similar to but different from a reserved action is a reserved clutch. This is a special 
class of action dedicated to creating a pseudo-tracking state. Similar to the clutch in 
a car, which connects or disconnects the engine from the wheels, a gestural clutch 
is an indicator that you want to start or stop recognition of the gesture. An obvious 
method for such a clutch would be an invisible plane in front of the user. When the 
user moves her hands in the air, they are tracked. To engage, they must push past 
that invisible plane.

The advantage of a clutch over a reserved action is immediately apparent: It 
provides an a priori indicator to the recognizer that the action to follow is either 
intended to be treated as a gesture or not. As we will learn in Chapter 18, the ear-
lier your recognizer can differentiate gestures from non-gestures, the more accurate 
and positive your user experience will be. Another nice effect of a clutch is that it 
enables the complete gesture space to be used. In a system using Hover Widgets, 
for example, what if the user just happened to want to move the pen over the sur-
face of the digitizer, but didn’t want the Hover Widget action to happen? A clutch 
provides an obvious mechanism to differentiate the two situations, without having 
to set aside whole classes of actions.

Unfortunately, a virtual clutch may also cause errors. In the example of the invis-
ible plane, if the plane is too close to the user, it’s likely that he’ll cross it uninten-
tionally and frequently (false positive error). If the plane is too far away, it’s likely 
that he’ll fail to cross it when he intends to (false negative error). Unfortunately, 
there can be little doubt that these “too close” and “too far” zones will not border 
opposite sides of a “just right” zone, but rather that they will overlap and be differ-
ent for different users, or even the same user over time.

FIGURE 15.2

The Hover Widgets are invoked by moving the stylus in a particular pattern in the air above the 
device.
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A better example of a reserved clutch is the use of a “pinch.” When the hand 
is in a regular pose, it is tracked. When the user pinches the finger and thumb 
together, it causes a transition to the engaged state. This approach is less likely to 
be subject to false positive errors, since this action is one that is unlikely to occur 
in the natural course. It is also less likely to be subject to false negative errors, since 
it is fairly easily detected and differentiated from other actions. It does, however, 
have the obvious disadvantage that you remove the pinch (or whichever gesture 
you choose) from the set of gestures you could otherwise use for other things in 
your system.

Despite the reduced probability of false negatives or positives, there may well 
be occasions in which a reserved action or clutch is not feasible. An alternative is to 
make use of multi-modal input.

Multi-Modal Input
Another solution to the live mic problem is multi-modal input. To understand this 
solution, we’ll turn to the iPhone.

A question frequently asked of us by designers of touch applications is “Why 
does the iPhone have a button?” An engineer would point out that it allows 
the system to turn off the touch sensor, which saves power. Aside from this rea-
son, there would still be a need for one that may now obvious to you in light of 
the live mic problem: without the button, how could the user be guaranteed  
to always be able to exit an application and return to the home screen? A reserved 
action might work (say, any time the user were to draw the Apple logo, or slide 5 
fingers together on the screen, the application would exit and return to the home 
screen), but this would be problematic for the same reasons we have outlined 
above. Instead, multi-modal input is used: touch input is sent to the application, 
while hardware buttons control universal parameters (e.g., volume) and basic navi-
gation (e.g., go home, open music controls).

Another example of multi-modal input commonly attempted with in-air gesture 
systems is to use speech input in combination with gesture. The “put that there” 
system was developed at MIT in the late 1970s and early 1980s. In it, the user could 
point at a screen, and the point was tracked. To transition between tracking and 
engaged states, the user issued speech commands. For example, to move an object 
from one place on the screen to another, the user would point at it, then say “Put 
that,” which moved the system into “engaged.” The user would then move her 
finger to point at the new location, and say “there.” The advantage of multi-modal 
input is also obvious—it does not reduce the vocabulary of the primary modality the 
way that a reserved action or clutch do.

Another example of multi-modal input is the use of the keyboard to mode 
mouse clicks or drags. Drag an icon in windows and you will move it from one 
place to another. Hold down the CTRL key while you drag it, and it will make a  
copy instead of moving the original. Using input devices and methods in combina-
tion with one another may on its face seem more complex, but it can in actuality 
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greatly simplify the problem of how to differentiate inputs and solve the live mic 
problem.

DESIGN GUIDELINES
Understand the live mic problem and how you will need to design for it. Consider 
the lessons of this chapter and the live mic problem. Aside from this, consider all of 
the lessons contained elsewhere in this book: for the most part, they apply equally 
well to both in-air gesturing and touch.

Must
l	 Understand the live mic problem as it applies to in-air gestures and design your 

system accordingly.

l	 Include mechanisms to differentiate between those actions that the system 
should recognize and those it should not.

Should
l	 Consider the solutions we have proposed here: reserving actions or clutches, 

or using multi-modal input to solve the live mic problem.

l	 Carefully consider and study your live mic solution. Do not assume that an 
action that you can perform easily will also be performed easily by your 
users.

l	 Consider the problems of both false positives and false negatives in defining 
your solution.

Could
l	 Design your system so that there is no need to solve the live mic problem by 

completely redesigning the UI from the ground up, and taking this issue into 
account.

SUMMARY
While touch and in-air gesturing may at first seem quite different from one another, 
there is only one significant subtlety that differentiates them: the live mic problem. 
Fully understanding and addressing it will allow you to apply the other lessons from 
this book to both touch and touchless gestural interaction.
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FURTHER READING
 Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F. Design and analysis of delimiters for selection-
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distinct from other types of in-air gestures in that they are meant to complement a pen input system, where 
touching the pen to the display performs other actions.
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CHAPTER

16Mechanics, Dynamics, and 
Aesthetics: The Application 
of MDA

It’s not the meat; it’s the motion.
—Maria Muldaur

DESCRIPTION
The mechanics of a product and the dynamics of use determine the aesthetics of the 
product experience.

Mechanics are the essence of any software product. Simply stated, the mechan-
ics of a product are what it can do (functions) and what actions (behaviors) the user 
must perform to activate those functions and what goals are implied or promised by 
the product. One also might think of mechanics as the “objects” (virtual or real), the 
rules of operation, and the goals (end states) that are achievable with the product. 
For software products one can think of mechanics as what goes on the disk (or can 
be downloaded).

Hunicke, LeBlanc, and Zubek have applied the mechanics, dynamics, and aes-
thetics framework to game design. Consider a game like chess. In chess the objects 
are the pieces and the board. The rules of play define where pieces can move under 
what circumstances and how pieces are captured. The goal of the game is to cap-
ture the king. Together, the objects, rules, and goals are the “essence” of chess. The 
game can be rendered in various ways—simple portable plastic board and pieces, 
elaborate carved pieces and board, an electronic chess playing game—but they are 
all chess because of their identical mechanics. In effect, the definition of chess is 
embodied in how it is played. This way of defining words, that is, in terms of their 
use, has been elaborated on by Wittgenstein.

Extending the concept of mechanics to software products is illustrative. The 
objects are often virtual objects—text, graphics, formulas, avatars, targeting reticles, 
mini-maps, etc. In addition, other things that the user interacts with, menus, dia-
log boxes, rulers, and the like, are also objects. Some of these objects are primary 
(text, graphics, etc.); others are secondary (menus, dialog boxes, etc.). Creating or 
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modifying primary objects is the reason for using the product. For example, I use 
an editor to create text objects. Secondary objects affect primary objects. Menus or 
dialog boxes change the rendition of text (its font, size, or style). We could also con-
sider the physical input medium. In most cases this will be a pointing device (e.g., a 
mouse) and text input device (e.g., a keyboard).

In any meaningful system, objects have rules of operation. A primary object like 
text appears at the insertion point when a user types. The text that follows the text 
being typed moves to the right and down, provided the user is in insert mode. In 
overstrike mode, text replaces text to the right in a one-to-one correspondence. All 
secondary objects have rules of operation and rules that govern their effect of pri-
mary objects. Together, the primary and secondary object and their rules of opera-
tion constitute the means by which the “goals” of the product are met. Goals can 
be general—I want to make a document—or quite specific—I want to change this 
letter to the Trebuchet font.

When users engage a game or any product, their actions vis-à-vis the game or 
product constitute dynamics. For example, when players play chess, the movement 
of the pieces constitutes dynamics. While the mechanics of chess are fixed, the 
dynamics vary within a range. Players can make only “legal” moves. Conditions of 
victory are pre-set. However, the players’ behavior is not completely determined. 
Players bring their own knowledge and individual motives to the game. Each par-
ticular game has a broader context, for example, it could take place in a park. These 
characteristics make each chess game unique and interesting. The social context 
also plays a role. The game may be between old friends, in which case the interac-
tion between the players could be more important than who wins. Alternatively, the 
game could be in a tournament in which winning is key. In other words, dynamics 
are predictable (you must play by the rules) but never fully determined. Every chess 
game is unique, but all follow the same rules. Thus, chess fulfills the criteria for a 
good game: simple to learn but hard to fully master.

When software products and their supporting hardware are used by people, that 
interaction generates dynamics—user actions. Just like in a game, users bring their 
background knowledge and their own goals to the situation. The knowledge can be 
either “domain” knowledge (e.g., the author is a good writer) or “product” knowl-
edge (e.g., the author knows how to use MS Word or LaTeX to create the document 
she wants). The goals are part of the context. Goals may change, but it’s useful for 
the analyst or designer to be aware of them. Thus every interaction with a product 
is constrained by the objects, rules, and purpose of the product (mechanics), but 
every interaction will also have emergent properties determined by the user, her 
knowledge, her motives, situational factors (she must finish a five-page report by 
tomorrow), and possibly changing goals.

Finally, the dynamics of a game are the source of the aesthetics of the game. 
Drawing on the chess example again, a highly competitive game will elicit conclu-
sions about the game and reactions to it. For example, an observer may conclude that 
it was a “good” game. Based on the actions during the game, the observer concludes 
that the opponents were evenly matched and the outcome was unpredictable. The 
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players will have their own aesthetic conclusions. For example, one player may con-
clude that she played below her potential or that her opponent “cheated” by distract-
ing her. The conclusions can take any form, for example, “chess is not for me.” They 
could also be emotional, for example, “I feel angry and I won’t play him again.” These 
conclusions about the game—intellectual conclusions, personal conclusions, and 
emotional conclusions—are called aesthetics. They refer to the player’s experiential 
conclusions about this game, chess in general, herself, or her opponent.

We apply this construct of aesthetics to any product. People draw conclu-
sions from the use of the product. That product is hard (or easy) to use. The con-
clusions may be emotional and global: “I hate product X.” Or they may be subtle 
and nuanced: “Don’t use product Y if you have to produce a document with many 
tables, but product Y is great if you are writing a novel.”

Figure 16.1 depicts the mechanics, dynamics, and aesthetics (MDA) framework.
This framework of mechanics, dynamics, and aesthetics was developed to ana-

lyze game design. It can be usefully applied to any product, but there are some 
important differences between products and games. In games like chess, the rules 
are well established, are extensively documented, and change very slowly. Once 
you learn the rules of the game you can play and gain experience. As you become 
better at it, you understand more “dynamic possibilities,” for example, if I do X, that 
leads to condition Y, and my opponent is likely to do Z. Your aesthetic appreciation 

FIGURE 16.1

The MDA framework.
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may change. For example, you may learn to appreciate getting beaten by a worthy 
opponent in a well-fought game. You may take away “learnings,” for example, I’ll 
try the end game on my next opponent.

Applying the MDA model to products helps us appreciate certain distinctions, 
and new possibilities emerge. For example, the mechanics of the primary objects 
in a product may facilitate or hinder its use in a given domain. An editor that used 
overstrike mode exclusively would not be well suited to free-form writing. Free-
form writing often involves inserting text between already-written text, which 
is hard to do in overstrike. On the other hand, overstrike makes text replacement 
very easy (the deletion step is eliminated). It works well for replacing data in forms. 
Insert editors compensate for the difficulty of replacement by including an over-
strike mode or by pending delete (select the text to be replaced and type).

Beyond the behavior of primary objects (e.g., text), game and product designers are 
faced with the challenge of the design of secondary objects. The behavior of these sec-
ondary objects imposes an additional burden on the user. They must not only learn the 
domain, but also learn how to use the “tool,” that is, the secondary objects. Consider 
an electronic chess game. The user may type in commands to move pieces on a virtual 
board. The designer must aim to make this as easy to learn as possible since in and 
of itself it typing commands contributes nothing to the “joy of chess.” The designer 
is aided by the fact that chess has a traditional notation system that many players are 
familiar with. The designer of electronic chess can simply implement that system.

In software products, design teams often face two challenges. The product must 
teach domain knowledge and must teach tool knowledge. Early users of modern 
editors had to learn about fonts and layout. These are part of the domain knowledge 
that was the traditional domain of printers. In addition, the designs had to teach tool 
knowledge—where and how the user can change the font of a word or a paragraph 
or a document. This problem was compounded by the fact that users want to learn 
by doing as compared to reading. As a result, design became not merely matching 
the actions of a domain but representing these to users so that they could under-
stand (or learn) the domain and learn the tool. The design of the mechanics of a 
system can be very challenging.

Some exemplary products accomplish both these goals very well. Users become 
skilled practitioners, quickly learning both the domain and the tool. In some cases 
they even enjoy the process. Some products like games exist only for pleasure (by and 
large). Designers of games often strive to make this learning fun by eliminating unnec-
essary challenges and introducing challenges progressively, creating a gradual ramp 
for learning as you play. These “ramps” consist of well-designed steps in which both 
the domain knowledge and the tool knowledge are progressively introduced.

APPLICATION TO NUI
By definition a NUI offers an opportunity to introduce products where the mechan-
ics are readily practiced. There is a high probability that the product works the 
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way one expects it to work. These “intuitive” or natural mechanics should lead to 
highly effect dynamics. Use should be smooth and expert-like without long periods 
of training or practice. A user’s progress will be more or less continuous, without 
regression or long plateaus. A motivated learner will develop deeper skills with each 
game. Her growth in skills will be about chess, not about the tool she might use to 
play it. The aesthetic result is that the device is experienced as delightful and fun to 
use. The user feels empowered by the technology rather than frustrated, enslaved, 
or ridiculed by it.

Consider a NUI version of chess. In that version one could move the pieces by 
touch, that is, touch the piece and move it to the destination square. NUI chess 
could also prevent illegal moves, such as moving bishops off the diagonal. In this 
way it aids the beginner in learning in situ. This example illustrates some of the 
essential elements of a NUI system. “Learning” focuses on primary objects—pieces, 
their movement, and conditions of success. The novice will learn the mechanics of 
chess relatively quickly and with pleasure. The transition to skilled player may be 
even more rapid than it would be with a traditional board and pieces, since ille-
gal moves are precluded and valid moves may be highlighted. A second player is 
optional. The computer can play that role, and the difficulty level can set by the 
player to ensure the right level of challenge. Progress can be tracked and games 
can be stored and reviewed, with supplemental teaching. Playing will be more fun. 
Minor but burdensome tasks, such as picking up the game and finding lost pieces, 
are eliminated. NUI chess also eliminates the need for secondary objects. The player 
need not learn a notation system and enter codes to indicate which pieces move 
where.

Once the mechanics are mastered, a NUI version would aid the players in devel-
oping skill. It could do this in several ways. Games could be automatically replayed 
so that the novice can study how she won or lost. This uses technology as an aid 
and possibly substitutes for traditional instruction or informal discussion with other 
players after a game is over. The replay could be enhanced by explanatory text or 
by allowing the player to intervene at any time and play the game from that point, 
allowing one to practice mid-game or mating strategies.

One could also imagine a natural way of learning during play. Often novices at 
chess adopt an informal rule that a move is not complete until you remove your fin-
ger from the piece. This allows them to position a piece and study the board. One 
could easily imagine electronic chess allowing the same action but enhancing it by 
showing the novice what other pieces were a threat. Any number of mechanisms 
are possible. Threats could be shown after a delay (the computer is scanning for the 
novice) or on command.

The critical NUI elements of the development of expertise are that new infor-
mation is introduced progressively, it occurs in a way that is consistent with the 
level of the novice and desired state of expertise being strived for, the learning takes 
place in the context of use, and the learning is perceived as fun.

Contrast this approach to the very traditional approach to learning chess. 
One typical element of traditional learning is studying books that describe typical 
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patterns of movement. This often requires the learner to learn the notation of chess. 
While this may be valuable, it is not natural and can be a stumbling block.

The example captures the essence of a NUI. It is an interface that encourages rapid 
transition to skilled practice by removing nonessential objects and rules, enhancing 
the learning of essential rules, enabling the process of skill acquisition to be pleasur-
able, and offering technological enhancements that enrich the experience. Natural 
does not mean primitive, or even intuitive. To the non-player there is nothing intuitive 
about chess. But to the experienced player and the willing student, a natural interface 
to chess is the way to go. We could introduce our own “Turing test” for a natural user 
interface. It is one that will be chosen over others by the majority of both novices and 
experts. In other words, in most cases students of chess and accomplished players 
will choose it over playing chess with the traditional board and pieces.

Actually, designing a NUI system can be a quite subtle and difficult problem 
depending on the domain or task. There are no foolproof and simple heuristics one 
can follow to create a NUI. However, we can provide some guidance for how to 
approach designing a NUI system.

Removing intermediaries like the keyboard and a specialized pointing device, for 
example, the mouse, is a possible step to this more natural interface. By removing these 
“transducers,” the user is able to interact directly with the objects that the computer 
system presents. However, such removal is not foolproof. It depends on the task and 
the current dominant practices. For example, replacing the keyboard for tasks that pri-
marily involve text creation would be problematic given the evolved state of keyboard 
design and the skill level of the population. It will be a long time, if ever, until a vir-
tual keyboard can match the performance of a regular keyboard. However, a sufficiently 
accurate and fast voice recognition system may become a contender at some point in 
the future. Even more subtle approaches may be more natural in some situations. For 
example, anticipating the word that user is typing by offering options, or a keyboard 
system that allows only valid entry by rendering “wrong” virtual keys inoperative (some 
auto navigation systems adopt that approach), may speed the user to skilled practice. 
Stretching the point, one could even see autocorrect in software systems as “natural” if 
the user gets to skilled practice more quickly and the results are better.

A NUI promises straightforward mechanics, smooth and flawless dynamics, and 
consequently positive aesthetics. Needless to say, this nirvana is not easily achieved. 
The development of new hardware capabilities offers the possibility that these 
NUIs may emerge, but only the possibility. In practice, designing and implementing 
such interfaces are extraordinarily difficult. The rest of this book will provide some 
insight into how such interfaces can be built.

LESSONS FROM THE PAST
With some justification, one can see the evolution of the human-computer interface 
as a slow but relentless progress toward a more NUI-like interface: one that enables 
skillful performance rapidly without diminishing the result, and perhaps enhancing it.
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In this chapter we have taken a framework that has been useful in game design 
and applied it to the NUI. Like NUIs, games face the challenge of creating skilled 
practice without making the interaction trivial. They have adopted interesting ways 
of addressing that challenge. For example, game designers think in terms of the dif-
ficulty ramp of the game: How can we make each stage of learning the game just 
challenging enough to make it interesting, that is, not too trivial and not too insur-
mountable? They also think in terms of creating a lawful world where players can 
anticipate, plan, and strategize about their approach to winning. Some games face 
the additional challenge of representing in some way real-world environments. For 
example, driving games can simulate the physics of driving high-performance cars, 
or they can simplify the physics and provide some support. How much the physics 
are simplified and how much support is provided is a strategic decision.

DESIGN GUIDELINES
The MDA framework does not offer detailed design guidelines. Instead, it provides 
a framework for thinking about design. It also hints at pitfalls such as assuming that 
the mechanics are obvious or assuming that new capabilities will necessarily lead to 
delight. But by using MDA and our experience with games, we can offer some guid-
ance to design teams.

l	 Begin with the fundamental mechanics of the interaction. If your understand-
ing of those do not draw on the situated knowledge of skilled practitioners, it 
is unlikely that the implementation of the NUI will be successful.

l	 Do not draw inspiration from pre-existing interaction paradigms: beginning 
with a command system, a GUI, or a web interface almost certainly guarantees 
inconsistency and failure.

l	 Consider carefully what is skilled behavior in a domain and how the path to 
skilled behavior could be shortened without cheapening the skill.

l	 Remove secondary interface controls wherever possible.

l	 Do not consider how to use technology to enhance the interaction until you 
have designed the fundamental interaction and how to teach it quickly and 
easily. Only then consider the enhancements that technology can add. For 
example, design the chess game first and make the action of the pieces work 
smoothly and the pieces clearly differentiated. Only after that is working 
should you consider enhancements and then focus on those that enhance the 
progress to skilled performance. For instance, first make illegal moves impos-
sible but in a fluid way, such as not allowing a piece to follow the user’s fin-
ger to an illegal square, but allowing tracking to resume when the user moves 
the piece in a legal direction. Get that right before you consider such enhance-
ments as auto replay and teaching.
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l	 Finally, beware of creating plateaus. One pointed criticism of many modern so-
called NUIs is that the user quickly develops skill to a certain level but will 
never progress beyond that level. The Wii is a good example. Wii tennis may 
be fun at parties. It may do great social good by allowing physically impaired 
folks to enjoy some tennis-like movements and thrills, for example, winning. 
But becoming an “expert” in Wii tennis is unlikely to be a path to becoming a 
tennis champion.

SUMMARY
In this chapter we explicated the MDA framework and applied it to the NUI. We 
distinguished between primary objects (those that are inherently part of the task) 
and secondary objects (interface controls). NUIs minimize the latter. We suggested 
a Turing-like test for the successful NUI: would skilled practitioners and eager learn-
ers prefer it to traditional training approaches. Finally, drawing from game design, 
we suggested some principles to guide the development of a NUI.

FURTHER READING
 Hunicke, R., LeBlanc, M., and Zubek, R. MDA: A Formal Approach to Game Design and Game Research, 

http://www.cs.northwestern.edu/~hunicke/MDA.pdf. The MDA framework has proven very useful for 
thinking about game design and improving games. While there are a number of classification systems for 
aesthetics, the value for our purposes is in the clear distinctions this framework makes between design-
ing the “thing,” using or playing with the “thing,” and the users conclusions about the “thing.” We have 
applied it to NUI because we think it helps advance the concept of NUI beyond the ideas of a set of 
primitive gestures. It has also served to shape the thinking of the Games User Research team at Microsoft 
Studios (http://mgsuserresearch.com/).

 Wittgenstein, L. (1953) Philosophical Investigations, translated by G. E. M. Annscombe, Blackwell. We 
call out Wittgenstein here because of his analysis of language. Specifically, that the meaning of language 
is embodied in its use. This chess is not defined by a dictionary definition but by the cultural practice 
of the play of chess, that is, the mechanics. You don’t really know what chess is until you learn to play 
it, and then your knowledge of it depends on your level of play (as untalented amateurs we are merely 
dilettantes who draw on chess for examples). However, Wittgenstein’s discussion of the Martian who 
watches a chess game is instructive. Our hypothetical Martian watches a game of chess and then argues 
that the outcome is completely determined. The players are stunned. But the Martian was right; she was 
just focusing on the mechanics of chess. For the players the rules were in the background, and yes, they 
did determine the play, but the players were focused on the dynamics (their emergent play) and their 
aesthetics—how they interpreted the game. The greatest design occurs when the dynamics and aesthetics 
intended by the mechanics the designer created are matched by the dynamics and aesthetics of the player. 
That is, the product is used as intended and evokes the reactions the designer intended.
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17New Primitives

Even the literature of the Party will change. Even the slogans will change. How 
could you have a slogan like “freedom is slavery” when the concept of freedom has 
been abolished? The whole climate of thought will be different. In fact there will be 
no thought, as we understand it now. Orthodoxy means not thinking—not needing to 
think. Orthodoxy is unconsciousness.

—George Orwell, 1984

DESCRIPTION
Modern software design has been divided up into professions, often distinguished 
as information architecture (designing the layout and flow of an application or 
website), interaction design (assembling components of interaction, such as links, 
buttons, and so on), and visual design (deciding on the overall and specific look of 
an application or site). None of these operates at a sufficiently low level to create 
designs for new technologies. The vast majority of designers have never considered 
the fundamental mechanics of a link, or a click; this concept is so ingrained in their 
understanding of computers that they think of it as axiomatic. Click has become a 
part of the language spoken by users of interactive technologies. Ask someone to 
speak aloud as they browse the web on their touchscreen phone, and you will hear 
them tell you that they are “clicking links.” The metaphor of the button has been 
so deeply engrained in the mechanics of interaction that one might fear there is no 
going back. As we will discuss in greater detail in Chapter 21, modern user inter-
faces grew in a tight coupling with the evolution of the mouse. As we move to new 
input devices, we will need new primitives.

The Ingsoc government of Orwell’s Oceania sought to eliminate undesirable 
actions by first removing the building block used to form the intent: language. In 
the fragment above, we understand the power of the fundamentals of language as 
Ingsocs believed it to be: if there were no words to describe a thought, the mind 
would be unable to form it. While modern linguists might debate the efficacy of 
such a plan for spoken language, there is no denying that the basic building blocks 

http://dx.doi.org/ 
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of the user experience form the foundation of its success. Shaking the mouse cursor 
on the screen does nothing in the Windows and Mac OS worlds, not because such 
an action could not be recognized by the system, but rather because the designers 
have chosen that this action should not do something. In the user interface world, 
there can be no denying the power of the basics of the interaction language: get 
them right, and your system could seem simple, even natural to use. Get them 
wrong, and your user experience has no chance of success, even before you have 
designed any of what is traditionally thought of as the user experience.

The building blocks of an interaction language are what we refer to as primitives. 
To understand their role, you might think of four levels of actions: (1) what is physi-
cally possible with the device (I can slide the mouse on a table, I can turn it upside 
down, I can juggle it…), (2) what is actually recognized and conveyed by the device 
(only movement on the table), (3) the even narrower subset of what is recognized to 
those things to which system responses are tied (movements of the mouse are recog-
nized as a “drag,” which allows the user to move on-screen objects from one place to 
another. However, the actual shape of the drag does not matter—all that matters in a 
drag is the start and end point. Dragging in a heart shape while dragging does noth-
ing different than dragging directly between the two points.), and (4) the expansion 
of the primitives in the form of controls (e.g., clicking and dragging a slider changes 
a one-dimensional value, clicking and dragging on an ink canvas draws a two-dimen-
sional stroke, clicking and dragging an icon moves it somewhere else).

Each of these levels is critical. What is physically possible is limited by the laws of 
physics and biomechanics. What is recognized is a function of your hardware—dif-
ferent hardware recognizes different things, and is the subject of Chapters 21 to 27.  

FIGURE 17.1

Each level is a subset of the one beneath until the primitives are reached. Those primitives 
are then composed into a larger set of controls. Keeping the set of primitives small makes the 
language easy to learn. For example, clicking and dragging a paint palette draws, clicking and 
dragging on a scroll-bar scrolls a page.
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How you expand your primitives by building controls or gestures is the subject of 
Chapters 14 and 15. In this chapter, we will describe the development of the primi-
tive actions: those physical actions which are detected by your sensors that you will 
select to be primary units of interaction of your system.

APPLICATION TO NUI
Not all applications written for a given platform will require new primitives. Indeed, 
the ideal would be for primitives to be more or less standardized across a platform, 
the same way they are now in Windows and Mac OS (those which are more or less 
standard across them: click, double-click, CTRL-click/right-click, etc). But we’re 
not there yet—different touch platforms employ different primitives, and it’s not 
uncommon for application writers of touch & gestural systems to build their own. 
This is largely due to the fact that very few toolkits have been released which pro-
vide a good and comprehensive set of primitives for the design of touch interac-
tion. Instead, most are simply copies of mouse primitives. This is no doubt because 
we’re simply too early in the process—the design work is yet to be done. We need 
an explosion of applications with different primitives to finally settle down through 
a darwinian process into a smaller set of primitives which will become a standard 
within each platform, and possibly, eventually, across platforms.

This can be seen as both opportunity and crisis. The burden for the designers of 
touch applications are much greater than for mouse-based systems, because you can’t 
rely wholly on the toolkits you have to work with. At the same time, this gives design-
ers far more freedom to experiment and to help shape the future of touch interaction.

LESSONS FROM THE PAST
Where most designers of touch systems err is in believing that the primitives pro-
vided for the mouse are also the right ones for touch systems. To understand why this 
is problematic, we’ll now examine two input devices, the mouse and the pen, and 
explore how a failure to design new primitives led to the failure of pen-based systems.

What the Mouse is Good At
A mouse is designed to detect two physical actions well: travel from one point to 
another (point), and the pushing of buttons (click). In most mouse GUI toolkits, 
a click is registered if the pointer is positioned over an object, and the button is 
then depressed and released. If the cursor moves off of the object between the time 
the button is depressed and released, no click is generated. The requirement of no 
movement is to reduce situations where the user might click the wrong location or 
press the button by mistake (what we’ll call a false positive in Chapter 20). It gives 
them an escape route: They can push down the mouse button, see that they have 
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missed their intended target (or changed their mind), and then drag the mouse off 
of the on-screen control to safely release their button without triggering a click. For 
this to work well, there must also be a low risk of the system failing to detect a click 
when the user intends one (Chapter 20: false negative). The mouse is ideally suited 
to this in the case of clicking: Its large surface area provides sufficient static friction 
that it is unlikely to slip due to the force of the user pushing the button. As for the 
moving from one place to another, the mouse is also ideally suited to this – exten-
sive, exhaustive studies over the years have shown the mouse to be faster than joy-
sticks, pens, trackballs, you name it—the mouse is faster for pointing.

What the Mouse Is Bad At
It’s essential to note the subtlety of the primitive of pointing: It’s the movement from 
one place to another. This is distinctly different from following a path – the mouse 
provides terrible control for actually controlling the path of movement. Don’t believe 
us? Open up a drawing program and try drawing a perfect (heck, even passable) cir-
cle. Now grab a pen and a piece of paper. Which one was faster, and which one looks 
better? A defender of the mouse might at this point pipe-up and say “there is no need 
to control the path of the mouse! The user needs only to move over a target and click 
– so who cares? If you want to draw, use a stylus.” And of course, they’d be right, but 
they’d also be missing the point: the reason there is no need to control the path of 
the mouse is because the UI has been designed that way. The astute designer might 
note moments in operating systems where the path does matter – but these moments  
are examples of poor design. For example, navigating sub-menus: Slide too far outside 
the narrow path of the root of the menu, and the sub-menu disappears. No doubt this 
is why sub-menus have been all but eliminated from more modern software.

The job of a designer of primitives is to understand what your hardware is good 
at detecting, and what the applications will need. The mouse GUI was an example 
of where this has been done extremely well, through 40 years of innovation, fail-
ure, missteps, and corrections. An obvious example of where the software was not 
designed for the hardware was in the Tablet PC.

What a Pen Is Bad At
The early version of the Windows-based Tablet PCs were essentially operated by the 
pen emulating the mouse. As we will describe in Chapter 21, this sort of situation is 
largely due to the business decision of wanting to ensure old applications could be 
operated by the new system. Of course, a careful examination of the pen will reveal 
that it is terrible at one of the two things a mouse is best at: clicking. As the pen 
approaches the digitizer, the cursor jumps around with every small movement of the 
pen. Once the pen is touching, it is extremely easy to slip by some small amount, 
ensuring that no click is generated in the application (Chapter 20: false negative). It’s 
even harder to perform a right-click, which typically requires the user to press a but-
ton on the barrel of the pen while they are trying to keep it still on the device (or 
hold it down in an awkward posture while they perform their click). As for pointing, 
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the stylus is passable, but one must also consider the digitizer: Most digitizers detect 
the stylus only when it’s within an inch or so of the digitizer. The consequence is 
that the user is usually doing most of the physical pointing movement with the pen 
out of range of the digitizer (what we called the “out of range” state in Chapter 13). 
This means that any controls which rely on knowing the movement during a pointing 
movement won’t work correctly, or you will force the user to keep the stylus close to 
but not quite touching the digitizer, which can be a pain.

In truth, it’s almost hard to imagine a worse device for controlling a WIMP GUI. 
It’s no wonder that the Tablet PC never caught-on.

What a Pen Is Good At
Where the pen excels is in the area where the mouse does not: controlling the  
path of movement. Users can quickly sketch, write, and annotate. Detractors of the 
Tablet PC will often note that typing is much easier than hand-writing. And of course 
they’re right. But that misses the point – if your application requires a lot of typing, 
it’s not right for a pen-based system. But for all of these other tasks: active reading, 
sketching, brainstorming, entering mathematical equations, the pen wins by far. What 
has held back the user experience of pen-based devices is that they have relied on a 
user interface largely designed for the mouse. Imagine if the Tablet PC’s software had 
been built completely from the ground up taking these simple facts into account.

Designing New Primitives
As you saw in Figure 17.1, the primitives used in a system are used in combination to 
form controls. Thus, this for-mouse design of the WIMP GUI lives in the controls them-
selves. Just as you would never try to push a physical button with a pen, nor does it 
make sense for the button to be the metaphor or interaction method for a pen in the 
virtual world. These controls, however, are formed as collections of the more funda-
mental primitives which are designed at a lower level. One can imagine a creating a user 
interface where clicking is never required. What if only crossing were recognized? To 

FIGURE 17.2

Traditional GUI checkboxes. These are activated by applying the click primitive to the white 
square. In most, but not all tookits, the user can also click the label.
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understand what we mean, consider the traditional checkbox, as we see in Figure 17.2. 
These are activated by applying the click primitive. This is easily done with the mouse: 
the user points the pointer over the control, and clicks to toggle the state of the box. 
This simple control is perfectly designed for the mouse. But it is terribly designed 
for pen input, since a click is very hard to perform with the pen, for the reasons we 
described above.

Instead of click, a pen-based UI might employ cross as a primitive. What we 
mean by this is that the user would slide the tip of the pen over the control. It 
wouldn’t matter where the stroke were initiated, or where it ended, but if it passed-
over the control, it would toggle it. The users could stroke over the control, or they 
could choose to draw a little check-mark, whatever they wanted. Figures 17.3 and 
17.4 show what that might look like.

In addition to being easier to perform than a click, another advantage of a  
crossing-based checkbox is that multiple boxes could be crossed with a single 
stroke, as we see in Figure 17.4.

FIGURE 17.3

Hypothetical, crossing-based checkboxes: Stroking over them toggles their state. (1) the control. 
(2) ink showing the path of the user’s pen stroke. (3) the checkbox shows the new state.

FIGURE 17.4

Crossing-based checkboxes: the user selects multiple boxes with a single stroke.
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The disadvantage of a crossing primitive is that it might have a high degree of 
accidental detections if the user became a little sloppy (Chapter 20: false positives). 
An alternative would be an escape primitive, where the stroke must initiate within 
the bounds of the object, but end outside it. Or an entry primitive, where the stroke 
must initiate outside and terminate within the object. Each would have pros and 
cons, which you would need to evaluate. Once a decision was made on the primi-
tives, it could then be extended to the controls. It is obvious how a radio button or 
button might work under any of these schemes. Of course, which controls you cre-
ate depends more on the applications and context of use of your system. But they 
will all be composed of the primitives you build for your hardware. A critical mis-
take made by the designers of pen-based interfaces was starting with the controls, 
instead of with the primitives. As soon as they missed replacing the click, there 
really was no hope that they would build a for-pen user interface.

Hope of a for-pen user interface is not lost. An excellent design exercise was 
conducted by a group of researchers at the University of Maryland. Crossy was a 
drawing program, designed for use with a pen, which had all of its primitives 
replaced by crossing. It is a source of inspiration for how to define new primitives, 
and then design controls using those primitives.

DESIGN GUIDELINES
The unfortunate truth is that a definitive set of touch primitives has yet to be 
designed. A few have been seen on a bunch of systems: pinching to zoom in and 
out, sliding the finger up and down to scroll. Continuing to evolve these will be 
the task of designers of touch-based platforms and applications. There is a tendency 
with touch and gesture systems to believe that more actions can “naturally” be pro-
moted to primitives. This seems intuitive, since we have such a large vocabulary 
of primitives when interacting with objects and with one another—we don’t just 
point at ideas on a page, we say them, while using pointing gestures to aid in con-
versation. As we alluded to in Chapter 2 and will discuss in more detail in Chapter 
30, the set of primitive actions which we all perform without prompting is incred-
ibly small. Ask 10 people what the gesture should be for “turn that box red,” and 
you’ll get anywhere from 5 to 10 different gestures. The take-away, of course, is that 
you will always need to teach any new primitives and higher-order commands you 
introduce. How this is done is covered in great detail in Chapter 19, applying the 
principal of scaffolding we discussed in Chapter 12.

Overlap Primitive Sets for Novices and Experts
There is a tendency to optimize for quick learning. This can be accomplished by, 
among other things, having a very small set of primitives. This approach, of course, 
optimizes for novices and neglects the opportunity for users to learn and become 
experts. There is a lesson to be learned from the WIMP GUI, which has a rather 
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large set of primitives for both mouse and keyboard. For the mouse, there are click, 
double-click, right-click (function-click for the Mac folks), scroll, and of course 
point. For the keyboard, these are roughly every key on the keyboard, with some 
combinations in the form of accelerator keys (e.g., Apple1C to copy, CTRL1V to 
paste). The beauty of this system is that the mouse and keyboard primitives actu-
ally co-exist entirely, without interference. A user could drive both Windows 7 and 
Mac-OSX using only a keyboard or a mouse. The keyboard primitives (aside from 
text entry) exist as a set exclusively for the benefit of expert users. The beauty 
of their design is in how well these systems co-exist, and how well the users are 
supported in starting out with the mouse, and then gradually learning the more 
advanced primitives of the keyboard. As we describe in detail in Chapter 19, this is 
one of the few areas where the Windows UI unquestionably is better designed than 
OSX. Users of either operating system would be well served to use the Windows 
treatment of overlapping primitives as a study in how this can be done well, and 
consider how you might do so in your touch applications.

How Many is the Right Number of Primitives?
A critical issue to consider is the number of primitives. This is an area of poten-
tial trade-off of expert vs. novice use. If your system has very few primitives, they 
can be learned more quickly. If your system has a large number of primitives, it 
may take longer to learn them, but an expert can perform a single primitive more 
quickly than using primitives in combination. An obvious example of this trade-off is 
the scroll wheel added to the mouse, or two-finger scrolling on modern trackpads: 
in the olden days, “scroll” was not a primitive, it was enabled by controls that could 
be manipulated using point and click primitives (the scroll bar). But someone rec-
ognized that promoting that logical action to a primitive would enable faster expert 
use – now scrolling is as easy as pointing (to the window to be scrolled) and sliding 
the wheel or two fingers on the trackpad. The disadvantage is obvious: novices have 
more to learn. There is no hard and fast rule as to which is the right number. An oft 
misapplied number in design circles is the capacity of working memory (5–9 items). 
Since primitives are stored in long-term memory, this value does not apply.

Constructing and Evaluating Primitives
Another disadvantage of the mouse’s scroll primitive vs. using point and click to 
manipulate a scroll bar is that it’s harder to follow what someone else is doing when 
they use the scroll wheel while you are looking at their screen, since you lose the 
added information of seeing which end of the scroll bar they are pointing towards 
before they click and the window starts to scroll. This is an example of something 
that probably cameup (or should have) when hardware manufacturers and soft-
ware designers were evaluating the scroll primitive. As a general methodology for 
designing and evaluating primitives, we have found great success in a two-pronged 
approach.
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When engineers construct something, we have observed that they tend to like to 
work bottom-up. A bottom-up approach focuses on answering three questions: What 
can the hardware reliably detect? What can the users do in a physically comfortable 
way? What can the users understand and learn? In contrast, a top-down approach 
tends to be favored by designers. This approach also seeks to answer three questions: 
What will interaction with the overall system look like? What are the contexts of use 
and usage scenarios? What is the unifying theme to the interaction? Where we found 
great success after several false starts was in actually evaluating all of these at the 
same time, rather than favoring one approach over the other. This is because each 
tends to look out for pitfalls in the other. For example, designers tend to overlook 
the strict realities of the hardware, and engineers tend to drive towards experiences 
which optimize efficiency over a properly scaffolded experience. As we will discuss 
in more detail in Chapter 31, a multi-disciplinary team observing a Rapid-Iterative Test 
and Evaluation methodology has the best chance of creating a great set of primitives.

There are few hard and fast rules when it comes to primitive design, but those 
that we have found are enumerated below. Most of the chapters of this book have 
some element of good primitive design.

Must
l	 Take into account what the hardware is good at. Your primitives must be 

sensed reliably.

l	 Take into account what your hardware uniquely supports, and consider expand-
ing your primitives to include these elements. This will help you to avoid generic 
design which does not differentiate your platform.

l	 Take into account the overarching questions: What does the user need to 
be able to do, and what do you want the expert user’s behavior to look like? 
Building-out a few different elements of your design (or applications on your 
platform) will lead naturally to selecting primitives from the overlapping sets.

Should
l	 Avoid questions like “what feels natural to me?” As with any other element of a 

user experience, the designer is far from a typical user.

l	 Follow the RITE method, outlined in Chapter 31, to iterate on your primitives.

l	 Follow a simultaneous bottom-up and top-down design process. Chapters 3–12 
focus on how to aid the top-down designer, while the remaining chapters focus 
on how to aid bottom-up design, or guide your process.

l	 Consider carefully the size of your set of primitives, and avoid erring by having 
too few, placing an upper-bound on performance, or having too many without 
a scaffolded (Chapter 12) self-revealing gesture language (Chapter 19).
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Could
l	 An excellent approach to supporting both novices and experts is to have over-

lapping sets of primitives, one better suited to experts, one catering to novices. 
The lessons of Chapters 11 and 12 demonstrate how to start small and expand 
your set outwards.

SUMMARY
Primitives make up the basic language of your interaction. If you are building atop 
a platform, some of those primitives may have been defined already, but there is no 
rule that you must use them. In truth, most of the UI toolkits and platforms designed 
for touch either contain only a very small set of primitives, or they have the wrong 
ones. Free yourself to consider an even lower level of interaction than is typical 
in creating an application for the GUI. Because touch and gestural input is in its 
infancy, you have little other choice.

VOICES FROM THE FIELD: UI AS LANGUAGE
Kay Hofmeester
A user interface is the communication medium between human and computer. It requires a 
language in order for us to communicate our intent to computers. Touch is an enabler which 
requires a new language, framing input into the system. A computer replies using a language 
consisting of visuals and audio.

The touch language has gestures and compound manipulations. Gestures can be compared to 
phrases, compound gestures resemble sentences. For instance: Finger down can mean “this item.” 
Tap (finger down and up) can mean “open this item.” The system plays its part in the conversation: 
When the finger touches the screen, it should immediately react, telling the user it has registered the 
touch. Then it should highlight the item the finger is touching, confirming the selection. When the 
finger is lifted it should present an animation to indicate the item is being opened.

Users often try to use interface language conventions they know from systems they used 
previously when they encounter a new language. An example of the set of conventions that users 
will apply to touch languages is the GUI language of Windows/Icons/Menus/Pointer. The touch 
interface has to make clear that it refers to a different language. Our research has uncovered that 
to learn the new language, it is more effective to provide opportunities to use the new language 
than to teach it. Once open to learning, the user is likely to overcompensate for learning the new 
language. This means trying to apply the new rules and rejecting the old rules. We can make use 
of this state of learning by making exploration of the system and its language safe and rewarding.
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The Crossy project from the University of Maryland provides an example application build with a 
different primitive, cross, far better suited to pen input than click and point. Consider it as a case 
study in the creation of new primitives, in both bottom-up (crossing is better then clicking for a 
pen) and top-down (what should expert use of a pen-based drawing program look like?).

http://www.doi.acm.org/10.1145/1029632.1029635
http://www.doi.acm.org/10.1145/1029632.1029635
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CHAPTER

18The Anatomy of a Gesture

Anatomy is destiny.
—Sigmund Freud

DESCRIPTION
According to Wu and his co-authors, a gesture consists of three stages (Figure 18.1). 
Registration is the moment that the type of action is set. Next is continuation, 
which adjusts the parameters of the gesture. Last comes termination, which is 
when the gesture ends. For the engineers, a gesture can be thought of as a function 
call: The user selects the function at the registration phase and specifies the param-
eters of the function during the continuation phase, and the function is executed at 
the termination phase (Table 18.1). In most touch systems, these phases correspond 
roughly to physical changes.

FIGURE 18.1

The three stages of gestural input and the physical actions that lead to them on a pen or touch 
system. OOR is “out of range” of the input device.

http://dx.doi.org/ 
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APPLICATION TO NUI
To draw from an example you should now be familiar with, consider the two-finger 
diverge (“pinch”) gesture that has come to mean zoom in or zoom out. This model 
of gestures allows for an abstract examination of the gesture language, as shown 
in Table 18.1. As we will see, multi-touch input provides significant advantages to 
gesture design. By deeply understanding a model for how gestures are designed, we 
will be better equipped to build not just individual gestures, but a set of gestures 
that are both consistent and error-free.

LESSONS FROM THE PAST: AMBIGUITY
There is a temptation among designers to try to make every registration and con-
tinuation action the same: put a single finger down on a piece of content and move 
it on the screen. While this might make for a simple UI, it severely limits the set of 
possible gestures and can lead to ambiguity. Let’s build up a theoretical gesture lan-
guage, beginning with a possible delete gesture: To delete something, we’ll flick it 
to the left side of the screen (Table 18.2).

Two things are immediately apparent. The first is that there is no continuation 
phase of this gesture—the system doesn’t know it’s a flick to the left until the user 
has flicked, and there is no next step. This isn’t surprising, since the delete com-
mand has no parameters—there isn’t more than one possible way to delete some-
thing. The second striking thing is that the registration requires two steps. First, the 
user places her hand on an element, then she flicks to the left.

Requiring two steps to register a gesture is problematic. First, it increases the 
probability of an error, since the user must remember multiple steps. Second, error 
probability is also increased if the second step has too small a space relative to other 
gestures (e.g., if flicking in another direction leads to another action—or worse, if sim-
ply moving something, rather than flicking, is a gesture). Third, it requires an explicit 
mechanism to transition between registration and continuation phases: if flick right 
is “resize,” how does the user then specify the size? Either it’s a separate gesture, 
requiring a modal interface, or the user will keep her hand on the screen and require 

Table 18.1  Registration, continuation, termination

Registration Continuation Termination

Place two fingers on 
a piece of content.

Move the fingers around on the surface of 
the device: The changes in the length, center 
position, and orientation of the line segment 
connecting these points are applied 1:1 to 
scale (both height and width), center position, 
and orientation of the content.

Lift the fingers from the 
surface of the device.
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a mechanism to say “I am now done registering; I would like to start the continua-
tion phase.” Last, the system cannot respond to the user’s gesture in a meaningful way 
until the registration step is complete, and so this prolongs this feedback.

Let’s consider a system that implements just four gestures: one for manipulation of 
an object (grab and move it), along with three for system actions (rename, copy, delete) 
using flick gestures (Table 18.3). We can see the flow of a user’s contact in Figure 18.2. 
When the user first puts down his finger, the system doesn’t know which of these four 
gestures the user will be doing, so it’s in the state labeled “<ambiguous>.” Once the 
user starts to move his finger around the table in a particular speed and direction (“flick 
left” vs. “flick right”) or pattern (“slide” vs. “question mark”), the system can resolve that 
ambiguity, and the gesture moves into the registration phase.

Table 18.2  Stages of our theoretical delete flicking gesture

Registration Continuation Termination

1 Place finger on an item.
2 Flick to the left.

None Lift the finger from the surface of 
the device.

Table 18.3  Stages of various theoretical gestures, plus the manipulation processor’s 
one-finger move gesture

Gesture  
Name

Logical Action Registration Continuation Termination

Rename Enter the system into 
“rename” mode (the 
user then types the 
new name with the 
keyboard).

1 Place finger on 
an item. 
2 Flick the finger 
down and to the 
right.

None Lift the finger 
from the 
surface of the 
device.

Copy Create a copy of 
a file or object, 
immediately adjacent 
to the original.

1 Place finger on an 
item. 
2 Flick the finger up 
and to the left.

None Lift the finger 
from the 
surface of the 
device.

Delete Delete a file or 
element.

1 Place finger on 
an item. 
2 Flick the finger 
up and to the right.

None Lift the finger 
from the 
surface of the 
device.

Move Change the visual 
position of an object 
within its container.

1 Place finger on 
an item. 
2 Move the finger 
slowly enough to 
not register as a 
flick.

Move the finger around 
the surface of the device. 
Changes in the position 
of the finger are applied 
1:1 as changes to the 
position of the object.

Lift the finger 
from the 
surface of the 
device.
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Let’s look first at how the system classifies the gestures: If the finger moves fast 
enough, it is a “flick,” and the system goes into rename, copy, or delete mode based 
on the direction. Consider now what happens for the few frames of input while the 
system is testing to see if the user is executing a flick. Since it doesn’t yet know that 
the user is not intending to simply move the object quickly, there is ambiguity with 
the “move object” gesture. The simplest approach is for the system to assume that 
each gesture is a “move” until it knows better. Consider the interaction sequence 
in Figure 18.3. Because, for the first few frames, the user’s intention is unclear, the 
system designers have a choice. Figure 18.3 represents one option: Assume that the 
“move” gesture is being performed until another gesture is registered after analyz-
ing a few frames of input. This is good, because the user gets immediate feedback. 
It’s bad, however, because the feedback is wrong: the system is showing the feed-
back for the “move” gesture, but the user is actually performing a “rename” flick; 
the recognizer just hasn’t tripped yet. The system has to undo the “move” at the 
time of registration of rename, and we get an ugly popping effect. This problem can 
be avoided by providing no response until the user’s action is clear. This would cor-
rect the bad feedback in the “rename” case, but consider the consequence for the 
“move” case (Figure 18.4).

FIGURE 18.2

States of a hand gesture, up to and including the end of the registration phase. The continuation 
and termination phases are not shown.
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Obviously, this too is a problem: The system does not provide the user with any 
feedback at all until it is certain that the user is not performing a flick. The problem is 
ambiguity: because we have overloaded one-finger sliding with a large number of possi-
ble gestures, the recognizer can’t tell us quickly enough which one is being performed.

Solving Ambiguity
The goal, ultimately, is to avoid the time during which the user’s intention is ambigu-
ous. Aside from all of the reasons outlined above, this ambiguity also creates another 
bad situation in designing the recognizer: deciding quickly the recognizer should pick  
out a “flick” from a “move”? The user has put her finger down, and it has started  
moving—how soon does the recognizer click over to delete mode, versus waiting to 
give the user a chance to do something else? The sooner it makes the decision, the 

FIGURE 18.3

Interaction of a “rename” gesture. 1: user places finger on the object; 2: user has slid finger, with 
the object following along; 3: the “rename” gesture has registered, so the object pops back to its 
original location.

FIGURE 18.4

Interaction of a “move” gesture in a thresholded system. 1: user places finger on an object; 2: 
user slides finger along surface (the object does not move because the “flick” threshold is known 
to have not been met); 3: the system is confident that this is not a flick, so the object jumps to 
catch up to the user’s finger.
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more likely there will be errors, since less data are available to make the right deci-
sion. The later it decides, the longer the user will get ambiguous, or worse, incorrect 
feedback. It’s just a bad situation all around.

The solution is to tie the registration event to the finger-down event: As soon 
as the hand comes down on the display, the gesture is registered. The movement 
of the contacts on the display is used only for the continuation phase of the ges-
ture (i.e., specifying the parameter). The problem, of course, is that we have a large 
number of operations that we might want to perform, but now a more limited num-
ber of possible gestures.

Multi-touch gives us a solution. By allowing us to move registration up to the 
moment of contact, we can explode the set of possible gestures, but without 
increasing the possibility of error. We do this by tying the registration to the num-
ber of fingers. Consider as an example two gestures from the iPhone gesture lan-
guage: move and zoom (Table 18.4).

Applying the same type of diagram we used above, we see two detached trees 
(Figure 18.5).

The beauty of a multi-touch system is immediately apparent: The gestures are dis-
ambiguated not only by the movement of the contacts on the device, but also by the 
posture of the hand (in this case, how many fingers are touching). In so doing, we 
significantly reduce the possibility of accidentally tripping into the wrong gesture. 
There is no chance that the user will accidentally move when he intends to zoom—
the number of fingers immediately tells the system which mode to go into, without 
any of the problems described above.

In addition to posture-based registration, we can also carefully expand the set 
of gestures for any one posture, so long as that set is easily and quickly disambigu-
ated. Consider again the iPhone and the set of gestures supported by its lists: scroll, 
delete, and activate (Table 18.5).

Table 18.4  Two gestures from the iPhone gesture language: move and zoom

Gesture 
Name

Logical Action Registration Continuation Termination

Move Change the 
viewport onto 
an on-screen 
list.

Place one 
finger on an 
item.

Move the finger around the surface 
of the device. Changes in the position 
of the finger are applied 1:1 as 
changes to the position of the item.

Lift the finger 
from the 
surface of the 
device.

Zoom Enlarge an 
object.

Place two 
fingers on an 
item.

Move the fingers around on the 
surface of the device. The changes 
in the length, center position, and 
orientation of the line segment 
connecting these points are 
applied 1:1 to scale (both height 
and width), center position, and 
orientation of the content.

Lift the fingers 
from the 
surface of the 
device.
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FIGURE 18.5

The this language has no branching, because the number of fingers on the device at the time 
of registration disambiguates the gesture a lack of branching means that registration is always 
happening at the earliest-possible phase.

Table 18.5  The iPhone set of gestures supported by its lists: scroll, delete, and activate

Gesture Name Logical Action Registration Continuation Termination

Scroll Change the 
viewport of the 
list.

1 Place one finger 
on a list item. 
2 Move the finger in 
a straight line up or 
down.

Move the finger around 
on the surface of the 
device. Changes in the y 
position of the finger are 
applied 1:1 as changes 
to the position of the 
viewport. Changes in the 
x position are ignored.

Lift the finger 
from the 
surface of the 
device.

Delete Show the 
delete button 
for an item in 
a list.

1 Place a finger on 
an item. 
2 Move the finger in 
a straight line to the 
right or left.

None Lift the finger 
from the 
surface of the 
device.

Activate Select the 
item in the list 
and activate 
it (e.g., “open 
this e-mail”).

1 Place a finger on 
an item. 
2 Without moving 
the finger, lift it from 
the surface of the 
device.

None None
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FIGURE 18.6

The anatomy of the iOS list gestures: When the finger is placed on the list, the mode is 
ambiguous. If the user slides parallel to the list, it scrolls. If the user slides horizontally, a “delete” 
button pops up. Differentiating gestures by direction is more reliable than doing it by speed, as is 
done in Windows.

This particular set does not take advantage of the posture-based disambigua-
tion, although it could—there’s no reason the makers of the iPhone couldn’t have 
included a “zoom” gesture to enlarge individual list items, since placing two fingers 
on an item does not create ambiguity. What this approach does do, however, is 
reduce ambiguity in another way.

Note the improvement in the design of the “delete” and “scroll” gestures over 
the “flick” gestures we described above. In the previous example, flicking was reg-
istered after a certain time and distance. This is not so for the delete/scroll/activate 
decision: Because only direction matters, this decision can be made by the recog-
nizer almost immediately, obviating the need for either lag or false feedback. If the 
user slides to the right even a little bit, it’s a delete. If the user slides the list up or 
down, it’s a scroll. If the user doesn’t slide at all, it’s an activate (Figure 18.6).

The key to unambiguous gesture design is to get the user through the registra-
tion step as quickly as possible. The faster this happens, the faster the system can 
give appropriate feedback, and the less likely the system will be to get the gesture 
wrong.
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DESIGN GUIDELINES
Must

l	 Minimize the number of steps the user must take before in order to register the 
gesture mode.

l	 Minimize overlap in the initial action—whatever action the user does first, make 
sure that as small a subset of your gestures as possible uses that same first action.

l	 Minimize the load required to transition between registration and continuation 
phases. It should be immediately clear to the user how to specify the command 
she wants to execute.

l	 Provide clear feedback for the user at each step, ensuring she understands 
when she has transitioned from registration to continuation, and how to termi-
nate the gesture.

Should
l	 Map registration to the moment the user makes contact with the display. Thus, 

the location of the contact and its posture will determine which function will 
happen—after that, all movement simply adjusts the details of that function.

l	 Map termination to the moment the user breaks contact with the display. In so 
doing, you will be sure that there is always a clear moment where the user says 
“I’m done with this gesture.”

Could
l	 Take this to a logical extreme, and register only based on the number of fingers. 

This approach is called a “chording gesture,” similar to playing a piano.

SUMMARY
Gesture registration is perhaps the most important step to design. Overloading reg-
istration with possibly ambiguous or difficult to distinguish physical actions, such 
as flick and move, will create a system fraught with errors and without feedback. 
Two elements of gesture design can be used to overcome this. First, multi-touch 
input allows a broader range of possible initial postures, complicating the registra-
tion step. From this complication, however, we see an explosion of possibilities that 
allow us to separate out the gestures, so that each initial posture can map onto only 
one possible action or small set of actions. Second, when multiple gestures use the 
same posture, carefully designing them to reduce overlap of registration actions will 
reduce errors.
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CHAPTER

19Properties of a Gesture 
Language

Personality is an unbroken series of successful gestures.
—F. Scott Fitzgerald

DESCRIPTION
A gesture language is a communication system. Its language depends on its fun-
damental clarity (each gesture is well-defined) and its overall coherence (the ges-
tures make sense together). We can apply genetic epistemology of cognition to 
any gestural system. In doing so we are saying that a well-developed and easy-to-
learn system will be one that operates logically in a way that is analogous to human 
reasoning.

Specifically, we apply Piaget’s concept of the INRC group. The developmental 
stage of formal operations is characterized by the following four properties:

l	 Identity (I)
l	 Negation (N)
l	 Reciprocal (R)
l	 Commutative (identity of groups) (C)

In mathematics, identity means that an element is unchanged in a binary opera-
tion, for example, adding zero to a number, or multiplying a number by 1. Similarly, 
in cognition, an identity operation leaves the element unchanged. For example, if I 
change the shape of a lump of clay, its mass is still the same. In contrast, the nega-
tion of a number results in zero. In a sense, the number is “undone,” becomes noth-
ing. In cognition, negation is equivalent to “not,” for example, “that is not true.” 
Negating a lump of clay is a little harder to imagine, but imagine the clay being dis-
solved in water—it is negated. The negation operation may be reversible; for exam-
ple, if I let the water evaporate, then the clay is left as a precipitate. In contrast to 
negation, the mathematical reciprocal is the inverse. For example, the reciprocal of 
4 is 1/4 or 0.25. Reciprocal is different from negation in that a reciprocal results in 
identity (4  ¼  1), while a negation results in zero (4  0  0). A direct physical 

http://dx.doi.org/ 


138 CHAPTER 19  Properties of a Gesture Language

equivalent to reciprocal is harder to imagine. However, if we think of two physical 
dimensions it becomes easier. If you pour a liquid from a short container into a tall 
container a young child may believe there is “more” liquid. However, when chil-
dren reach the stage of “formal operations” they “conserve” the volume of a liquid. 
In effect, they are treating two dimensions (the horizontal and vertical) as reciprocal 
to each other and thus can conserve the volume.

Commutative means that the sequence of operations does not matter. Addition 
is commutative; so is multiplication. However, when combined, the order of opera-
tion matters, that is, which operation is done when makes a difference in the result. 
The order of operations is assumed (multiplication first) or controlled with paren-
theses in the expression. Considering cognition, some operations are commutative; 
for example, suppose you reshape an object, divide it, recombine it, and shape it 
back to its original form. Regardless of order, the beginning and end state are 
equivalent.

APPLICATION TO NUI
By analogy, the INRC group in a gesture system means the following:

l	 Identity: when I perform equivalent actions, the system reliably does an equiva-
lent action. To the user, it appears invariant.

l	 Negation: when I start an action, I can return to the previous state by doing the 
opposite action. To the user, the system appears forgiving.

l	 Reciprocal: there are actions that return some aspect of the system to its origi-
nal state. This is not simple negation (i.e., undo); instead, it is a different action 
that returns an object to its previous state.

l	 Commutative: I can change the order of operations and the result is the same. 
Moving an object and then resizing it is the same as resizing the object and 
then moving it.

LESSONS FROM THE PAST
The greatest challenge in building a NUI system is making it learnable. To make a 
NUI learnable, it’s best to consider the entire family of required operations (i.e., 
what you need to do in the entire system) and devise a system of gestures to sup-
port that set. A pitfall to avoid is trying to use a few gestures to support a large and 
complex set of operations. In our research for Surface we found that users would 
often try to complete a wide variety of tasks by tapping. Initially, tapping appears 
to show great promise because it’s familiar to users, and even more deeply, it has 
a clear identity (i.e., it is seen as a unitary act). However, there are many problems 
with that approach. For example what is the negation of tap? In other words, how 
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do you “untap”? What is the reciprocal of a tap? The GUI approach of treating tap as 
a simple selection depending on context (i.e., tap on the title bar and the window 
is selected and may pop to the top; tap inside a document and the document is 
selected and the cursor is inserted at the location of the tap) also leads users to try 
tapping on a NUI.

This is a transfer of learning problem. The tapping in the GUI was originally con-
ceived as an accelerator. That is, you learned the system and then you learned that 
you could use tapping to perform the most common action in a given situation as 
a kind of default accelerator. Hence transfer of this kind of learning from the GUI 
makes NUIs seem hard and inconsistent. Rather than encouraging transfer from the 
GUI to the NUI, we should discourage such transfer. While this may seem counter-
intuitive, it makes sense. Consider the fact that many users familiar with command 
systems suggested making GUIs work like command systems so they could apply 
their knowledge. That would have been a serious mistake. Instead, the GUI altered 
some of the most fundamental aspects of command systems. For example, the syn-
tax of most command systems was verb (command) followed by object. The GUI 
required selection followed by menu choice, in effect object then operation. This 
allowed the GUI to avoid “modes.”

Let’s consider how each of Piaget’s four concepts applies to the NUI.

Identity
The starting point for a NUI is objects. These objects have identity and can be 
manipulated in various ways. But a NUI always begins with objects. Notice that this 
is not the starting point of a classic GUI, even though it may seem so. In fact, tradi-
tional GUIs begin with two fundamental constructs—objects (content) and appli-
cations (programs). This initial “schizophrenia” is hidden from most users. They 
simply “open” content and an application is “automagically” activated. However, 
there are breakdowns. When you are given content, for example, an email attach-
ment, you may or may not have an associated application. The result is that you 
can’t perform the typical action of opening the content. You get an error message 
and an invitation to associate this content with some application that exists on your 
computer, or you can find the appropriate application on the web. This is a per-
fectly adequate workaround. But it plunges novice (nontechnical) users into one of 
the most subtle aspects of the GUI—the distinction between content (objects/data) 
and applications (programs). It also requires the user to search for the “right” appli-
cation to render and operate the content. That choice is not simple. Some appli-
cations will render content as gibberish. Other applications will render content 
but not provide the assumed operation. This challenge of matching application to 
content puts the user in an analogous position to the customer who goes to the 
hardware store knowing what she needs to do but not knowing which tool to ask 
for. In a well-designed NUI this would never happen. No content exits without the 
“right” application to render and operate on it. This implies that applications, as 
such, are invisible to the user. And they should be. Making both application and 



140 CHAPTER 19  Properties of a Gesture Language

objects visible is just a source of unnecessary confusion. Making applications visible 
to users is nonsense. New content should be created by simply accessing blank con-
tent. Applications that don’t create content in the traditional sense, such as games, 
are accessible by dragging their environments from a holding area to the main work 
area. For example, to play chess you drag out a chess board (Figure 19.1).

Negation
Negation refers to an operation on objects and therefore is necessarily more com-
plex than identity. To illustrate it in a NUI, we will consider opening an object that 
has been iconified and is located in a set of iconified objects. A tap could do that, 
and it’s what most people try. But how would we get it back into the set of iconi-
fied objects? That is how would we “negate” our action. We could tap it again, but 
that might seem odd, particularly if there were multiple objects in the workspace or 
if we had performed other operations on those objects. Also, since a tap is actually 
a combination of three primitives (press down, very short hold, release), it’s hard 
to undo mid-step. Instead, in the NUI, we could try dragging it out of the set. As we 
drag it past the boundary of the set of iconified objects, it enlarges slightly. If we 
continue hold down our finger and move it, the object tracks our movement. When 
we stop moving our finger, the object stays where we left it. When we let go of 
the object, it is ready to be acted upon—it has been moved out of a set of iconified 
objects, has increased in size by some reasonable amount, and is positioned where 
we lifted our finger. Notice that this suggests a way that we can easily “negate” this 
action. As the user begins to drag out the object and it enlarges, she is “notified” 
that it will be open if she releases it. Or she can move it back into the set, and as she 
does so, it will shrink. Releasing it in its original position returns it to an iconified 
state in the set of icons, that is, it is a negation (Figure 19.2).

FIGURE 19.1

Identity—an object does not change.
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Reciprocal
Reciprocal is slightly more complex than negation. It is a different operation, 
and while it returns an object to a previous state, it may also have other effects. 
Let’s consider a reciprocal operation in a hypothetical NUI system. If we stretch 
an object in the horizontal plane, we both increase its size and change its aspect 
ratio. If we then stretch the object vertically, we increase its size again, but if we 
stretch it the “right” amount we restore the original aspect ratio. Thus one aspect of 
the object—the “distortion” of a solely horizontal stretch—is undone, but another 
aspect of the object—its absolute width—is unchanged. A difference between nega-
tion and reciprocal action is that negation cancels an operation in progress, while 
a reciprocal action undoes an action after it is completed but may (or may not) 
leave some of the consequences of the action unchanged. The action that embod-
ies a reciprocal operation may bear no physical resemblance to the original action 
that embodied a given operation. The action of vertical stretching is different from 
the action of horizontal stretching. In contrast, the negation operation is embod-
ied by the opposite physical action. This illustrates one of the challenges of talking 
(and thinking) about a NUI. We often fail to distinguish our action from the system 
operation. We talk about “drag,” but drag means that an object is “attached” to the 
movement of our finger. Drag is a system operation; movement is a physical action 
(Figure 19.3).

Commutative
Ironically, this most complex interaction is simple to understand. It simply means that 
the order of physical actions does not matter—the system will perform the same oper-
ations regardless of order. This is a common characteristic of many operations on sev-
eral different types of systems: command, GUI, and NUI. For the most part, this is true 
of system operations. It is also true of many operations within an object. However, 

FIGURE 19.2

Reversibility—an operation can be reversed with no effect (the example I use is dragging an 
object out of a group and then returning it).



142 CHAPTER 19  Properties of a Gesture Language

there may be exceptions. These exceptions depend on the object. For example, if we 
consider a chess game an object, then many operations may not be commutative since 
the data of the object (i.e., the game) changes over time. Moving your queen to a par-
ticular square may put her in danger of capture (or not), depending on the state of the 
board. Once she is captured, she’s no longer available to be moved (Figure 19.4).

One of the greatest challenges of developing a NUI system is making the system 
coherent for the user, while making it relatively easy to master quickly. One way 
to do that is to consider these INRC characteristics. Consideration of the system as 
a whole in terms of these principles is particularly important if you are designing a 
system that does not draw on a well-understood and practiced set of conventions. 
For example, a game of checkers could be readily implemented using a NUI because 
it is familiar and the systematic rules of the action and interaction are well-defined. 
Building an entirely new system is much more difficult and is likely to be hard to 
learn if these principles are not considered in the early stages.

NUI designers should proceed cautiously. The initial questions to be considered 
are the following:

l	 What are the fundamental objects in the system?
l	 What operations do users expect to perform on these objects?
l	 What actions are most likely to occur to perform these operations?
l	 How are each of these actions reversed while they are being performed?
l	 What actions have reciprocal effects and what are these reciprocal effects?
l	 Which actions and operations are commutative?

This design of the entire system will require both feedback and feedforward. 
Affordances help the user to map the available actions to system operations. These 
operations and action pairs need to be systematically refined in user testing. It is par-
ticularly important to test them in combination.

FIGURE 19.3

Negation—an operation undoes another operation—(the example I use is resizing past a limit 
results in the object being returned to the group; we could also illustrate this by stretching an 
object changes it aspect ratio and then a second stretch in the “other” direction restores the 
aspect ratio but does not undo/reverse the first stretch).
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DESIGN GUIDELINES
Must

l	 As a starting point, all actions must follow the principles of identity, negation, 
inversion, and commutativity. Applying these principles helps make any system 
learnable and safe. Below, each principle is restated in terms of a touch NUI.

l	 Identity: Objects are permanent unless explicitly deleted, and an action on a 
given object in a given context always yields the same result.

l	 Negation: Any action can be reversed midcourse, and that reversal will return 
the system to its previous state.

l	 Reciprocal: Once an action is completed, a side effect of that action can be 
undone by another action. For example, horizontal stretching of a graphic 
object will change its width and its aspect ratio. A subsequent vertical 

FIGURE 19.4

Commutativity—order of operations does not matter.
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stretching of the same object will not undo the change in width but will 
restore the aspect ratio.

l	 Commutativity: Actions can be performed in any order and yield the same 
result.

Should
l	 Design teams should provide affordances and feedback, so that exploratory 

actions from the users will be elicited and can then be shaped by the system.

l	 The set of actions should constitute a coherent system before shortcuts are 
designed.

l	 The team should begin design with a clean slate and not draw from past 
metaphors.

Could
l	 Depicting the entire system, and the corresponding system states and feed-

back, can help a team see the overall system and help avoid inconsistencies.

SUMMARY
We have applied some of the concepts from Piaget’s concepts of genetic episto-
mology to the design of a touch-based system. It seems logical to apply some well-
accepted concepts from developmental psychology to understanding a system. In 
part, any NUI presents a new world for the user. It is natural, in the sense that it 
supports skilled and fluid practice and does not require that objects and operations 
be formalized into abstractions. However, that “naturalness” does not ensure that 
it is easy to learn, nor does it depend on transfer of habits from GUI experience. 
Instead, it presents a new, albeit more interesting and promising, set of challenges 
to the designer and the user.

FURTHER READING
Piaget’s work created a new foundation for understanding the development of thinking in children. His over 

50 years of writing are encyclopedic, profound, and insightful. These writings also show an evolution 
in thinking and are not always easily understood or interpreted. We have presented our interpretation—
based in large part on the book Genetic Epistemology, translated by Elenore Duckworth and published 
by Norton in 1971. J. H. Flavell provides an excellent introduction to Piaget in The Developmental 
Psychology of Jean Piaget, Van Nostrand, 1963. A second excellent volume, Piaget and Knowledge by 
Hans Furth, was published by Prentice Hall in 1969.
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CHAPTER

20Self-Revealing Gestures

The best way to teach somebody something is to have them think they’re learning 
something else.

—Prof. Randy Pausch, “The Last Lecture”

DESCRIPTION
Self-revealing gestures are a philosophy for design of gestural interfaces that pos-
its that the only way to see a behavior in your users is to induce it (afford it, for 
the Gibsonians among us). Users are presented with an interface to which their 
response is gestural input. This approach contradicts some designers’ apparent 
assumption that a gesture is some kind of “shortcut” that is performed in some 
ephemeral layer hovering above the user interface. In reality, a successful develop-
ment of a gestural system requires the development of a gestural user interface. 
Objects are shown on the screen to which the user reacts, instead of somehow intu-
iting their performance. The trick, of course, is to not overload the user with UI 
“chrome” that overly complicates the UI, but rather to afford as many suitable ges-
tures as possible with a minimum of extra on-screen graphics. To the user, she is 
simply operating your UI, when in reality, she is learning a gesture language.

APPLICATION TO NUI
A common immediate reaction to a high-bandwidth, multi-finger input device is 
to imagine it as a gestural input device. Those of us in the business of multi-touch 
interface design are often confronted with comparisons between our interfaces 
and the big-screen version of MIT student John Underkoffler’s Ph.D. work: Minority 
Report. The comparison is fun, but it certainly creates a challenge—how do we 
design an interface that is as high-bandwidth as has been promised by John and oth-
ers, but that users are able to immediately walk up to and use? The approach taken 
by many designers is to try to map a system’s functionality onto the set of gestures 
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a user is likely to find intuitive. Of course, the problem with such an approach is 
immediately apparent: The complexity and vocabulary of the input language are 
bounded by your least imaginative user.

At a more fundamental level, the goal of providing natural and intuitive gestures 
that are simultaneously complex and rich seems to contain an inherent contradic-
tion. How can something complex be intuitive? What we have found in practice 
is that to achieve our goal of an interface that feels natural to its users, we must 
actually provide them with a UI. The trick, of course, is to do so in a way that is 
minimally intrusive and that makes it seem to the user as if she is “discovering” the 
gestures. To this, we will apply many of our design principles, the most salient of 
which we described in Chapter 10: we will scaffold our user experience.

LESSONS FROM THE PAST: CONTROL VS. ALT HOTKEYS
For a little fun (and perhaps some disillusionment), make an appointment at your 
local Genius Bar at an Apple store and bring along your OSX-based computer. 
When it’s your turn, kindly ask the genius, “I can’t figure out how to use this  
computer—can you please show me the basics?” As they reach for the trackpad, 
gently correct them—”Sorry, I meant how to use it using only the keyboard.”

It is interesting how devotees to one OS or the other can take on a religious zeal 
about their choice. In truth, there are very few instances where someone with HCI 
training can point to a clear winner in the Mac OS vs. Windows debate. Different 
elements of each have merit. But one instance where Windows is the clear, indis-
putable winner is in the way hotkeys are designed and taught. In this lesson from 
the past, we will examine the Windows approach to hotkeys and take away a clear 
understanding of the merits of the approach.

Many users never notice that, in Microsoft Windows, there are two completely 
redundant hotkey languages. These languages can be broadly categorized as the Control 
and Alt languages. It is from comparing and contrasting these two hotkey languages that 
we draw some of the most important lessons necessary for self-revealing gestures.

Control Hotkeys and the Gulf of Competence
We consider first the most-used hotkey language: the Control language. Although the 
particular hotkeys are not the same on all operating systems, the notion of the con-
trol hotkeys is standard across many operating systems: we assign some modifier key 
(Function, Control, Apple, Windows), putting the rest of the keyboard into a mode. 
The user then presses a second (and possibly third) key to execute a function. Many 
users know a couple of these hotkeys—such as CTRL  X to cut and CTRL  C to 
copy (APPLE  X on a Mac, but recall we’re talking about Windows here). What inter-
ests us is how a user learns this key combination.

Control hotkeys generally rely on two mechanisms to allow users to learn  
them. First, the keyboard keys assigned to their functions are often lexically 
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intuitive: CTRL  P  print, CTRL  S  save, and so on. Figure 20.1 shows some 
hotkeys from the Notepad application.

Relying on intuitiveness works well for a small number of keys, but it breaks 
down quickly—if CTRL  C means “copy,” then what is the hotkey for “center”? 
This is roughly parallel to the naïve designer’s notion of gesture mappings: we 
map the physical action to some property in its function (if we want “help,” draw 
a question mark!). However, we quickly learn that this approach does not scale: 
Frequently used functions may overlap (consider “copy” and “cut”). This gives rise 
to shortcuts such as CTRL  H for “find next” (CTRL  R is “center”, in case you 
were racking your brain). We also note the use of function keys as CTRL short-
cuts—even though they don’t actually use the CTRL key, they are still notionally 
CTRL shortcuts, as we shall see.

Because intuitive mappings can take us only so far, the menu provides the sec-
ond mechanism for hotkey learning: the functions in the menu system are labeled 
with their hotkey invocation. This approach is a reasonable one. We provide users 
with an in-place help system labeling functions with a more efficient means of exe-
cuting them. However, a sophisticated designer must ask themselves, “What does 
the transition from novice to expert look like?”

In the case of Control shortcuts, the novice-to-expert transition requires a leap 
on the part of the user: we ask her to first learn the application using the mouse, 
pointing at menus and selecting functions spatially. To become a power user, she 
must then make the conscious decision to stop using the menu system and begin 
to use hotkeys. When the user makes this decision, it will at first come at the cost 
of a loss of efficiency, as she moves from being an expert in one system, the mouse-
based menus, to being a novice in the hotkey system. We term this cost the gulf of 
competence. The graph in Figure 20.3 demonstrates this idea—at the time that the 
user tries to switch from mouse to keyboard, she slows down.

FIGURE 20.1

The Control hotkeys are shown in the File menu in Notepad. Note that the key choices are 
selected to be intuitive (by matching the first letter of the function name).
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The gulf of competence is easily anticipated by the user: He may know that hot-
keys are more efficient, but they will take time to learn. We are asking a busy user 
to take the time to learn the interface. The gulf of competence is a chasm too far for 
most users. Only a small set ever progress beyond the most basic control hotkeys, 
forever doomed to the inefficient world of the WIMP. Thankfully, we have a hotkey 
system that is far easier to learn: the Alt hotkeys.

FIGURE 20.3

The learning curve of Control hotkeys: The user first learns to use the system with the mouse. 
They he must consciously decide to stop using the mouse and begin to use shortcut keys. This 
decision comes at a cost in efficiency as he begins to learn an all-new system. This cost is the 
“gulf of competence.”

FIGURE 20.2

The Control hotkeys are shown in the Edit menu in Notepad. The first-letter mapping is lost in 
favor of physical convenience (CTRL  V for paste) or name collisions (F3 for find next—yes, F3 
is a Control hotkey under our definition, which will be more clear soon).
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Alt Hotkeys and the Seamless Novice-to-Expert Transition
While the Control hotkeys rely on either intuition or the willingness to jump the 
gulf of competence, a far more learnable hotkey system exists in parallel that 
addresses both of these limitations: the Alt hotkey system. Like any hotkey system, 
the Alt approach modes the keyboard to provide a hotkey. Unlike the Control keys, 
however, on-screen graphics guide the user in performing the key combination 
(Figure 20.4).

Because the Alt hotkeys guide the novice user, there is no need for the user to 
make an input device change: He doesn’t need to navigate menus first with the 
mouse, then switch to using the keyboard once he has memorized the hotkeys. Nor 
do we rely on user intuition to help them to “guess” Alt hotkeys.

The Alt hotkey system is a self-revealing interface, because there is no need for 
a help system or instructions—the actions are simply shown and followed. Better 
yet, the physical actions of the user are the same as the physical actions of an expert 
user—both press ALT  F  O to open a file. There is no gulf of competence. In 
applying this lesson to the gesture space, there is a highly relevant piece of work 
that should be examined in detail: marking menus.

Marking Menus: The First Self-Revealing Gestures
Marking “menu” is a bit of misnomer—it’s not actually a menu system at all. In 
truth, the marking menu is a system for teaching pen gestures. For those not 
familiar with them, marking menus are intended to allow users to make gestural 
“marks” in a pen-based system. The pattern of these marks corresponds to a par-
ticular function. For example, the gesture shown in Figure 20.5 (right) leads to an 
“undo” command. The system does not rely at all on making the marks intuitive. 
Instead, marking menus provide a hierarchical menu system (left in Figure 20.5). 
Users navigate this menu system by drawing through the selections with the pen. 

FIGURE 20.4

A novice Alt hotkey user’s actions are exactly the same as an expert’s: no gulf of competence. 
On-screen graphics guide the novice user in performing an Alt hotkey operation. Left: The menu 
system. Center: The user has pressed “Alt.” Right: The user has pressed “F” to select the menu.
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As they become more experienced, users do not rely on visual feedback, and even-
tually transition to interacting with the system through gestures, and not through 
the menu. It’s important to understand that there is no difference in the software 
between novice and expert “modes”—the user simply uses the system faster and 
faster. Because there is a 200 ms delay between the time the pen comes down and 
when the menu becomes visible, novices declare themselves by doing exactly what 
comes naturally—hesitating.

Just like the Alt menu system, the physical actions of the novice user are physi-
cally identical to those of the expert. There is no gulf of competence, because there 
is no point where the user must change modalities and throw away all his prior 
learning. So how can we apply this to multi-touch gestures?

DESIGN GUIDELINES
Self-Revealing Multi-Touch Gestures
So it seems someone else has already done some heavy lifting regarding the creation 
of a self-revealing gesture system. Why not use that system and call it a day? Well, if 
we were willing to have users behave with their fingers the way they do with a pen, 
we’d be done. But the promise of multi-touch is more than a single finger drawing 
single lines on the screen. For all of the reasons we described in Chapter 18 and 

FIGURE 20.5

The marking menu system (left) teaches users to make pen-based gestures (right).
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throughout the book, we need to do better. We must consider: what would a multi-
touch self-revealing gesture system look like?

First, we should recall from Chapter 18 the stages of a gesture. A gesture consists 
of three stages: registration, which sets the type of gesture to be performed, con-
tinuation, which adjusts the parameters of the gesture, and termination, which is 
when the gesture ends (Figure 20.6).

In the case of pen marks, registration is the moment the pen hits the tablet, con-
tinuation happens as the user makes the marks for the menu, and termination occurs 
when the user lifts the pen off the tablet. Seems simple enough. When working with 
a pen, the registration action is always the same: the pen comes down on the tablet. 
The marking menu system kicks in at this point, and guides the user’s continuation of 
the gesture—and that’s it. The trick in applying this technique to a multi-touch system 
is that the registration action varies: it’s almost always the hand coming down on the 
screen, but the posture of that hand is what registers the gesture. On Microsoft Surface, 
these postures can be any configuration of the hand. Putting a hand down in a Vulcan 
salute could map to a different function than putting down three fingertips, which is 
different again from a closed fist. On less-enabled hardware, such as that supported by 
Windows 7 or the iOS, the variation is limited to some combination of the relative posi-
tion of multiple fingertip positions. Chapter 25 describes this in detail. Nonetheless, the 
problem is the same. We now need to provide a self-revealing mechanism to afford a 
particular initial posture for the gesture, because this initial posture is the registration 
action that modes the rest of the gesture. Those marking menu guys had it easy, eh?

But wait—it gets even trickier.
In the case of marking menus, the on-screen affordance was needed only for the 

continuation phase, and it would pop up around the pen following registration. On 
a multi-touch system, because we have to give affordances before the registration 
phase, we need to tell the user which posture to go into before the user touches the 
screen. With nearly all of the multi-touch hardware on the market today, the hand is 
out of range right up until it touches the screen (see Chapter 15).

FIGURE 20.6

The three stages of gestural input and the physical actions that lead to them on a pen or touch 
system, as we described in Chapter 18. OOR is “out of range” of the input device.
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One must consider affording each of the registration and continuation phases (the 
termination phase, which is almost always lifting the hand from the device, more or 
less affords itself). As you will learn in Chapter 27, there is no such thing as a “natural 
gesture,” with the exception of moving things from one place to another, or “direct 
manipulation.” A successful self-revealing gesture system will utilize this to afford 
actions, similar to the marking menu. Users of marking menus don’t need tutorials. It 
was obvious: select things by tracing over them with the pen. Similarly, physical meta-
phors (things that slide, things that can be dragged, rolled, etc.) all afford movement.

An approach we advocate is one that we have dubbed “just-in-time chrome,” 
which we present publicly here for the first time. To understand it, let’s begin by 
proposing a gesture to stretch a photo in one of its dimensions. It goes like this: 
touch the photo with one hand, then touch the border of the photo with a second 
hand, stretch the hands apart, and lift (Figure 20.7).

This gesture is almost impossible to guess (we tested it with dozens of users). Many 
had experience enlarging pictures on iPhones, but the idea that they needed to put 

FIGURE 20.7

A theoretical gesture sequence for resizing a photo: Touch with one finger, then add another at 
the border, pull them apart, and lift.
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their fingers in a particular location to stretch the photo horizontally wasn’t guessed. 
But if we add just-in-time chrome, the sequence looks like that shown in Figure 20.8.

This gesture, in contrast, is incredibly easy to guess. The participants in our 
experiments got it right away, almost every time.

Just-in-time chrome begins with the assumption that there is an action that the user 
can perform that will tell the system where and what she wants to engage with. In the 
case above, the UI is shown only when the user touches the photo. To avoid the gulf 
of competence, the gesture must therefore also begin with a single finger touching 
the photo. The basic intuition here is to let the user touch the screen to tell us where 
it is she wants to perform the gesture. Next, show on-screen affordances for the avail-
able postures and their functions, and allow the user to register the gesture with a sec-
ond posture, in approximately the same place as the first. From there, have the user 
perform manipulation gestures with the on-screen graphics, since, as we learned oh-
so-many paragraphs ago, manipulation gestures are the only ones that users can learn 
to use quickly and are the only ones that we have found to be truly “natural.”

These affordances are obvious for the continuation phase, but less so for registra-
tion. To address registration affordances, we recommend using the hover state of 

FIGURE 20.8

The same gesture sequence as above, this time with just-in-time chrome to help the user along.
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your hardware (see Chapter 15), if you’ve got one. If you don’t, then reserve a one-
finger tap as a “I need more information” gesture. Thanks to decades of mouse use, 
this is the first action that users always take when they are trying to figure out what 
to do. An example of this is shown in Figure 20.9.

Just-in-time chrome is just one method of making your gestural interface self-
revealing. The key is to consider affording registration actions as well as con-
tinuation actions. An alternative approach was investigated by Freeman and his 
colleagues at Microsoft: putting a layer of help on top of your application to afford 
both registration and continuation. While we don’t particularly advocate for this 
approach in general, it is worth considering for certain applications.

Must
l	 Never rely on an action being “natural” (a.k.a. “guessable”). It’s not.

l	 The only exception to the above is “direct manipulation”—users can and will 
guess to grab something and move it somewhere else.

l	 For gestures, present objects on-screen to which users respond.

l	 Utilize direct manipulation as an on-screen affordance in all cases. Want to 
afford the user putting their hand down in a Vulcan salute? Put a Vulcan-salute 
shaped button on the device for them to touch.

Should
l	 Re-use similar visual affordances to afford the same gestures over and over 

again. This is commonly known as a “user interface.”

l	 Consider affording both registration and continuation phases of the gesture. 
This is a “should” only because your gesture system may have only one registra-
tion action, such as landing a single finger on the device.

FIGURE 20.9

UI affordances are shown on tap. The user is told to put down one finger to resize the photo or 
two fingers to scroll or zoom. Whatever mechanism you use, applying the principle of scaffolding 
and the lessons of these earlier attempts at self-revealing user interfaces will lead you to far more 
successful multi-touch and gesture UI’s.
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Could
l	 Use hover capabilities of your input device (if present) to preview available 

actions before the user actually comes in contact with the display.

l	 Think about teaching more gestures over time. Consider how to layer your 
user interface in the same way game designers layer functionality over time.

SUMMARY
The biggest problem with making your gestures self-revealing is getting over the 
idea that gestures are somehow natural or intuitive. We have seen over and over 
again that users cannot and will not guess your gesture language. To overcome this, 
put UI affordances on the screen to which they can react.

UNNATURAL USER INTERFACES
Gord Kurtenbach
Autodesk

I often give a lecture entitled “un-natural user interfaces.” This particular title is a setup to make 
people think I’m going to speak about examples of bad, “unnatural” user interfaces and how 
we need to design them to be more natural and intuitive. However, the surprise and hopefully 
entertaining twist of the lecture is that I claim there is no such thing as natural or intuitive 
interfaces. Effective user interface design is very carefully controlled skill transfer—we design 
interfaces so users can take their skills from one situation and re-apply them to a new situation. 
The classic example is the computer desktop. Users who are new to computers transfer their 
existing skills with the manipulation of real physical files and folders to the computer realm. It 
can be argued that moving around physical files is “natural,” but that too is a learned skill—
remember playing with blocks as a child? Consider another more “unnatural” example: Suppose 
we have software A, which new users find very difficult and unintuitive to learn, but it has been 
learned and is used by a large population of users. Software B copies A’s interface style, hotkeys, 
etc. The result is that users of A can easily learn to operate B because the interface is familiar. In 
other words, they transfer their skills with A over to B. Learning software A from scratch did not 
feel natural or intuitive, but once learned, transferring those skills makes learning B “natural and 
intuitive.” Nice trick!

This chapter describes how this fundamental and powerful concept of skill transfer applies to 
gesture input. Gesture input holds the potential of being vastly expressive, especially combined 
with multi-touch. However, without some sort of mechanism to help users learn these complex 
interactions, these interactions become as difficult as learning a sign language. The authors reveal 
the secret to successful interface design with gestures: A mechanism must be provided so users 
can easily learn the gesture set. To accomplish this, skill transfer is used in a powerful way. For 
example, an interaction technique called “marking menus” is described, where a user’s skills 
with a graphical menu can used to magically teach a vocabulary of arbitrary “zig-zag” gestures. 
In similar fashion, with a method called “just-in-time chrome,” users’ skills with interpreting 
feedback and direct manipulation transfer directly into a rich vocabulary of multi-touch gestures.

Understanding the concept of self-revealing gestures is absolutely critical for the successful 
use of gestures in a user interface. Simply ask the following question for each gesture in your 
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interface: How will the user learn it? Some gestures reveal 
themselves because we see others use them, like the ubiquitous 
“page-turn stroke” and “pinch-zoom.” However, to harness the 
potential of richer, larger gesture sets the concepts introduced in 
this chapter are paramount.
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CHAPTER

21A Model of the Mode and 
Flow of a Gesture System

I’m just preparing my impromptu remarks.
—Winston Churchill

DESCRIPTION
Building a gestural system requires the development and refinement of a language. 
That language must be simple to understand, internally consistent, and predictable. 
In previous chapters, we described the state model of input devices and the stages 
of a gesture. Like Sir Winston’s “impromptu” remarks, the goal is, in essence, to not 
feel designed. In this chapter, we describe a method of representing a gestural lan-
guage that combines these two ideas. We introduce the mode and flow model of 
a gesture language. This model allows for both a quick glance at and a deep exami-
nation of a gesture language, enabling teams to formalize their language for better 
coordination and iterative design. We were using this model in Chapter 18; here we 
will define it and demonstrate its use to dissect and represent a gesture language. 
Central to applying this model is the concept that gestures always put systems into 
a mode, in the same sense that UI designers use the term. We saw this in Chapter 
18: Once the registration action has been taken, the system is then in that mode for  
subsequent actions. A simplification that allowed us to explain the concepts 
in Chapter 18 was that once a system was in a particular mode, it could not be 
changed—only terminated by lifting the fingers from the device. In this chapter, we 
will expand on this and demonstrate how users can flow from one mode to another, 
and how to use this tool to design those modes and flows.

APPLICATION TO NUI
As we described in our definiton of NUI in Chapter 2, the goal is to produce a sys-
tem that allows the user to feel like a natural. This is best achieved through deep, 
rapid, iterative design of the system, as we will describe in Chapter 29. In order 

http://dx.doi.org/ 
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to undergo such a process, a model of the thing being designed must exist. This 
model can be used for specs, for brainstorming, and for formalization of the lan-
guage. In short, this model will enable the process and allow teams to speak with 
sophistication about their language. Countless times, we have been asked to consult 
on a gestural application or platform that just “wasn’t working”, because it seemed 
confusing or inconsistent. Our first step is always to lead the designers to model 
their language using this tool—as soon as this is done, the vast majority of problems 
become immediately apparent to everyone in the room.

LESSONS FROM THE PAST
In order to explain our model of gestures, we will examine in detail the gestures 
of the Safari browser on the iPhone. If you own an iPhone, iPad, or iPod touch, it 
might be helpful to pull it out of your pocket and use it to follow along.

The Safari browser accomplishes something that’s actually quite impressive: It 
allows both “point and click” gestures and manipulation gestures to coexist on the 
same screen. The manipulation gestures on the device are highly refined, tweaked (it 
is safe to assume) through significant iterative design. Applying our model to this ges-
ture language will allow us to uncover precisely how these subtleties were achieved.

Recall from Chapter 18 that gesture registration occurs when the system 
has decided definitively which gesture the user has initiated. In that chapter, we 
argued that this is best achieved with a minimum of ambiguity, which in turn is best 
achieved by mapping different gestures to different numbers of fingers or other dif-
ferences in posture that can be immediately recognized by the system. The Safari 
gesture language does just this. Figure 21.1 is a simple representation of the mode 
and flow of the gestures on the browser.

FIGURE 21.1

A simplified mode and flow model of the Safari gesture language.
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FIGURE 21.2

A more complete mode and flow model of the Safari gesture language.

From this model, we can see that the Safari browser has four gesture modes. 
It is always idling, depressing, scrolling, or zooming. The way the user transitions 
between these modes (the “flow”) is shown with the arrows. You can understand 
this intuitively by following along with the sequence: open up a browser, and put 
your finger down on it. Before you start scrolling, the viewer is “depressed.” In this 
state, you have not yet told the system whether you are going to scroll or just lift 
your finger back up. If you then start to slide your finger, you put the system into 
scrolling mode. If you then add a second finger to the display, you put the system 
into zooming mode, where you can enlarge or reduce the size of the content by 
spreading your fingers apart or moving them together. When you lift your fingers off 
the device, you put the canvas back into idle mode.

It’s worth noting that there is no way to flow from scrolling mode back into 
idle—just stopping moving doesn’t do it. There’s a pretty good reason for this that 
will make more sense in a moment.

If you play with this a bit more, you’ll realize that we made one simplification: 
You can actually flow directly from idle or depressed into the zooming mode by 
adding a second finger—you don’t need to first scroll the canvas before you zoom. 
Figure 21.2 shows a slightly more accurate model.
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Each of the modes in the system maps onto an action the user might want to 
perform. In the zooming state, the user is able to zoom in and out. In the scrolling 
state, she can scroll the page. In the depressed state, she can push a button. In the 
idle state, the system is waiting patiently for her to flow into another mode. It is 
immediately obvious that you will need to carefully design the modes of your ges-
ture language. One of the beauties of the mode and flow model is that it makes it 
equally apparent that you will need to design the flow of the language just as, if not 
more, carefully than the modes.

Adding and Removing Flow Options
Looking at the above model, one might ask, “Why are there instances where there 
is no arrow pointing from one mode to another?” For example, why is it that, once 
in scrolling or zooming modes, the user can’t get back to depressed mode? This is 
because the flow between modes is what generates events. The tap event, for exam-
ple, is used to press a button in a browser. Someone might naively describe tap-
ping as the following: “Putting your finger down on a control, then lifting it back 
up again.” This is not an accurate description, however. In Safari, the tap event is 
triggered only when the flow of input follows the sequence “A, B”—that is, the user 
puts her finger down on the screen (neither moves it nor adds a second finger) and 
then lifts it. It was probably explored at some point to allow also “A, I, G” to trigger 
taps (that is, put down one finger, add a second finger, then lift both), or “H, G” 
(that is, put down two fingers, lift two fingers) to generate two taps. But these were 
disallowed. Why? We weren’t there, but one can imagine that it was because tap-
ping two different places at the same time would break a lot of websites, and send-
ing the two taps sequentially could cause concurrency problems.

This was an important design decision, one that the mode and flow makes it 
immediately apparent must be made. Yet another example of the sophistication 
of the language is that “A, C, D” does not generate a tap event. It could—the user 
puts a finger down on a button, scrolls the page down a bit, then releases the 
finger—so why shouldn’t it cause the button to activate? This was likely because 
of a high false-positive rate: if the user slides her finger, she wants to scroll, not 
activate a button. It also gives a handy mechanism for “canceling” if the user real-
izes she’s about to make a mistake—she puts her finger on the button, it can then 
respond to show her what will happen, and she can then cancel by sliding her 
finger around. This design illustrates an important principle of the NUI, providing 
the user with both feedback about the current state and a way to cancel or com-
plete the operation.

Yet again, the mode and flow model makes it immediately apparent that this design 
decision had to be made. As you develop your model, these design decisions become 
apparent when you ask “Which flows through the model should generate events?” 
You can enumerate all of the possible flows, and then ask “Does it make sense to have 
this generate an event?” If the answer is “I don’t know,” then that’s a great question 
for a RITE study (see Chapter 29 on that topic). If the answer is an immediate “Yes” or 
“No,” then you should probably still do a RITE study on it (because you are definitely 
not a typical user)—again, see the later chapter.



161Lessons from the Past

Splitting and Combining Modes
An additional step that should be taken when building your language is consider-
ing splitting and combining your modes. Combining modes effectively reduces the 
number of modes, and most designers understand intuitively that this simplifies the 
user’s task of understanding your system. What may be counterintuitive to some 
designers is that adding modes by splitting existing ones can also improve and sim-
plify the user’s experience.

We can continue to dissect the Safari gesture language to reveal that even the 
model shown in Figure 21.2 is still a simplification. To see what we mean, open a 
web page and zoom in such that you could scroll vertically or horizontally. Now, 
start to scroll the page vertically; then, without lifting your finger, slide it horizon-
tally. The page doesn’t scroll horizontally—it has locked in to a vertical scroll. The 
same thing is true if you start out with a horizontal scroll; you can’t then switch to 
vertical. The only way you can keep from locking into a particular axis is by starting 
out the scroll with a diagonal movement, at which point, you can scroll vertically, 
horizontally, or both at the same time, but you can’t then lock in to scrolling just 
one or the other. We can model these subtleties with a mode and flow diagram. We 
realize that, while similar, these aren’t three variations on the same mode—they are 
three different modes! The mode that we have called scrolling is actually three dif-
ferent modes: scrolling X/Y, scrolling vertical, and scrolling horizontal (Figure 21.3).

FIGURE 21.3

The scrolling mode is actually three different modes. The rest of the model still applies, but is 
omitted to simplify the figure.
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Why this is done in Safari is simple. Consider how a user holds the phone in her 
hand and uses her thumb to scroll. When she starts out, the direction she wants is care-
fully mapped onto the movement of her thumb. As the motion continues, however, the 
thumb begins to arc, simply because of the physiology of the hand (try it yourself and 
watch the tip of your thumb—for further evidence, load a paint app onto the device 
and try again; you’ll see the arc). By splitting scrolling into three different modes, the 
system is able to lock in on the user’s intention and actually simplify the interaction.

So, the old adage that reducing modes leads to simplicity is not actually true in 
detailed gestures. A great way to iterate on your gesture language is to consider 
splitting or combining existing modes.

It’s interesting to note that in the above model there is no way to flow between any 
of the three scrolling modes—the user has to lift her finger off the device and start over. 
In truth, there is a very subtle difference in the Safari gesture language between the hori-
zontal scroll mode and vertical scroll mode: the user can flow from horizontal to vertical 
if she does it quickly enough, but there is no way to flow from vertical to horizontal. So 
the scrolling modes and flows actually looks like that shown in Figure 21.4.

FIGURE 21.4

Flow C.4 is an extremely subtle element of the Safari gesture language. That there is no 
complementary flow between modes 3.1, 3.2, or 3.3 is noteworthy.
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Since the goal in having three different scroll modes is to better lock-in on user inten-
tion, it makes sense that there is no way to switch between them. How often will a user 
really want to scroll in one direction and then the other? Certainly not as often as she’ll 
want to do just one of the two, and so a trade-off was made in the design. The pres-
ence of flow C.4 (Figure 21.4) is likely the result of a subtlety of human dexterity: When 
scrolling down with the thumb, the point actually moves a little to the side before it 
moves down. Again, try loading a drawing app and viewing the trace for yourself.

The last design decision you will need to make will be to carefully tweak the 
physical action that leads to each step in the flow—how exactly the user moves 
between the modes.

Tweaking Flow Actions
We have seen that there is not one, but actually three scrolling modes in Safari. 
At some point in the process, the exact physical action needed to enter any one 
of them was tweaked, likely through rapid iterative design and evaluation (see 
Chapter 29). While that method will help find the answer, let’s first understand 
the question. In the case of scrolling in Safari, the question is: what movements 
precisely differentiate diagonal, horizontal, and vertical scrolling?

It is well and good to say, “If the user’s finger is moving horizontally, flow is from 
‘depressed’ into ‘scrolling horizontally’ mode.” Immediate follow-up questions would 
arise, however: “How close to horizontal does the movement have to be?” and “What 
angle exactly do we consider to be diagonal?” The difference between requiring abso-
lute horizontality and allowing a little bit of give will make the difference between a 
gesture set that feels natural and one that is frustrating and finicky. Users aren’t able 
to make a perfectly horizontal line with their thumb—so don’t make them. Exactly 
how much give and take will exist in your language will be the final design decision 
you need to make, and it will take extensive user testing to nail the right response. An 
easy trap to fall into is to not bring in users and do testing. Because physical actions 
are highly variant across users, and because every time the developer tries the system 
they are training themselves to use it better, it is *essential* that fresh users be brought 
in for each round of testing. We have met dozens of graduate students and developers 
who have very cool gesture recognizers that only work for themselves!

DESIGN GUIDELINES
Effectively applying the mode and flow model of gestural interaction will simplify 
your task of building an effective gesture language.

Must
l	 Model your system using the mode and flow model.

l	 Consider all flows through your system, and consider which should generate 
events.
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l	 Consider the three design decisions we have described above: adding and 
removing flow, splitting and combining gestures, and tweaking flow actions.

Should
l	 Carefully consider combining different modes to simplify the user’s task of 

understanding your system.

l	 Carefully consider splitting an existing mode if it will help to better match user 
intent.

l	 Carefully consider each step of flow in your system—does it make sense to 
flow between these two modes? Is it likely to lead to errors?

l	 Spend time tweaking the physical actions required to flow between different 
modes in your system.

Could
l	 Use the RITE method, described in Chapter 29, to adjust each of these issues.

SUMMARY
Designing a gesture language that feels natural is an incredibly difficult thing to do. 
The mode and flow model of gesture languages will help you to do this better. The 
three design issues we have outlined, adding and removing flow, splitting and com-
bining modes, and tweaking physical actions, require careful consideration, and this 
model will help you to understand exactly what to ask. The answers come from the 
lessons elsewhere in this book, in particular the RITE method of rapidly iterating, 
testing, and evaluating different options.
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CHAPTER

22
The dynamic element in my philosophy, taken as a whole, can be seen as an 
obstinate and untiring battle against the spirit of abstraction.

—Gabriel Marcel

DESCRIPTION
The traditional mouse-based user interface, the WIMP (Windows Icons Menus 
Pointers), has as perhaps its most essential component an abstraction of the logi-
cal target of user actions. This abstraction has gone by many names. The inven-
tors of the mouse, Engelbart and English, named it the bug, but later referred to 
it as the telepointer. In Windows, it is the pointer. In OSX, it is the alternately the 
pointer and the cursor. But by whatever name, it remains a focal point for user-
generated events in the system. A funny thing has happened with the pointer: a 
kind of abstraction has grown-up around it, where a plethora of hardware can con-
trol it, and it is the movement of the pointer, rather than the hardware, to which 
application designers create their experiences. In our experience, this has led to 
widespread misunderstanding that the design of the GUI itself is abstract. It’s not. It 
has been designed over more than 40 years of iteration to be highly optimized for a 
particular piece of hardware.

On the Lenovo laptop sitting here on the desk in front of us, we can control the 
position of the pointer using a trackpad, a thumb stick, and a touch screen. We also 
happen to have a mouse plugged-in, as well as a trackball and a pen tablet (yeah, 
we’re cool like that). Six input devices, each of which possessing uniquely differ-
ent physical characteristics, all drive the same experience: they move the mouse 
pointer around the screen. A reasonable question to ask is, which of them is best 
at controlling a WIMP interface? We may all have our own preferences, but put 
them to the test, and the mouse will come out on top every time. It’s not a mys-
tery why that is: it’s because the people designing WIMP interfaces at PARC, Apple, 
Microsoft, DEC, and elsewhere all were designing and optimizing their software for 

Know Your Platform
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the mouse. Sure, each of these other devices has their place. Two finger scrolling 
on a trackpad is pretty handy, and the pen tablet is a lot better for drawing. But the 
mechanics of the WIMP, pointing and clicking, are designed for the mouse.

Give a smart group of folks the task of designing a user interface optimized 
for different hardware, and they can do it. A highly influential paper by Apitz and 
Guimbretière did just that: they created a set of controls entirely for the pen, to 
support a drawing application. Obviously, the drawing part was already better 
done with a pen than with a mouse—they redesigned the rest of the UI to be better 
suited to the pen (***FURTHER READING***). The biggest challenge for a designer of  
a NUI is to understand that the abstraction that WIMP GUI designers have been 
operating under is a lie. The GUI is designed for the mouse. And your job will be 
to design for other input devices. The goal of this chapter and the next few chap-
ters is to give you a more sophisticated understanding of the hardware that will be 
available to you. There is not yet any equivalent of the pointer for touch computing 
folks—you need to design your user interface specifically and without abstraction 
for the hardware on which it will be running. This will be hard—but the tools of 
this chapter will help you to do it.

In this chapter, we provide a framework to categorize various input and display 
capabilities. In the subsequent chapters, we provide more details about specific ele-
ments of this framework. The goal is that you will begin to apply this framework in 
one (or possibly both) of two ways. First, to have awareness of on which platforms 
your designed software might be run. Second, to target your software to those plat-
forms, to create what is truly a Natural User Interface.

APPLICATION TO NUI
The WIMP interface has led to complacency among designers. Fundamental ele-
ments of interaction are the same everywhere—a single point, moving around the 
screen, poking at controls and content. About this pointer, we know its location 
(x and y), and the state of its buttons. That’s it. Input devices layered on top of the 
WIMP are all reduced to this small amount of information—the stylus of a tablet, 
standard resistive touch screens, trackballs, eye-trackers, voice-control, mice—all 
are reduced by the WIMP to exactly the same data: x, y, and button state. It’s as if 
all literature must be expressed in limmerick, or all calculus in dance. The result 
is that all input devices, with their rich and divergent capabilities, are reduced to 
emulating the mouse. Simply put, this emulation makes lives easier, because design-
ers of software need to design only for one input device, and all others are shoe-
horned into its capabilities. But the result is that controlling the WIMP with any 
input device other than the mouse can be painful. Don’t believe us? Try using the a 
voice control system to navigate your computer, and you will see very quickly that 
you are essentially emulating the mouse using your voice. It is painful!

NUI is different in two ways. First, new technologies lend themselves to the 
creation of a more natural user interface. These technologies are excited precisely 
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because they give us more information about the user’s state. Paradoxically to some, 
this means that designing for them is much harder. A simple (x, y) coordinate is not 
enough. While any sort of reduction might seem to make your software suited to 
many different devices, it will fail to take full advantage of those technologies that 
provide more information. The pressure of the stylus, the hovering distance of a 
finger, the tone of a voice—all are fodder for creating designs that, to the user, feel 
natural. This leads us to the second problem: by doing away with this reduction, we 
expose ourselves to great difficulty: we no longer have a standard that we can use to 
design one-size fits all applications.

In this chapter, we will learn two lessons. First, the danger of one-size fits all 
design, and second, the various parameters which differentiate touch and gestural 
input technologies now and for the forseeable future. How to design for those 
parameters is the subject of subsequent chapters—here, we will concentrate on 
understanding them.

LESSONS FROM THE PAST
Nintendo is a company known for taking risks in user interaction. Its latest console, 
the Wii, has been a wild success, in part due to its leveraging of simple infrared cam-
eras and accelerometers to enable a magical user experience. The success of the Wii 
has led many to forget several failed bets the company has made in the past with 
innovative user interface technology. But it is in the long history of those failed bets 
that we find a stellar example of the failure of a business, and its designers, to take 
advantage of a cutting-edge input device. To those familiar with the history, it will 
come as no suprise that we refer to the Nintendo Power Glove.

The Power Glove is worn by the user, and provides several degrees of freedom 
of movement. Its position in three dimensions is tracked, as are its roll, pitch, and 
yaw. Further, the degree to which each finger is “curled” is delivered to the game. 
Its marketing promised to usher in a new era of interaction with games. Freed from 
the tyranny of the controller, gamers would experience a magical world in which 
simple, intuitive, natural gestures replaced clunky, artificial game controllers. If not 
for the leather jacket and haircut on the gamer wearing the glove in its most famous 
ad, one might be forgiven for mistaking it for a modern-day spot describing a con-
temporary product. The Power Glove, it turns out, was roughly two decades ahead 
of its time.

The Power Glove was a total failure. While there were issues with the technol-
ogy, that is not where the device failed. The Wii has found success following almost 
an identical technological path as the Power Glove—leveraging cutting-edge sensors 
capable of transforming the way players interact with their games. A question worth 
asking is: Why was the Wii a success, where the Power Glove was a failure?

One fundamental advantage the Wii has is that it was a new platform. Games 
designed for the Wii are designed for interaction with the Wiimotes and other 
specialized hardware. The Power Glove, in contrast, made the farcical attempt to 
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enable control of old games, designed for the Nintendo controller. For the vast 
majority of the user’s experience, using the Power Glove was essentially emulating 
the controller they previously used to play their games. Designers of the experience 
were retroactively disempowered, in that they had no opportunity to design, build, 
or test their game designs for use with the Power Glove. Truly, it defies common 
sense that a game well designed for a controller could ever be driven well with a 
hand gestures. Reviewers and gamers alike agreed that the experience was terrible.

But it wasn’t because of the technology—it was because of how the technology 
interacted with the software, and simply put, that this software communicated with 
its user via an abstraction; in this case, not an x, y location, but rather the state of 
the eight buttons of a classic Nintendo Entertainment System controller (UP, DOWN, 
LEFT, RIGHT, B, A, SELECT, and START). Yes, all the magical input channels of the 
power glove were reduced to emulating presses of eight buttons. Gaming companies 
could have designed custom games for the Power Glove that took advantage of its 
unique characteristics, but they didn’t. Why bother if they could just design for the 
controller, and know that the glove could drive those games, too?

A key takeaway from this lesson is that the controller was functionally complete 
for playing those games. The answer to the question “Name one thing you can do 
with the power glove that you can’t with the controller” is—nothing! It is not in 
producing new functionality that a new technology excels. Rather, it is in produc-
ing a new method of interaction.

Further, we learn from this experience that a “lowest common denominator,” in 
this case, the data generated by the controller, cannot provide a natural user experi-
ence for a more capable input device. One must resist the urge to survey available 
technologies, look for their common properties, and design for those experiences. 
Instead, one must design software experience in a tailored way, considering the 
unique physical characteristics of the technologies.

This lesson teaches an important design lesson, but it is just as important as a 
business lesson: natural user interfaces can only be achieved through tight coupling 
of the experience to their hardware.

DESIGN GUIDELINES
When creating NUI experiences, a thoughtful designer must consider carefully how 
to create experiences for the technologies that will be driving that experience. Even 
though our focus is on touch and gestural interfaces, the designer will still encoun-
ter a wide array of sensing and display capabilities. Figure 22.1 shows the data avail-
able to users of some of the most popular touch technologies.

To understand the scope of such a problem, let’s consider an example. Let’s 
say that a team develops an application on a 30” display running at 1280    720 
(a 720 p HD monitor) to sell on the web. Let’s further say that the team follows the 
rule of making touch targets at least 7 mm (which translates to 13 pixels on their 
display) wide. So far, so good. Consider now what happens if a customer installs 
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the application on a 13” laptop running at 1280  1024. All of a sudden, what was a 
perfectly reasonable button is now only 2.6 mm wide, and the application is totally 
unusable. This doesn’t matter with traditional input devices—the scale of the device 
doesn’t matter, because the physical mouse remains a comfortable size. It does mat-
ter with touch, where the size of a fingertip never scales. Designing well for new 
technologies requires actually designing for those technologies.

To help understand the differences among touch and gestural devices, we will 
review a list of parameters that differentiate them. In subsequent chapters, we will 
dive into deeper detail about many of these parameters and how to design software 
for each of the capabilities described.

Capability vs. Quality
It should be clearly noted here that this chapter is about capabilities, not quality. 
Technologies can be differentiated along many lines. This chapter describes a set of 
enablers of experiences and scenarios. As such, issues of reliability, sensitivity, or 
other such measures of quality are not discussed. Instead, we will focus on sensing 
technologies in terms of the user experiences they enable.

Demonstrated vs. As-Yet-Undemonstrated
We will now examine several input capabilities, and discuss how they have been 
demonstrated to be useful in enabling certain types of interaction. For each, we will 
describe what the capabilities are and mention a few uses that have been shown 
to enhance a user’s experience. Keep in mind, while reading this, that the major-
ity of uses of these sensing capabilities have yet to be demonstrated. As we have 
seen with the development of the modern mouse-based GUI, some of the best 
innovations, such as tooltips and numeric spinners, took decades to arrive on the 
scene. Thus, you should regard these descriptions not as prescriptive, but rather as 
inspirational.

FIGURE 22.1

Various commercial devices’ sensing of the same contact. (a) The user’s hand on the device,  
(b) Microsoft Surface, (c) Circle Twelve DiamondTouch shows activation strength for each 
individual antenna, (d) a standard Windows 7 touch device provides a touch point and a 
bounding rectangle, (e) an Apple touch device, like the iPad, provides only an x/y point.
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Sensed Objects
The types of objects that can be sensed by a surface computer have perhaps the 
most immediately apparent effect on the user’s experience. We define three types 
of objects, and various sensing capabilities associated with each. It is important to 
distinguish body parts, such as fingers (“touch”), from physical objects. Physical 
objects provide a means to communicate with the system. The objects can act as 
tools—especially a stylus, which we differentiate from other objects.

Touch
Touch is the number of contact points detected and tracked by the device. The number 
of simultaneous contacts has a significant effect on two elements: the gestures any one 
user can perform and the number of simultaneous users of the system (Figure 22.2).

Objects
The system is able to detect objects. These objects can be used as tools in the  
system or can serve as a means of perceived communication between the display 
and another device.

Stylus
The system is able to detect a stylus and distinguish it from any other type of con-
tact. We distinguish between a stylus and other types of objects for two reasons: 
first, because a large number of commercially available surface computing devices 
are able to sense a stylus, but not other objects, and second, a significant field of 
research has been conducted focusing on interaction with a stylus, differentiating 
it from other objects. A stylus is more precise, allows for written input, and can be 
useful in distinguishing input by type (e.g., touches manipulate; a stylus writes).

Sensed Information
The ideal surface computer can track various physical properties of objects and 
body parts and their interaction with the screen. Here, we review the high-level cat-
egories of this information. We will provide more detail of each of the types in sub-
sequent chapters.

Contact Differentiation
Systems with contact differentiation are able to identify the sources of contacts, 
so that a touch from one user is distinguished from the touch of another, as is the 
touch of an index finger from a ring finger. This is probably the most important of 
all parameters—if, for example, a system cannot differentiate between users, one 
cannot use toolbars in an application!

Hover
The system is able to detect contacts before they touch the display and is able to 
distinguish between hovering and touching contacts. This allows for improvements 
to user accuracy in selection and can be used to enable “previews” of actions that 
will occur at the moment of touch (e.g., “tool tips”).
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FIGURE 22.2

Our taxonomy of surface computing sensing properties.
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Tracking Data
How much information about each contact is detected by the system. Examples of 
different levels of this taxonomy are shown in Figure 22.1. Whether we know only 
an x/y coordinate or we also know shape, orientation, etc., dramatically affects the 
gestures that can be included in your application.

Touch Pressure
The system is able to detect the force with which the contact is touching the dis-
play. This data can be used to differentiate input events (e.g., touching lightly 
equates to drawing a rectangle, touching more forcefully to placing the rectangle 
down on the canvas), as well as to vary continuous input (e.g., control the size of 
the brush in a paint application).

Display Properties
Properties of the display will ultimately lead to significant differences in your design.

Orientation
Will your device be a horizontal computer, requiring UI elements to be capable of 
facing each side? A vertical screen, mounted on a wall? Mobile, so that the UI needs 
to be used while being held? These considerations have significant impact on the 
design of various elements of your system.

Size
The size of the display of your target device is especially important for touch com-
puting. Applications written for devices that fit in one hand will clearly require dif-
ferent design than those on wall-sized computers, since target distances on a large 
display might mean having to walk across the room. Further, information shown on 
a large display might not be visible all at once by any one user.

DPI
The resolution of the display, the actual number of pixels, is relevant but less impor-
tant than the density of those dots on the screen, usually measured in dots per inch 
(DPI). This is, of course, distinct from display “resolution,” which is a measure of 
how many pixels the display has—a 20” HD TV has the same resolution as a 60” HD 
TV but has very different DPI. In the example that opened the chapter, we saw the 
implications of an application being moved from a large TV-sized display to a higher-
DPI laptop display—the application became unusable. We learn from this that appli-
cations’ visual style and behavior must be differentiated based on the pixel density 
of the display, rather than simply by the number of pixels.

Direct vs. Indirect Touch
Researchers have described a variety of techniques that differentiate direct touch, 
in which touch and display devices are overlaid, from indirect touch, in which they 
are separated. The experience of touching a device without a display should be dif-
ferentiated from that when the content is shown in a display beneath the finger. 
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While there are a number of reasons for this, the fat finger problem described ear-
lier in this book (Chapter 13) is a clear example.

Summing Up
From this list of capabilities, we see that, plainly, not all touch devices are created 
equal. It is incredibly important that one avoid a “lowest common denominator” 
approach to the design of software. While tempting, this will, every time, fail to 
achieve a natural user interface. Instead, one must tailor the design to the input and 
display capabilities that the user will actually be experiencing.

Must
l	 Determine which sensing capabilities and display properties your application 

will have access to, and design for those capabilities.

Should
l	 Consider which elements of this list are not actually relevant to the experience 

that you are creating. Object interaction, for example, might not be suitable to 
your particular needs. Consider, however, how your application will co-exist 
with others that will be running on an object-enabled platform. This is true of 
all other capabilities. While there are old-fashioned controllers available for the 
Wii, a user is much less likely to buy a game that requires one. The Wii has a 
set of de facto standards for games running on its platform. Consider these on 
the platform for which you are building.

Could
l	 Design your application first, taking note of these capability requirements. 

Then, find the platform that will enable its use. This approach is obviously a 
more dangerous one, since you risk not taking advantage of capabilities on the 
ultimately chosen platform and also limiting the market potential of your appli-
cation. It is an approach sometimes favored by designers who wish to avoid 
the confines of limited thinking imposed by considering hardware capabili-
ties too early. As should now be abundantly clear, this is not the approach we 
favor.

SUMMARY
Good design is specific, not generic. The various parameters we have described in 
this chapter delineate the platforms on which your software may be run. Consider 
them carefully, taking into account the lessons described in the subsequent chapters, 
in which we describe how to design for and take advantage of these capabilities.
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RISING ABOVE: THE LOWEST COMMON DENOMINATOR
Johnny Chung Lee
Microsoft Applied Sciences

It is often appealing, from a business and engineering standpoint, to reuse a working system as 
much as possible. It saves on development costs and minimizes risk. In many cases it is arguably 
the most efficient way to accomplish a task with the smallest amount of resources. As a result, 
there should be no surprise that there exists a push toward making as many components be 
as general purpose as possible, and a push toward becoming device- and platform-agnostic in 
order to maximize return on investment as well as maintain flexibility to unforeseen changes in 
the technology market. Specialization to a particular platform in software systems is frequently 
viewed as a bad thing, and in some cases is highly discouraged. The end result of practicing this 
particular philosophy is the “lowest common denominator” approach to design.

Since specialized capabilities are not guaranteed to exist on every target device, developers and 
designers are often encouraged to focus the intersection subset of target capabilities. As a result, there 
should be no surprise as to why the majority of consumer products today have a “lowest common 
denominator” feel, especially when it comes to the user interface design. They may be functional, but 
inelegant and undesirable. Yet, there have been several clear examples of highly successful well-known 
products that have demonstrated that when the user experience is a core differentiator for the product, 
specialization in the interface design isn’t just one possible option, it is the only sensible option.

Every form of input technology, be it a mouse, a keyboard, a touchscreen, a stylus, speech 
input, a motion sensor, or a steering wheel, can be thought of as a different tool in a workshop. 
Each has their strengths and weaknesses. Each is ideal for some tasks and absurd for others. If 
you tried to use a screwdriver to cut a piece of wood and a hacksaw to tighten some screws, your 
colleagues might express some concern for your mental well-being. The same degree of concern 
should be expressed when witnessing someone attempting to use a touch system to emulate 
a mouse, or trying to use gesture input to operate a pull-down menu. Trying to design a user 
interface that works with multiple forms of input technology may achieve the minimum bar of 
functionality, but it will not provide a good user experience.

As advances in silicon fabrication continue to provide a reduction in the costs of computing, 
it becomes increasingly economical to manufacture highly specialized devices that serve smaller 
and smaller needs. The concept of owning a single general-purpose computer is diminishing. For 
some time now, we have been transitioning to owning a multitude of specialized computers, such 
as a laptop, mobile phone, video game system, television, music player, digital camera, navigation 
system, car keys, and our credit/debit cards. This diversity will only increase, and with it the way 
we interact with them, and with that, the types of interface technology we will use and the form 
factors of the device. The process of designing user interfaces moving forward must embrace 
specialization to specific devices. Continuing to hold on to an engineering tradition of reuse and 
generalization across multiple forms of interface technology is a guaranteed way to provide an 
underwhelming user experience and a guaranteed way to get left behind.
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CHAPTER

23The Fundamentals Have 
to Work

The woods are lovely, dark, and deep,  
But I have promises to keep,  
And miles to go before I sleep,  
And miles to go before I sleep.

—Robert Frost, “Stopping by the Woods on a Snowy Evening”

DESCRIPTION
Every new interface paradigm begins with a promise to its potential users. The 
promise may morph from the time that it is in the minds of the visionaries who first 
proposed the paradigm to when it’s adopted by those who instantiate that vision in 
products. The promise as understood by the user and as understood by the designer 
may be different. Finally, the promise itself is a source of risk for every product team 
that adopts it. The world is full of products and systems that never delivered on 
their promise and are long forgotten or cursed by their unfortunate users.

APPLICATION TO NUI
The NUI promises much. The promises are subject to misinterpretation. A team 
developing a NUI may incorrectly assume that a new input medium (touch, voice, 
gesture) makes their product natural. Rightfully, the user will expect more from an 
interface that calls itself natural.

LESSONS FROM THE PAST
The graphical user interface (GUI) is a good example of a promise that morphed 
over time. Doug Englebart is often called the inventor of the mouse, and he is, but 
the mouse was just a means to an end. The end, the goal of Engelbart’s vision, was 
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to augment the human intellect. Over time and in the hands of others, the promise 
of GUI morphed into making tasks easier and broadening the market for comput-
ing technology. In many ways this latter promise was realized. Fifty-odd years since 
Englebart’s original paper, a vast domain of new capabilities has been extended to 
a wide range of people. Today, typical users compose typeset documents, create 
complex financial models, and access vast quantities of information (and misinfor-
mation) with relative ease. While cumbersome interfaces stubbornly persist and are 
constantly created anew, the ubiquity of technology is a testament to a lowering of  
barriers (i.e., the increased ease of use) for these new capabilities. The question  
of whether the individual’s, the collective, or the average “intellect” is augmented 
by this growth in technology is highly debatable, and we have no desire to address 
that question in this book.

The de facto promise of the GUI, to make tasks using a computer easier, raises 
the bar for every product that adopts a GUI. The users expect more than functional-
ity: They expect that the promised functionality will be easy to use. For example, 
introducing a new mark-up language with the promise of some new exciting fea-
tures, then expecting that to create a new mass market product would be absurd to 
the point of delusional. The promise of easier access to capabilities is already thor-
oughly infused in users’ expectations as they use a product. Parts of the product 
that fail to meet these expectations will go unused. It is not uncommon to discover 
users asking for functionality that already exists in a product. This perpetuating 
irony is driven in part by a lack of transparent ease of use in esoteric elements of the 
product. The tragedy of unused functionality is painfully acute because the develop-
ment team has gone to the trouble and expense of building capabilities. These capa-
bilities match users’ needs, and “only” the interface got in the way. These are truly 
missed opportunities.

Implicit in the promise of each new paradigm are pitfalls for the development 
team. The first pitfall is that the development team may assume that simple adop-
tion of the trappings of the interface ensures delivery on the promise. This was evi-
dent in many early GUI designs. They did include pull-down menus, dialog boxes, 
and a screen that showed what you were working on and would “get,” yet they 
were unusable. The terms used in the menus were opaque to the intended users. 
The organization of the interface elements did not support expected task flow. The  
elements created on the screen seemed unrelated to the constructs that users 
employed in their work. The path to an intended result was totally unclear. In other 
words, while the GUI removed the syntactic demands and the memory requirements 
of a command system, it replaced those with a thicket of incomprehensible choices 
unrelated to the users’ knowledge of the task domain. An even deeper and rare misun-
derstanding occasionally occurred. In these cases, the team failed to grasp some of the 
fundamental principles of the interface paradigm and adopted only the trappings. I 
have seen systems that ignored the object-operation syntax (select an object first, and 
choose the verb as a menu item) of the GUI and required the user to select an opera-
tion first and then the relevant objects would be highlighted. It was so contrary to 
expectations, it took some time to even grasp what was happening.
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DESIGN GUIDELINES
The lessons from the unfulfilled promises of the GUI itself and the missteps of early 
development teams can provide us with some guidance to creating a successful 
NUI.

Must
l	 Start from scratch. Beginning with a successful GUI or web interface and sim-

ply translating it into a NUI is likely to fail. It would be like translating com-
mand language into a GUI paradigm.

l	 Consider the environment and the goal of the application. Each environmental 
goal of the application creates a “niche” in which an application and the way 
it is rendered will thrive or die. Some extreme examples make this obvious. 
Using touch for an interface in which the users’ vision and hands are occupied 
would be highly counterproductive—even dangerous. Typing on a handheld 
device while driving is unnatural. Speaking commands makes much more 
sense in this context, provided the cognitive load is not too high.

l	 A NUI makes two promises. The first is that skilled use is obtainable very 
quickly. The second is that the interaction itself will feel enjoyable. In order to 
fulfill these promises, any NUI must be both efficient to learn and fun to use. Its 
feedback and feed-forward will lead the user to success without being oppres-
sive. The actions themselves will be smooth and fluid.

l	 Pay attention to the underlying infrastructure that enables any application. The 
infrastructure of the GUI is well understood and works (for the most part).  
The mouse is used to control cursor movement; the keyboard is used to input 
text or input a command via accelerators. For the most part, these are depend-
able. The same cannot be said for the evolving platforms of NUIs. The hard-
ware’s reading of touch points is often unreliable. On one system we tried we 
were advised to “wet your finger” in order to help the system read your touch. 
This was on a bar table with a touch interface. Even then, contact was often 
lost. Regardless of what else such a system promised, that lack of reliability  
(let alone hygiene) on the fundamentals yielded it unusable.

Should
l	 A development team would be wise to start with an application that is both 

simple and different from existing applications on the GUI or the web. Simple 
games are often a good starting point for a team to learn how to design and 
implement a NUI.

l	 Get the mechanics right first. If the mechanics of the interaction, the gestures 
with their feedback, are not fluid and enjoyable, the system will fail. This has 
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been understood in game design for years. The Mario Brothers franchise would 
not have been as successful if the mechanics of jumping were not fun.

Could
l	 It is wise to look at other NUI applications that are in the same domain. It will 

give the team insight on what works and does not.

SUMMARY
Building a NUI is not a royal road to fame and fortune. In fact, it contains more 
risk for a team because the user expectations will be higher. The development team 
may use well-worn skills and implicit assumptions from previous efforts that used 
other paradigms. This is likely to fail. The NUI requires not only that expert per-
formance be obtained quickly with few false starts, but also that using the system 
while learning be fun. None of these challenges are insurmountable. The success of 
any NUI application depends on going the miles needed to keep the promise.

FURTHER READING
If anyone could be called the father of the GUI, it would be Douglas Englebart. The concepts that 

he pioneered in his Augment system underlie much of design we take for granted in the GUI. 
These concepts were well described in the in his paper prepared at SRI. This paper is avail-
able on the Internet. SRI Summary Report AFOSR-3223. Prepared for: Director of Information 
Sciences, Air Force Office of Scientific Research, Washington 25, DC, Contract AF 49(638)-
1024• SRI Project No. 3578 (AUGMENT, 3906). http://www.dougengelbart.org/pubs/ 
augment-3906.html
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CHAPTER

24Number of Contacts

That's what an army is—a mob; they don't fight with courage that's born in them, 
but with courage that's borrowed from their mass.

—Mark Twain

DESCRIPTION
The number of simultaneous points of contact tracked by the input device will 
define the domain of the gesture language that can be developed. Classic hardware 
for enabling touch allowed one point of contact to be sensed—touching with mul-
tiple fingers would yield unpredictable results.

At the dawn of the age of commercial multi-touch, the number of contacts 
detected by hardware is highly variable. The Windows 7 gesture language, and hard-
ware certification, is written to require only two points of contact. The iPhone gesture 
language is limited to two points of simultaneous contact, despite the hardware sup-
porting more. Other hardware enables detection of far more, for a variety of reasons.

APPLICATION TO NUI
As discussed in Chapter 22, the hardware platform will greatly influence the gestural 
user experience built upon it , and Chapter 18 described the advantages of differen-
tiating gestures based on the number of contacts. We classify three types of touch 
devices based on the number of contacts it is able to sense and report simultaneously:

Single-User Manipulation: Senses sufficient point of contact for a simple manip-
ulation style gesture language: dragging, zooming, etc., such as on the iPhone. 
This language requires two points of contact, to enable the “zoom” gesture.

Single-User Gestural: A small number of contacts that allows a single user to 
perform gestures requiring multiple points of contact. The actual number of 
points depends on the gesture language. If enabling a piano, for example, this 
would be ten contacts.

http://dx.doi.org/ 
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Multi-User Gestural: A larger number of contacts that allow for multiple users to 
be engaged in multi-touch gestures simultaneously. The actual number of con-
tacts depends on the number of touches that make up the gesture language 
being used on the system. A multi-user gestural system would support mul-
tiple users making gestural input simultaneously. This would be essential for a 
large conference table or vertical display.

LESSONS FROM THE PAST
Two elements are differentiated by the number of contacts a language supports: the 
nature of the gestures and the number of users.

Accelerators and Modifiers
Inputs to the modern WIMP GUI often require multiple fingers to engage at the 
same time. Inputting a capital letter, for example, requires pressing both SHIFT and 
the associated key. Copying an item requires holding the CTRL key while dragging it 
with the mouse. Most, if not all, multi-finger actions in a modern WIMP can be clas-
sified as either a “modifier” or an “accelerator.”

The distinction between a modifier and an accelerator is subtle but important. 
A modifier is a key that, when pressed in combination with another action, alters 
that action—ideally, in a predictable way. For example, the CTRL key is a modifier, 
in that it alters the function of the other keys on the keyboard. Turn the mouse 
wheel key without the modifier, and it scrolls up and down. Turn it while holding 
the CTRL modifier, and it zooms in and out. An accelerator, in contrast, is a series 
of keystrokes that will lead to something happening more quickly than otherwise, 
such as “APPLE  C” to copy the selected item in the Mac OS.

Modifiers and accelerators have both been shown to be incredibly successful. 
Interfaces universally include them, from games to productivity software. Perhaps 
one of the most successful multi-finger interfaces is Adobe Photoshop.

Photoshop relies heavily on both modifiers and accelerators. It is not often that 
you see a more impressive display of expert computer use than an experienced 
graphic designer wrangling Photoshop. Their fingers fly across the keyboard, while 
the display changes constantly in, to the observer, unpredictable and nearly always 
incomprehensible ways.

One of Photoshop's most commonly used modifiers is the space bar. When click-
ing and dragging on the document without the space bar, the currently selected tool is 
applied to that part of the document. Holding the space bar, however, places the system 
into “hand tool” mode, such that when the user clicks and drags, the document pans. 
This simple modifier is incredibly powerful: it allows the user to operate at a high zoom 
level and apply a tool repeatedly without having to manually scroll or switch tools.

Photoshop’s use of accelerators is also extensive. Pressing CTRL  SPACE zooms 
in, while pressing ALT  SPACE zooms out. A little searching online will lead you 
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to a complete list of the accelerators and modifiers in Photoshop—the dense list we 
found is four pages long, listing hundreds of key combinations.

Of course, the point here is not that your application’s functionality should be 
buried in obscure combinations of finger presses. However, the effective use of 
combinations of fingers has been shown, in this instance, to be effective in creat-
ing an incredibly powerful tool for experts. The trick lies in leading your novice 
users to become experts quickly, without having to read an instruction manual—as 
described in Chapters 10 and 20.

Design for Touch with a Second Finger
The addition of the second touch has enabled an expansion of the traditional set of 
actions in a GUI. User interfaces built with the certainty of the availability of this sec-
ond point of contact can provide exciting accelerations and intuitive interactions.

A now-classic example of the use of a second contact point is to enhance one-
finger panning and zooming by adding the ability to rotate and resize by dragging 
two fingers on the device. One of the earlier (though not first) examples of the use 
of this gesture is in MIT’s metaDESK system. In this case, two models of buildings 
from MIT’s campus are placed on the device. The map of Cambridge, MA, moves, 
rotates, and resizes to ensure that these buildings are placed at their geographically 
correct location. This system uses physical objects, rather than touches, but it estab-
lished the standard for what interaction all multi-touch systems must have: Two fin-
gers expand, rotate, and move content (Figure 24.1).

This interaction gets people excited. It also points to some of the power of differ-
entiating gestures by number of contacts: there is no need to provide a pair of buttons 
to zoom in and out of the UI. Nor is there a need to provide a zoom mode in the tradi-
tional sense, differentiating input depending on whether the user has selected this or 
a “pan” mode. Instead, we simply teach the user that two fingers means zoom—and 

FIGURE 24.1

The metaDESK system displayed virtual maps beneath physical objects. Moving an object would 
move and rotate the map to ensure that it was geographically correct. Adding a second model 
would cause the map to scale to ensure that the buildings were in the right virtual place.
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they use it. This is one of the key ideas in the reduction of visual clutter that typify a 
NUI: we get rid of buttons by requiring the user to input in more than one way, dif-
ferentiated by the number of fingers.

Another example of multi-finger gestures is the language of accelerators used on 
the MacBook trackpad. Just like the above example, input to the system is differen-
tiated by the number of fingers. Sliding one finger vertically on the pad moves the 
mouse cursor up and down. Place two fingers on the pad, however, and perform 
the same action, and the current window scrolls up and down. Three fingers pages 
through a document, as we see in Figure 24.2.

Like the zoom gesture, the multi-finger differentiation of the trackpad input has 
also proven successful, in that users are able to quickly learn the gestures and per-
form them. They also provide mechanisms to rapidly differentiate input from the 
user, without having to use the GUI to select a mode.

An excellent example of a natural mapping of multiple fingers that users can 
immediately understand was shown by Igarashi and his colleagues. In their system, 
users could place multiple fingers on cartoon characters and bend and twist them to 
produce animations. The response of the characters followed an intuitive, physics-
like manipulation pattern.

An interesting element we observed in the construction of our gesture lan-
guages is that it is actually rather difficult for users to intuit, or remember, that 
the number of fingers matters in differentiating modes. This seemed to cut directly 
across another of the elements of the hardware parameters we discussed in 
Chapter 22: directness. Even when expert users of multi-touch trackpad gestures, 
such as the ones shown above, were moved to a direct-touch system, any notion 
of being careful of the number of fingers they were using to manipulate an object 
went out the door. Participants in user studies would tell us they understood, and 
then proceed to forget within a minute or so, even after being reminded again and 
again. It seems that there is some quality of direct touch that is different from indi-
rect touch in this way.

FIGURE 24.2

Images from http://support.apple.com/kb/HT1115.

http://www.support.apple.com/kb/HT1115
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Designing for One User vs. Multiple Users
Large multi-touch devices have the potential of enabling multiple users to inter-
act with a system simultaneously. Multi-user interaction with software has been a 
household phenomenon for decades, mostly in the form of video games. What may 
not be immediately obvious, however, is that designing for one user does not scale 
up to designs for multiple users. To illustrate the point, consider the relatively sim-
ple interaction used to select a color in a paint application (Figure 24.3).

This now classic control is such a fundamental control for a GUI that it is very 
easy to miss a simple fact: this will not work for multiple users. As soon as the sec-
ond user touches the control panel, she will change the color for all users, not 
just herself. There is no way to specify which color goes with which contact point 
(Figure 24.4).

One could easily write an entire book on the design of NUIs for multiple users. 
Suffice it to say for now, however, that very simple things break when moving from 
a single-user model to a multi-user one—especially if your system lacks user differ-
entiation, discussed elsewhere. And the number of contacts that can be detected in 
your platform may be the best indicator of whether you will be designing a system 
for a single user or multiple users.

DESIGN GUIDELINES
Must

l	 Determine the number of contacts supported by your platform. Build your ges-
ture language around this number.

l	 Ensure that, as early as possible in a gesture, the system knows which action 
the user intends to perform. Use the number of fingers the user puts down on 
the display to perform this identification.

l	 For direct-touch systems, be careful about differentiating modes by the number 
of fingers beyond some small set, or beyond what is immediately apparent by 
the graphics the user is touching.

Should
l	 Differentiate system gestures based on the number of fingers. Provide a clear 

and consistent mapping of what one finger does versus multiple fingers, and 
how users can remember the association and apply it consistently.

l	 Strive for consistency with other gesture languages, while simultaneously seek-
ing to fully leverage the number of contacts detectable by your system.

Could
l	 Design your system for multiple users, considering carefully to ensure that 

such designs are successful.
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FIGURE 24.3

The use of a toolbar to select a color. This interaction does not work on a multi-user system.
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SUMMARY
We advocate the use of the number of contacts as one of the parameters allowing 
for instant identification of the user’s intention, to reduce or eliminate any point 
in the interaction in which those intentions are unknown to the system and thus 
without feedback to the user. Further, it is clear that differentiating gestures by the 
number of fingers being used can be successful in creating a rich gesture language. 
Finally, we note that a large number of contacts detectable by a system can mean 
that multiple users will need to be supported simultaneously. Designing a multi-user 
system requires a fundamental rethinking of all elements of interaction and should 
be undertaken with due consideration.

FURTHER READING
Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. 

Graph. 24(3), 1134–1141. DOI  http://doi.acm.org/10.1145/1073204.1073323. In this work, Tomer 
Moscovich and colleagues at Brown University allow users to grab, bend, and twist cartoon characters. 
The mapping between gesture and consequence of that gesture is immediate and intuitive. Users can 
learn it easily, and anticipate the effect of adding another finger to the interface.

FIGURE 24.4

Two users cannot use a classic toolbar model to paint in two different colors at the same time.

http://www.doi.acm.org/10.1145/1073204.1073323
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CHAPTER

25Contact Data: Shape, 
Pressure, and Hover

To them, I said, the truth would be literally nothing but the shadows  
of the images.

—Plato, the Allegory of the Cave, The Republic

DESCRIPTION
In The Republic, Plato describes a group of people shackled from birth such that they 
can see only the wall of a cave, on which the shadows of the world behind them 
dance in firelight. The prisoners, he argued, would develop and understanding that 
these flickering shadows are reality. By consequence, they might never develop an 
understanding of the full 3-D world from which those shadows are projected.

The shadows on the cave wall in Plato’s allegory provide to the viewer an 
abstraction of reality. In the same way that someone trapped in this cave would 
understand only a portion of the reality an uncaptured person would experience, 
software on a touch device experiences only a slice of the reality of the user’s 
actual physical interaction. This abstraction is useful, in that it is easier to program 
against—applications driven by a mouse need only care about the position of the 
pointer and the state of the mouse buttons. Other details are thrown away: the ori-
entation of the mouse, the user’s posture on the mouse, which hand he's using, 
how hard he is pressing the buttons—none of this is available to the application. 
While useful in the sense that this makes application development easier, this lost 
detail reduces the bandwidth of communication from the user to the device. An 
application can’t find them out, even if it wants to.

APPLICATION TO NUI
NUI hardware is different. It detects more information about each element of the 
interaction, and these elements can be used to subtly adjust the experience in an 
intuitive and natural way.

http://dx.doi.org/ 
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Several variations in hardware exist, as described in Chapter 22. These variations 
influence both the detail and the type of information that is presented about each 
contact point. A designer must take care to ensure that they squeeze every last drop 
of expressivity out of the hardware their system will be using. Most important is 
to avoid the pitfall of determining a lowest common denominator across hardware, 
and designing your system to respond only to those signals commensurate with that 
lowest common denominator.

Instead, investigate deeply the capabilities of your hardware in terms of the 
detail it can detect. Take, for example, the difference between a full-touch and a 
multi-touch system (Figure 25.1).

Intuitively, we can see immediately the kinds of gestures that are possible with a 
full-touch system that are not with a multi-touch one, such as cupping an area of the 
screen or even a variation of American Sign Language.

The same is equally true of pressure: A system that detects pressure can respond 
in all manner of ways, varying intensity of system response proportionally to the 
intensity of the user’s input.

Hover is a different beast. Hover, unlike the others, is not a parameter of the 
touch itself, but rather the ability of the hardware to detect hands before they come 
in contact with the input device. We described earlier the state-transition model of 
input devices, which points out that moving from mouse input to touch gives away 
a valuable preview state. Hover has the potential to bring back this state. It can be 
used to preview the effects of contacts, such as by indicating what the effect of a 
contact will be or suggesting alternative gestures.

FIGURE 25.1

On the left, we see what a multi-touch system is able to determine about those fingers: namely, 
just the position of each of the fingertips. On the right, we see what a full-touch system is able to 
detect—the exact contour and shape of the area of the hand in contact with the device.
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LESSONS FROM THE PAST
A friend of ours, Paul Dietz, likes to point to the evolution of musical instruments 
as a long series of experiments to perfect the user interface for creating music. For 
example, the harpsichord, a predecessor to the piano, helpfully illustrates how 
changes to a user interface can inspire people to push the limits of a particular field 
or discipline (Figure 25.2).

Each key on a harpsichord controls a mechanism that plucks a string. The pluck-
ing of the string is independent of how hard or fast someone presses the key. 
As such, harpsichord music relies on playing more notes to achieve the effect of 
greater loudness, which creates a significant shortcoming. The desire to be able to 
play softly (“piano” is the musical term) or loudly (“forte”) led to the development 
of an alternative mechanism: the hammer. By striking the key harder, the hammer 
strikes the strings harder, and produces a louder sound. This new instrument was 
known by its signature feature, “pianoforte,” because it could be played softly or 
loudly. Thus, the piano was born.

With the advent of an interface that allowed for dynamics (the variation of loud-
ness in a piece), players and composers began to explore the possibilities. Piano 
music was more than just harpsichord music with dynamics; the new expressive 
capabilities allowed for a fundamental change in the type of music that could be 

FIGURE 25.2

A harpsichord, which lacks the degrees of freedom of input offered by a piano.
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played. Baroque harpsichord music is intricate: the artistry is often found in very 
fast, complex patterns of notes. By comparison, piano music has a much greater 
expressive range, from delicate to soulful. The not-so-subtle point here is that while 
adding degrees of freedom to an interface may at first appear to offer limited ben-
efits, this addition can fundamentally change the capabilities of the device and also 
affect what you wish to achieve with it.

The advent of electronic musical keyboards has followed a similar, albeit shorter, 
path. Early keyboards used simple on/off switches. But this design lacked the expres-
siveness of the mechanical piano. Over time, extra degrees of freedom have been 
added. Now, all but the cheapest toy keyboards can sense “velocity.” To detect velocity, 
many keyboards use two switches that trigger at different key positions. By measuring 
the time between the two activations, the keyboard can translate the velocity of the key 
strike in a way that allows it to mimic the pianoforte capabilities of a real piano.

Still, the evolution continues. An unfortunate limitation of most keyboard instru-
ments is that once a note is struck, there is little one can do to vary the note’s char-
acteristics. To add even greater control, many keyboards have a pitch wheel—a 
separate control typically used to bend the pitch of all of the depressed notes while 
they are sounding. This functionality comes at the price of having to dedicate a 
hand to this function. A more powerful solution used on expensive keyboards is a 
feature called “after touch,” which is a pressure sensor that detects how hard a key 
is being pressed as it is held down. Some keyboards have a single sensor for all of 
the keys, which adds a single degree of freedom. The most sophisticated keyboards 
have a pressure sensor for each key, which allows talented musicians to add effects 
to individual notes as they play. These additions are too new to judge whether they 
will change the direction of music.

The lessons we have learned from looking at musical instruments include the 
following:

1.	 Input technologies slowly evolve to become more expressive.
2.	 As they evolve, the devices that use the interfaces take advantage of the 

expanded capabilities in fundamentally different ways.
3.	 One-bit on/off can be evolved through multi-bit velocity/pressure.

DESIGN GUIDELINES
Contact Data
Contact data vary widely across devices. The least expressive is a simple x/y coordi-
nate of a contact. The most expressive is a detailed contour of the contact area. In 
between, bounding boxes and other types of data can be obtained.

Contact data can be used to abstract to an "orientation" of a contact, or  
more directly by allowing shaped gestures, such as cupping in a physics simulation. 
Just how expressive your system will be depends both on its needs and on its con-
text of use. Orientation, for example, can be used to make simple gestures more 
expressive—moving a photo across the screen with one finger is fine, but allowing 
the user to rotate it by twisting the finger adds more control.
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Hover
Hover can best be used to regain the lost state described in Chapter 12 as the state-
transition model of input devices. In traditional WIMPs, this state is used to pre-
view. First, the action is previewed just by the fact that the mouse pointer indicates 
what object will be impacted by a click. Next, in most modern WIMP implementa-
tions, hovering over an object with the mouse pointer gives an additional preview. 
Sometimes this is the form of a textual description of the function (a "tool tip"); 
sometimes this is a more subtle highlighting of the object under the mouse).

When using the hover state, we must distinguish between two types of hover.

Continuous vs. Discrete Hover
Discrete hover sensors tell you simply whether the object is physically touching the 
device or is somewhere above it. In contrast, a continuous hover sensor gives you a 
z value, an actual physical distance between the object and the display.

Discrete hover can always be simulated by a system that provides continuous 
hover. Obviously, continuous hover is the most expressive.

Both discrete and continuous hover can be used to offer a preview of the effect 
that actually touching the screen will have. Naturally, the inputs during hover and 
those during touch can be divorced completely, and research systems have shown this 
approach. What we have found, however, is that this divorcing is not actually the most 
valuable use of this state. Instead, continuous hover can offer a continuously changing 
preview, such as providing a lens effect where targets grow as the finger approaches.

Pressure
Pressure as a NUI Enabler: Why Bother Sensing Pressure?
At first glance, pressure is a tempting target as an enabler for natural input. While 
you’ll never catch us broadly classifying modalities on an imagined spectrum of nat-
uralness, let us point out that pressure is hard to control. As such, it requires signifi-
cant feedback and learning over time. The purpose of what follows is not to make 
an argument for pressure as an input to touch, but rather to point out a few things 
that we already know about the use of pressure in a touch system.

Precise Pressure vs. Pressure Proxies
Pressure is the force with which users touch the display. Sensing this force directly 
is one way of detecting pressure. Alternatively, a device might sense secondary indi-
cators of this force. Examples include changes in contact area, or shape changes of 
a contact. This technique is called the “SimPress” (or “simulated press”) technique, 
as we see in the figure shown in Figure 25.3.

Absolute vs. Relative Pressure
Whether sensed directly or indirectly, the output from the device might provide 
absolute pressure so that the same force always yields the same value. Alternatively, 
the process might produce relative pressure, or pressure changes for a particular 
contact. Note that the capabilities of such sensors vary: The former would allow you 
to build a scale, while the latter would not.
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Localized vs. Pad-Wide Pressure
Whether a device senses pressure locally for each contact or for the pad as a whole 
does not matter for a single-touch device. For multi-touch devices, however, the 
type of pressure sensing makes a great deal of difference. Earlier, we described key-
boards that can sense pressure for one key or for multiple keys; the same principle 
applies to touch. Note that Apple trackpads can detect pressure on the whole pad, 
but not for individual contacts.

Continuous vs. Discrete Pressure
Pressure can be sensed continuously or discretized into levels. Like anything else, 
the application dictates the most appropriate mode of detection. One of the more 
promising uses of continuous pressure was shown to allow users to tilt and quickly 
adjust the z ordering of objects—to move something down in z order, simply push 
on it harder than on the object you would like higher up in the order.

Discrete pressure, in contrast, is used to target particular values. Unlike continu-
ous pressure, users can consistently target particular levels, as long as those levels 
are appropriately selected.

One-Bit vs. Three-Bit Discrete Pressure
Pressure can be discretized in any number of ways. Two of the most interesting 
ways are one-bit and three-bit pressure.

One-bit pressure creates two pressure levels: light and heavy. This approach enables 
techniques like the SimPress, where the user touches on the display for one activity, and 
then presses down to engage. Similar to a key on a keyboard, resting your finger on a 
key has one effect, while pressing down has another. Using one-bit pressure in this way 
is very useful because it allows a preview followed by an “engaged” state—just like a 
mouse pointer, the user can specify the location and then press down.

One-bit pressure is used in the same way on trackpads, such as those in Apple 
laptops: Touching lightly moves the pointer around the screen, and pressing hard 
sends a click event to the targeted pixel.

FIGURE 25.3

The SimPress technique allows pressure sensing on devices that can’t actually sense it, like 
Microsoft Surface. Instead of measuring force, the device measures change in contact area when 
the user presses down.
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Three-bit pressure is interesting because it maps onto humans’ perceptual capa-
bilities. Ramos et al. tried varying levels of discretization and ultimately found that 
their participants could consistently select from among seven levels of pressure. 
Anything greater than seven, and users couldn’t target it accurately. They then built 
a set of “pressure widgets” that used those seven levels in creative ways to allow 
users to give varying levels of input. Note that the feedback includes the continuous 
pressure values, which then get mapped onto one of seven levels. The key element 
here is that three-bit pressure is not a reduced sensing capability over continuous 
pressure; rather, it’s an intentional bucketing of pressure values to make it useful to 
the user.

Bringing It All Together
Contact data, hover, and pressure can each add both expressiveness and complex-
ity. A key concern is the scope of the release of your application. As we have seen, 
the notion of “touch input” is a myth— actually there are a myriad of devices with 
extremely variable capabilities, each of which can lay rightful, if ambiguous claim to 
the term “touch”.

Must
l	 Determine which type of hover, contact data, and pressure your hardware is 

capable of, and design for that type.

l	 Use pressure to adjust subtleties and parameters of input, rather than as a 
primary indicator.

l	 Use hover to preview the effect of making contact.

l	 Use contact data to provide a more expressive interface.

l	 Use no more than seven levels of pressure if you want the user to be able to 
target it precisely.

Should
l	 Consider the use of relative, rather than absolute, pressure. Controlling abso-

lutely the force with which one hits something is a skill that takes time to mas-
ter. In contrast, giving the user feedback on the initial touch, and allowing the 
user to adjust up or down relative to that level, is much easier.

l	 Provide highly expressive feedback to the user, even if your interface does 
not require it. For example, simply pressing a button requires no pressure or 
hover. While you could still use a button, consider having the feedback vary by 
the values of these inputs.

Could
l	 Use pressure in one of the particular ways that we have shown above.
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SUMMARY
Hardware is highly variable regarding what it can detect from a point of contact, in 
terms of shapes, pressure, and hover. The best systems will seek to maximize their 
expressivity by pushing the boundaries of parameters they detect. If you are respon-
sible for the hardware, push the limits! If you are not, sit down with the person who 
is, and understand exactly what your sensors can provide your software. The more 
you can get, the more expressive your system will be, and the more delightful and 
natural it will lead your user to feel.

VOICES FROM THE FIELD: MULTI-TOUCH AS MULTI-CURSOR
Andy Wilson
Microsoft Research

Here is a basic question for any multi-touch sensor: if multiple contacts are allowed, precisely 
how many contacts are there? Consider the first figure in this chapter: On the left, there are three 
contacts. This is obvious enough. But consider as the hand moves to the pose on the right. We 
might say there is one contact at the end (the whole hand), but what about all the moments 
in between? If your answer is “I don’t know,” consider that the computer probably doesn’t 
either. Furthermore, if your answer is “I don’t care,” consider that contact tracking is likely to 
“hallucinate” the movement of multiple unorganized contacts, perhaps resulting in erratic motion 
in your application. As with many idealized models (and perhaps life in general), it’s the interstitial 
cases that get you.

I argue that the notion of a set of discrete contacts is borne out of our experience with cursors, 
and bears little resemblance with the way the real world works. Imagine grasping a coffee cup. Do 
the physical processes of friction and gravity that lead to the coffee cup rising to your lips rely on 
some mysterious process that counts the number of “contacts”?

The list of discrete contacts that systems pass to applications is a convenient and potentially 
limiting view of touch input. This is particularly evident as the fidelity of our sensing systems 
increases and we are tempted to model more sophisticated kinds of input. Are there practical 
alternatives to the view of multi-touch as multi-cursor? As the coffee cup example suggests, we 
can think of touch as impacting a simulated world of physical objects through collisions and tiny 
bits of friction forces. In our research, we have used physics engines of the sort used in video 
games to simulate these effects directly, achieve more realistic manipulation of objects, and 
completely avoid the notion of a discrete contact.

Even if you don’t go so far as to embed your application in a physics engine, it is good to be 
aware of the consequences of assuming the seemingly innocuous idea of the “contact.”

Andy Wilson is a Senior Researcher at Microsoft Research. There he has been applying 
sensing technologies to enable new modes of human-computer interaction. His 
interests include gesture-based interfaces, computer vision, inertial sensing, display 
technologies, and machine learning. In 2002 he helped found the Surface Computing 
group at Microsoft. Before joining Microsoft, Andy obtained his BA at Cornell University 
in 1993, and Ph.D. at the MIT Media Laboratory in 2000. Publications and videos of 
his work are located at http://research.microsoft.com/~awilson.
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Cao, X., Wilson, A., Balakrishnan, R., Hinckley, K., and Hudson, S.E. ShapeTouch: Leveraging 

contact shape on interactive surfaces. Proceedings of TABLETOP 2008, IEEE International 
Workshop on Tabletops and Interactive Surfaces, 139–146. Xiang Cao and his colleagues 
at Microsoft Research explore the use of postures for gestural input into a system. For exam-
ple, a user can close a window only by touching the corner with an “L” shape of their hand. 
ShapeTouch increases expressive power, enabling interactions like this that avoid accidents 
without useless dialog confirmations.

Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., and Balakrishnan, R. Hover Widgets: Using 
the tracking state to extend the capabilities of pen-operated devices. Proceedings of CHI 2006, 
Montreal, Canada, April 2006, pp. 861–870. Tovi Grossman and his collaborators demonstrate 
the use of the hover state to differentiate gestures. In this case, a set of gestures is presented that 
can be activated only while hovering.

Ramos, G. “Pressure Sensitive Pen Interactions,” https://tspace.library.utoronto.ca/bit-
stream/1807/11121/2/Ramos_Gonzalo_A_200801_PhD_thesis.pdf, a thesis submitted in confor-
mity with the requirements for the degree of Doctor of Philosophy. Gonzalo Ramos performs 
an exhaustive review of the capabilities of uses of pressure in a pen-based system. This review 
includes work both in human capabilities and in uses for those capabilities. An example is a set 
of “Pressure Widgets,” controls that are manipulated by touching them with various levels of 
pressure.
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CHAPTER

26Vertical, Horizontal, 
and Mobile

What does mysticism really mean? It means the way to attain knowledge. It’s close 
to philosophy except in philosophy you go horizontally while in mysticism you go 
vertically.

—Elie Wiesel

DESCRIPTION
We have reviewed some of the important characteristics of a touch system. We’ve 
stressed that it be learnable and that it be suited to its environment. We have dis-
cussed how to achieve those goals and also offered a framework understanding ges-
tures. In this chapter we discuss the effects of input device orientation and size on 
the design of interactive systems.

Multi-touch interaction with a phone is conducted with thumbs and while holding 
the device. Multi-touch interaction with wall-mounted displays is conducted with finger-
tips and arms extended. The physicality of the interaction is clearly different, as is the 
context of use and also the tasks that the user is likely to want to perform. Handhelds, 
e-readers, tablets, booklets, slates, desktops, tabletops, laptops, and wall-mounted dis-
plays each have their own unique affordances, and thus their own ecological niches. 
Correspondingly, software designed for such devices will need to be further tailored to 
account for these factors. A detailed review of all of these differences would require a 
book unto itself. Instead, in this chapter, we will do the next best thing: we will provide 
an overview of the issues, and point the way toward solutions.

APPLICATION TO NUI
We have described in Chapter 2 that the goal of a NUI is to make its user feel like 
a natural. It should be obvious that the orientation and size of the display will have 

http://dx.doi.org/ 
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an impact on the user’s task, and thus they will have a differentiating impact on 
the user’s goals and expectations of how the device will function. This also serves 
to illustrate the point made so explicitly in Chapter 22, that the best software is 
tailored software. Clearly, a screen that is wide will require a different user inter-
face than one that is tall—even more clear is that such screens are likely to be used  
in different contexts, and so require designs that suit their ecological niches, as we 
discussed in Chapter 3.

LESSONS FROM THE PAST
The degree and extent of the work to be done are masked by prior experience with 
the mouse. The cursor-controlled desktop metaphor was well-suited to scaling to dif-
ferent screen sizes and to different (though similar) input devices. Both 8" netbooks 
and 30" desktop displays could be controlled with equal prowess using the separated 
input and display devices and the pointer’s abstract input representation of the user’s 
position. What should be abundantly clear to you now is that, with touch input, this 
is simply not the case. We have voluntarily foregone this convenient separation of 
input from display, and thus we must design the software accordingly. In practice, 
this means understanding important issues of biomechanics, interaction areas, win-
dowing, and chassis gestures, which we will discuss in detail in the design guidelines.

DESIGN GUIDELINES
Biomechanics and Contact Shape
The area with which the user touches the device is dependent on the angle and 
orientation of the user’s finger. The difference in this area for mobile and larger 
screens is rather obvious: mobile devices are typically held in the hands, with the 
thumb being used to touch the screen. Less intuitive is that there is also a difference 
in contact area for vertical and horizontal displays, as we see in Figure 26.1.

FIGURE 26.1

Left: Wherever the user touches a vertical screen, the contact area of the finger is more or less 
constant. Right: On a horizontal screen, targets closer to the user receive a very different contact 
area than targets that are farther away. Contact areas also vary for mobile devices where users 
interact with thumbs and fingers, each with a different contact area.
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This difference in contact area (side of thumb, tip of finger, pad of finger) will 
dramatically affect the targeting accuracy of your device. As such, the screen and 
digitizer should be carefully calibrated to take into account these differences.

Also intuitively varying with screen size are the shape and nature of gestures that 
can be comfortably performed. Touching targets on opposite sides of a handheld 
screen means moving the thumb. Doing this with a large display may mean walking 
from one end of the screen to the other. Further, touching objects at the top of the 
screen is more physically tiring than touching those at the bottom. To the point of 
physical comfort, you should also consider how the user can comfortably interact 
with your software: on horizontal screens, the user is likely to rest her arm on the 
device itself, meaning that false touches may show up in your data stream. With 
mobile devices, she will hold the device in such a way that she can rest her arm on 
her body or surrounding objects. With vertical screens, resting is less convenient, 
requiring the user to return her hands to a desk or to the sides of her body between 
touches.

Interaction Areas and Privacy
Also clearly different are the nature of the display and how the user will interact 
with it. A small, mobile device may be intended for interaction primarily by a sin-
gle individual, held between the hands. As the screen size changes, however, so 
too does the number of users who might be interacting with it. In designing your 
software, consider whether the information is private or public: will multiple view-
ers share the display, or can you assume the individual will use it alone? Take, for 
example, the design of a poker game. For a small, mobile device, one could assume 
that the user’s cards could be shown on screen when it is his turn. For a vertically 
mounted screen, however, the cards should be shown only when other users aren’t 
looking. Of course, a horizontal, tabletop-like screen offers the best of both worlds, 
if you include a gesture that the user can use to hide his cards from other users 
(e.g., the cards are shown only when the user’s hand is sensed in a “karate chop” 
shape above them, which would serve as a natural blind to other users).

Portable screens that can be vertical or horizontal are particularly interesting. 
Ask yourself the question, In what ways should your application behave differently 
if it senses the user has placed the device flat on a table?

Windowed and Non-Windowed
Perhaps the most obvious difference between mobile devices and other display 
types is whether the content should fill the screen or whether it will be windowed. 
One luxury for iOS designers is that they did not have to deal with the issue of hier-
archy: should a drag scroll the content of a window, or should it move the window? 
This issue of hierarchy is perhaps the single greatest issue that affected the design 
of the gesture language for the Microsoft Surface project—and a satisfactory design 
was never developed.
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Chassis vs. Touch Gestures
Mobile devices may not concern themselves with windowed content, but they do 
introduce a whole new class of gestures: chassis gestures. This is the name we have 
given to gestures detected with sensors such as accelerometers, magnetometers, 
and gyroscopes. In the iOS, this is limited to two gestures. The first is simply re-
orienting the device and having it respond by rotating content. What is interesting 
about the iOS is where it forces the user to perform this gesture. On the iPhone, 
if the user is browsing the web with the phone held vertically, when they play 
a video, it automatically starts playing horizontally: the user is forced to turn the 
device. When we stop to consider it, this is a rather bold design—it forces the user 
to change her posture to better suit the content. The second chassis gesture is one 
that is far less often detected: shake to undo. Try typing some text. Made a mistake? 
Shake the device and it will offer you the option of deleting it. This shake to undo 
applies to a rather small set of actions in the operating system (one can’t, for exam-
ple, shake the device to undo deleting an application), so it fails to apply the les-
sons of Chapter 19. Further, there is no mechanism to reveal it to the user, missing  
out on the lessons of Chapters 10 and 20. Nonetheless, it is an example of a class of 
gestures not possible on a nonmobile device.

Must
l	 Consider the primary purpose of the system. The interaction and visual design 

follow from that purpose.

l	 If the system is extended to other environments, avoid altering its primitives. 
If the new environment is incompatible with the fundamental aspects of the 
design, then consider designing a new system.

Should
l	 Be willing to alter parameters of the system to improve its functioning in new 

environments. While the primitives may not change, other elements may. For 
example, if a system was designed on a large system and is now being imple-
mented on a smaller system, consider giving feedback when users approach 
boundaries.

l	 Avoid blending designs that were intended for different environments. A 
blended design often presents an incoherent learning environment for users. 
To them, the system will at best appear inconsistent; at worst, it will seem ran-
dom, or they will assume that it is not working at all when they try something 
that worked in a different context but is unavailable now.

l	 If you must combine different systems, make the modes clear to users.
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Could
l	 Consider how your application should behave differently if it senses the user 

has placed the device flat on a table.

SUMMARY
The form factor of the display is important in that it suggests two very different 
elements that should be considered for design. The first is the ecological niche in 
which the device will be operating (Chapter 3). The second is how the physical-
ity of the device changes the user’s interaction with it, in the same way that other 
properties affect the tailoring of software to hardware (Chapter 22).
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CHAPTER

27The User-Derived 
Interface (UDI)

The best argument against democracy is a five-minute conversation with the average 
voter.
It has been said that democracy is the worst form of government except all the 
others that have been tried.

—Winston Churchill

DESCRIPTION
One seemingly simple approach to creating a “natural” user interface would be a 
democratic one, that is, let the users “define” it. A method of accomplishing this 
would be to show users the various end states that the system offers (i.e., its func-
tionality). We could then show the system in its initial state and ask the user, “What 
would you do to create the end state given this start state?” Distilling the actions 
from many users for each end state, and combining those synthesized actions into 
a complete system, would seem to ensure the creation of a natural user interface. 
This approach of creating a context for users to act and then generating an inter-
face based on their actions has been called the user-derived (or designed) interface 
(UDI). In a gestural-based system, there is a place for UDI, or, as some have called it, 
User-Defined Gestures. It turns out, however, that the scope and applicability of this 
tool is smaller than one might expect.

APPLICATION TO NUI
The UDI approach has been shown to be useful in creating successful interfaces 
that required little or no training. For example, in command systems when users 
were given the task “See that Bill gets the message about the keyboard study from 
Bob,” they would use a small subset of words to achieve that state. Typically, their 

http://dx.doi.org/ 
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responses were “Send this to Bill,” “Mail message 9 to Bill,” and the like. By itera-
tively modifying the command parser, we were able to create an interface that sup-
ported simple mailing tasks (e.g., print, send, forward, delete, file, find). The parser 
included elements such as synonym support and pronoun disambiguation. The com-
bination of these features created a robust system, handling over three-quarters of 
the commands typed spontaneously by users.

This approach would seem a sensible way to create a natural user interface. If 
we could create a successful command system by simply building on what users did 
spontaneously, why not apply the same approach to creating a NUI system? So we 
and others tried it.

LESSONS FROM THE PAST
Wobbrock and his colleagues from Microsoft Research chose the various com-
mands that can be performed with a mouse and keyboard in windows. These 
included moving objects, copying objects, switching windows, and any number 
of other actions. As we described the UDI method, they users images of the inter-
face before, and after the action was performed. They then asked the participant 
what gesture they would use to transit the interface from the before to the after 
state. What they found is surprising to some, but hopefully not to readers of this 
book: there was almost no action that yielded the same gesture in each case. What’s 
worse, users would perform precisely the same gesture in more than one situation, 
and not notice the conflict. The one gesture they did find to be consistently applied 
was manipulation: moving an object a short distance from one place on the screen 
to the other. Users would universally touch the object with one or more fingers, 
and slide their hand along the table. For any other action, at all—the participant 
responses were not the same as one another.

It seems ironic that a UDI method would work well for an abstract command sys-
tem but fail when applied to a NUI system. There are several possible explanations. 
In a command system we made use of a well-practiced skill—typing commands. In 
the NUI the only well-practiced skills that are readily extrapolated from “naive phys-
ics” are actions like moving and rotating. For other actions there is no commonal-
ity. Second, in a command system we could build the commonality incrementally 
over time by modifying the parser. In a gestural system the initial diversity was too 
great. Third (and perhaps most ironic), the fundamental action of a command sys-
tem, typing words, is well understood prior to coming to a new system, and the 
system automatically provides good feedback, that is, characters appear as they are 
typed. In contrast, the primitive actions for a gestural or touch-based system require 
constant feedback. One needs to know that the system is responding as one expects 
it to. After all, the real world works that way. For example, if you stretch a rubber 
band, the band provides continuous feedback. In contrast, the test bed for the NUI 
necessarily provided no feedback while the gesture was being executed. We have 
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taken the failure of the UDI method to produce a natural set of gestures to mean we 
simply applied the methodology to the wrong question. It did give us the incredibly 
valuable result that there is no such thing as a ‘natural gesture’. Beyond this, it is 
clear that later in the process, when the user is presented with a user interface, this 
method can be used to test and iterate on affordances of the design.

A gross overgeneralization would be to conclude that testing users is not a pro-
ductive way to design a NUI system. In fact, testing the system with the intended 
user base is essential. The testing simply needs to be the right sort of testing, com-
bined with the right questions. Ultimately, creating a NUI is not the place for “projec-
tive methods” like UDI or for participatory design approaches. As an entirely new 
way of interacting, elements of the NUI such as affordances and feedback need to be 
carefully designed and rigorously tested. While the UDI was not the right approach 
to defining the NUI, the RITE method worked well. We describe that approach in 
Chapter 29.

DESIGN GUIDELINES
Must

l	 Understand that there is no such thing as a ‘natural gesture’—you need to 
design the set of gestures in your system.

l	 Design teams need to create an overall and detailed vision for the interactive 
system before they begin representing and testing it.

l	 Design teams should test that vision with prototypes of varying degrees of 
fidelity.

Should
l	 When doing such testing, the team should pay more attention to user behav-

ior than user evaluation. Users will often suggest elements of systems they are 
familiar with, such as GUI elements. The temptation to take their words at face 
value should be resisted. Their behavior shows what users need to and can do.

SUMMARY
Creating a NUI requires feedback from users, but the methods need to be carefully 
chosen, and the evaluation of that feedback should be done with care and per-
spective. The UDI method that had worked well to define a command system did  
not work well for the NUI. On the other hand, carefully planned RITE testing did 
work well.
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FURTHER READING
For a discussion of the UDI philosophy, method, and application to command languages, see 
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a look at Friebrink, R. D., and Morris, M. M. Dynamic mapping of physical controls for table-
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CHAPTER

28Lessons in False-Gesture 
Recognition

Abbott: Well, let’s see, we have on the bags, Who’s on first, What’s on second,  
I Don’t Know is on third...
Costello: You don’t know the fellows’ names?
…
Costello: Well then who’s on first?
Abbott: Yes.
Costello: I mean the fellow’s name.
Abbott: Who.
Costello: The guy on first.
Abbott: Who.
Costello: The first baseman.
Abbott: Who.
Costello: The guy playing...
Abbott: Who is on first!

DESCRIPTION
Recognition errors are instances where your software will trigger recognition of a 
gesture where none was intended (which we term false-positive errors), or where 
the user intends to perform a gesture but it is not recognized (which we term false-
negative errors). Creating a gesture language with a high rate of false positives is 
the first mistake made by rookie gesture designers. Here’s an example straight from 
a recent meeting discussing in-air gestures:

“When a user wants to delete something, they should just be able to shake it, and it will 
disappear. That’s obviously the most natural thing.”

http://dx.doi.org/ 
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There are two obvious problems here. The first and most apparent to the now-
informed reader (of Chapter 2 especially) is the misunderstanding of the term “natu-
ral” in NUI—it’s not about what’s guessable or what mimics some other experience, 
but rather what makes the user feel like Michael Jordan while using your system. 
Nothing makes the user feel less like a natural than a false-positive recognition of a 
gesture. This leads us to the second problem: The shaking gesture is likely to have a 
pretty high false-positive recognition rate.

APPLICATION TO NUI
Designing your application/device/platform so that both novices and experts 
feel like naturals when they use your gesture-based system is the goal of a natural  
user interface. As we saw in earlier chapters, this relies on strong affordances 
(Chapter 20) and feedback (Chapter 14) to allow the user to learn a language of 
gestures (Chapter 19). This chapter will discuss a key consideration in building 
your gesture language: reducing false-positive and false-negative recognition of your 
gestures. In so doing, you will ensure that users are successful in conveying their 
intended actions to the system and that the system’s response is as the users expect. 
To accomplish this, you will need to do a great deal of tweaking of your gesture lan-
guage, as well as of your affordances and feedback. Recognizing false positives and 
false negatives will be a key tool in conducting RITE studies to quickly iterate on 
and improve your language (Chapter 29). Our work in this area has been influenced 
by signal detection theory, an area of psychology. Here, we distill its essential ele-
ments and demonstrate how these are applied to building a NUI.

LESSONS FROM THE PAST
False-Positive Recognition
The high false-positive rate for a shaking gesture might seem obvious. It’s pretty likely 
that someone at some point will shake an object simply to draw attention to it, or 
move it and then realize they want to change direction, and trigger a false-positive rec-
ognition. But it’s also likely to be done at other times. Think about the first thing that 
you would do if the system didn’t respond the way you expected. As we discussed 
in Chapter 14, with a touch system, users press harder and repeatedly on the device. 
Guess what—when you add manipulations to the system, they start shaking objects 
on the screen. Consider, therefore, the user experience proposed here: the user has 
just had something happen that she didn’t expect in her application—maybe there 
was a glitch, maybe a moment of a frozen display—but she thinks that she’s not being 
“seen” properly. So she shakes the object. The system’s response? It deletes the object 
that the user was trying to operate on. That’ll teach ‘em.

The last source of false-positive activations is in failures of the gesture recogni-
tion system. The user may be performing what she believes is the correct gesture. 
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Another person watching her do it might also conclude that she is performing the 
correct gesture. But, for whatever reason, the recognizer does not detect it as the  
correct gesture. An astute designer might ask, “What are the other gestures in  
the system, and how likely is it that another of these might get confused for a 
‘shake’ by the recognizer?” Understanding that gesture recognition systems are far 
from perfect will help you to better design your experience. The notion that design-
ers can live in an abstraction created by the platform may have been true in the 
mouse world, but it simply isn’t in the world of touch and gestures: you will have to 
get down and dirty with your recognizer, and manually tweak your gestures using 
the tools and methods we have described.

False-Negative Recognition
All of this worry about false positives might lead you to conclude that you should 
obfuscate your gestures by avoiding those actions that users are likely to take acciden-
tally or are likely to trip the recognizer. “Want to delete an object? Hold an object in 
one hand while tapping out the words to the Canadian national anthem in Morse code 
with the other.” This leads us to the complementary next problem: false negatives.

False negatives occur when the user thinks that he has performed a gesture cor-
rectly, but the system does not recognize it. Note a subtle distinction here: we’re 
not only describing about instances where the user actually has performed a gesture 
correctly, but rather where he believes he has performed it correctly. This can be 
caused by problems with the recognizer, but in our experience, it is far more likely 
to be caused by a user misunderstanding regarding how, when, or where to per-
form a gesture. And it’s the designer’s job to make sure the user knows how, when, 
and where gestures are properly performed.

Tweaking to Balance Recognition
The example of our extreme delete gesture is an obvious case of overcompensa-
tion for false-positive recognition. More subtle examples of tweaking to get it right 
also exist. For example, consider carefully the way scrolling works on the Safari 
browser on the iPhone, as we discussed in Chapter 21: if the user starts scroll-
ing vertically, the system locks in to vertical scrolling, so that as the user’s thumb 
arcs during the drag it won’t trigger horizontal scrolling (try scrolling up with your 
thumb on an iPhone—notice how at the end of the gesture your thumb is moving 
almost completely horizontally? The gesture recognizer is compensating for that). 
The same is true of horizontal scrolling. Start out scrolling diagonally, however, and 
the gesture will not be recognized as either a vertical or a horizontal scroll, and so 
is never locked in to one or the other. What the designers of the scroll language in 
the browser had to get exactly right is the angles at which the recognizer designates 
the scroll as vertical, horizontal, or neither. Neither of the authors was there, but no 
doubt this was done through extensive user testing to tweak these values. Evidence 
of this tweaking is evident in a subtle difference between horizontal and vertical 
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scrolling: Scroll a little bit vertically, and the recognizer locks in immediately (the 
“recognition” phase ends and moves on to the “continuation” phase of specifying 
how much to scroll, to use the parlance of Chapter 18). Try scrolling a little verti-
cally and then switch to horizontally, and it’s no dice: you’re locked in. This isn’t 
true in the case of horizontal scrolling, however: start sliding your finger horizon-
tally, and then switch direction to a vertical scroll. Unlike vertical scrolling, if you 
scroll a little bit horizontally, you can still switch to vertical scrolling. The recogni-
tion phase for horizontal is longer.

This asymmetry is obvious evidence of tweaking. It’s likely that the designers 
and researchers at Apple discovered that users sometimes move a little horizontally 
before they start to scroll diagonally or vertically, most likely when scrolling down 
with the thumb, and so lengthened the recognition phase to prevent a false-positive 
detection of horizontal scrolling.

User Guessing and Learning
As we have described, rookie designers tend to overemphasize making gestures 
“guessable,” hoping to reduce false negatives by making it likely that a user will 
guess right every time. As we described in detail in Chapters 17 and 19, the goal of 
a NUI designer is to create a set of gestural primitives that is learnable and, through 
scaffolding (Chapter 10) feedback and affordances (Chapters 14 and 20), guide the 
user to perform them correctly.

Thus, your goal in addressing user guessing and learning is not to try to make 
your gesture language guessable without help. Instead, your goal is to create an 
internally consistent set that can be applied again and again when prompted by 
appropriate affordances and guided with appropriate feedback.

Pruning your Gesture Language
Another likely cause of false recognition (positive or negative) is a gesture lan-
guage with too crowded a gesture space. An example of this can also be found in 
the iPhone’s delete gesture (hold on, now, iPhone zealots: you knew that eventually 
we’d point out some flaws). In our experience, only a subset of iPhone users knows 
about the delete gesture. In some lists, such as the list of e-mail messages in the mail 
client, the user can slide her finger horizontally across the message in the list and 
a little “delete” button will pop up. The user can then tap the button to delete the 
message.

It is clear that the delete gesture suffers from both false-positive and false- 
negative user errors. The case of false-negative errors is easy to see: many iPhone 
users complain that, despite a great deal of practice, they can never quite “get” the 
delete gesture. This is because the angle at which delete is recognized (vs. a scroll) is 
very narrow—slide your finger up even a little and the system recognizes the action 
as a scroll, and the delete never triggers. This is evidence of a dense gesture space in 
this case: vertical scrolling has been assigned so much of the range of angles in the 
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gesture space that there is very little room left for the delete gesture. It may also be an 
example where tweaking was done to reduce false-positive recognition of delete.

The case of false positives is equally obvious to the trained designer of gesture 
systems: The fact that there is a delete button at all reflects a belief that this ges-
ture is likely to be performed accidentally, and so a confirmation step was added. 
Another aspect to consider is called “proportional effect.” When something large 
or decisive occurs, the gesture for it should be proportionately large or decisive.  
A two-phase gesture fits the bill nicely.

That there is so much evidence for false-positive and false-negative recognition 
of the delete gesture makes it somewhat remarkable that it was included at all. The 
case in its favor, however, is an obvious one: with sufficient practice, users are 
eventually able to perform this gesture with few errors (as has been the experience 
of one of the two authors). This means that the expert user will feel like a natural, 
one goal of a NUI. Where the delete gesture fails as a design element, however, is 
in the novice users who are not able to perform the gesture correctly. Chapter 20 
provides details about how novices and experts can both be supported in a gestural 
system.

Inconsistent Gesture Languages
An obvious source of false recognition is when gestures are inconsistently available. 
Picking again on the iPhone’s delete gesture, consider its inconsistent use. There are 
many lists that a user encounters when using the iPhone. Considering just a few of 
the built-in applications, the user will see lists of e-mail messages, cities for which 
they are configured to see the weather, songs, artists, albums, videos, bookmarks, 
and the home screen itself (a 2-D list). While each of these is a list, only a subset 
of them use the delete gesture. Want to delete an e-mail or video? You can happily 
swipe to the right and press the button. Want to remove a city from your weather 
app or delete a song from your music library? Your one-finger swipe to the right will 
get no response at all. Want to delete an application from the home screen? Your 
one-finger swipe will instead change the page.

An engineer might argue that the recognizer running in the weather, music 
browsing, and home screen applications simply was designed to not recognize the 
gesture; therefore, no such error has occurred. To an informed designer of a NUI 
system, however, this inconsistency is an example of false-negative recognition. The 
user believes that she has performed the gesture correctly, but the system has not 
recognized it. Worse still, the system doesn’t give any feedback saying, “Yes, I see 
this gesture, but you can’t do that here.” It just sits there, inert. This leads us to our 
next topic: superstitious behavior.

Superstitious Behavior
Another reason that a user might not “get” the iPhone’s delete gesture is one that 
seems to come from the users themselves. In our observations, users seem to 
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consistently develop the superstitious belief that the gesture is somehow speed-
based—that it’s not enough to slide their finger horizontally; they also have to do it 
quickly. You might even believe this yourself. It’s not true! Slow down! You will be 
more accurate and have fewer false-negative recognition errors.

We guess that this behavior comes from previous false-negative errors caused by 
other sources: users try it once, and a false-negative error occurs because they slid 
a little too much vertically. The next time they try it, they speed up, and it works—
not because they went faster, but because they actually had the angle right this 
time. Because they know that they sped up, but didn’t notice the change of angle, 
they attribute the accurate recognition to the change in speed.

As we described in detail in Chapter 14, superstitious behavior is the enemy of 
a designer of touch and gesture systems, and learning is her friend. In this case, the 
reason is obvious: moving too quickly makes it more likely that the user will input at 
the wrong angle and experience a false-negative recognition. The next time around, 
designers of the iPhone might ask themselves, “How can we get users to slow down 
when they are entering the delete gesture?” Understanding the difference between 
false negative and false positive errors, and the different causes of each we have 
described, will help you in designing your gesture language. Any time you observe 
an error in performing a gesture, classify the error in this way, and then apply the 
guidelines in this chapter to tweak or redesign your user experience.

DESIGN GUIDELINES
Must

l	 The question “Will the user guess this?” is a fine place to start, but it’s definitely 
not where to stop. Ask this question, but make sure to do it rarely, usually for 
tweaking your feedback and affordances. This is not normally the question to 
be asking when defining the gesture primitives themselves.

l	 Consider both the false-positive rate and false-negative rate of your gestures. 
False positives occur because the actions of a user too readily resemble some 
unintended gesture in your language. False negatives occur because the preci-
sion with which you have constrained the allowed gesture is too narrow.

l	 Develop a good understanding of the recognizer for which you are building 
your natural user interface.

l	 Build affordances and feedback that teach users what gestures to perform (as 
explained in Chapter 20); then give them good feedback on their performance 
to continually improve (as explained in Chapter 14).

l	 Avoid the use of gestures that overlap with one another in a dense space—this 
is likely to generate a lot of cross talk where one gesture is falsely negatively 
recognized and another is falsely positively recognized.



217Further Reading

Should
l	 Even better than understanding the recognizer is having the developers who 

are building it working together with the designers who are building the UI (or 
having them be the same person!).

l	 Aim for consistency in the cause (affordances) and effect (recognition and sub-
sequent action) of your gestures. Avoid the iPhone delete mistake by avoid-
ing modality. Ensure that all similar items (like lists) can have the same actions 
applied (like delete).

l	 If a gesture does not actually make sense in the context (e.g., you don’t want 
users to delete music using the iPhone, but rather to delete it on the PC in 
iTunes), make sure you still recognize the gesture and give feedback. That feed-
back should say to the user, “Yes, I see that you performed that gesture, but 
that won’t work here. And here’s why.”

Could
l	 Consider using only manipulation-based gestures, imitating naive physics, 

without gestures that get “recognized” at all. As we saw with the iPhone exam-
ple, however, even manipulation-based gestures need a little recognition at 
times to tweak and compensate for physical effects, like the arc of a thumb’s 
movement.

SUMMARY
False recognition of gestures, positive or negative, is the bane of a user’s interac-
tion with a gestural system. It makes the user more hesitant and less trusting and, 
worst of all, encourages the development of superstitious beliefs about the function 
of the system. Understanding and reducing false recognition are a key to the suc-
cess of a touch and gestural system. While this may seem easy, the world is replete 
with examples of systems where this was not done well (yes, we claim that even 
the iPhone has moments where it does not achieve this as well as it could). Perhaps 
most important is that you avoid the mistake of a rookie designer—focusing too 
much on false negatives at the expense of making false-positive errors more likely. 
The goal is to balance and reduce both.

FURTHER READING
Wickens, T. D. (2002) Elementary Signal Detection Theory. New York: Oxford University Press. 

The notion of false-negative and false-positive detection has been presented in any number of 
domains. In signal detection theory, a construct in psychology, a false negative is a “miss” and 
a false positive is a “false alarm.” Wickens’ text provides an in-depth introduction to the space.
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CHAPTER

29RITE with a Purpose

We all have a few failures under our belt. It’s what makes us ready for the 
successes.

—Randy K. Milholland, Midnight Macabre, 10-18-05

DESCRIPTION
The RITE (Rapid Iterative Testing and Evaluation) method is uniquely suited to 
the design and development of touch and gestural interfaces. Touch and gestural 
interfaces lack the conventions of more traditional interfaces like the GUI. They 
also must meet a higher bar; that is, they must feel natural and fun and encourage 
the learning of a new interaction paradigm. Making an interface “natural” requires 
more research effort and design thinking than making an unnatural interface (e.g., 
a logical but arcane command system) or mimicking a conventional interface like 
the GUI. Given these challenges and the perpetual commercial requirement to make 
progress quickly, the RITE method is a natural choice.

APPLICATION TO NUI
The RITE method has been applied to two core challenges in creating the a NUI 
interface using touch and gesture. The first challenge was what feedback and feed-
forward should we provide to communicate the metaphor effectively. The second 
challenge was what metaphor should be chosen for the interface.

LESSONS FROM THE PAST
Historically, the challenge of creating or choosing a metaphor for the NUI has been 
relatively clear. One element of the GUI that contributed to its success was the 

http://dx.doi.org/ 


220 CHAPTER 29  RITE with a Purpose

desktop metaphor. In the GUI, the computer screen became like a desktop. A pre-
sentation of documents on the screen was analogous to the way they might appear 
on a desk. For example, one could “open” folders on a desk and see the documents 
inside. On a physical desktop one could open a document (e.g., turn over the 
cover page) and then interact with it—making notes of changes, highlighting sec-
tions, adding comments, and the like. In the “metaphorical desktop” one opened a 
document and then could interact with it—making changes, highlighting parts, and 
adding comments. When confronting a NUI, the first question is “What metaphor 
should we employ that will appear natural and enhance learning?”

The challenge of creating a successful metaphor for a NUI can be divided into 
two parts. First, do the design elements of the system communicate the metaphor 
to the users? Second, does that metaphor make sense to users, helping them learn 
the system while retaining their enthusiasm for it? Historically, the RITE method has 
been applied to the problem of refining a design so that users will be able to com-
plete tasks more easily and enjoy the system more. It does this by quickly uncover-
ing problems that users have and generating fixes for subsequent testing. It has a 
similar function when applied to a metaphor for a system. That is, it allows the team 
to refine the elements of the design so that they more effectively communicate the 
metaphor. As the system evolves and the metaphor is effectively communicated, the 
second challenge becomes paramount, that is, does the metaphor help users learn 
and like the system? This second challenge requires some additional RITEs, that is, 
that users’ understanding of and preference for a metaphor be assessed. Assessing 
understanding and preference is best done by comparing metaphors.

In a set of RITE tests for Microsoft Surface, the goals of refining the designs 
and assessing users’ understanding and preferences were undertaken. Using a set 
of guiding principles that had been developed for the Surface product, the design 
team explored a large number of possible metaphors, which were narrowed down 
to three. These metaphors were “magnet,” “sphere,” and “unfold.” The magnet met-
aphor was based on the idea of a magnet board in which placing physical objects  
on the surface created virtual objects and activated functions. In the sphere meta-
phor, the interface was depicted as open space with a series of spherical objects in 
which the primary interaction was dragging elements out of their sphere (orbit). In 
the unfold metaphor, the interface was depicted like a magazine foldout in which 
the users could unfold content.

Refining the interface took a traditional RITE approach. That is, changes were 
made as problems were uncovered. However, the changes were directed not only 
toward the goal of increasing performance on the task but also at making the meta-
phor clearer to users by removing confusing elements and increasing the salience 
of elements that supported the interface. Throughout the testing, we collected user 
descriptions and ratings of the individual metaphors.

The magnet board and sphere were both better understood and preferred as 
compared to unfold. We also found that each of those two metaphors had different 
strengths. The sphere metaphor was better for navigation, and the magnet board 
metaphor was better for interaction within a document. As a result, the team syn-
thesized the two metaphors
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DESIGN GUIDELINES
The success of a modified RITE approach to the design of the NUI for Microsoft 
Surface suggests that it would be an effective approach for any team developing a 
NUI.

Must
l	 First and foremost, any team considering a RITE test needs be aware of the fac-

tors that make RITE effective:

l	 It must be technically possible to make changes quickly.

l	 Team members must be present for tests.

l	 Team members must be empowered to make decisions and committed to 
improving the interface.

l	 Second, when applying the RITE method to refining and choosing a metaphor 
for a NUI system:

l	 As a lead up to the RITE tests, the design team must create a large number of 
possible metaphors and designs.

l	 More than one metaphor must be tested.

l	 Understanding and preference data need to be collected throughout the test.

l	 The goal must be clear. Unlike a “traditional” RITE test, where the goal is to 
make the interface better, in this case the goal of the RITE is to choose the 
best metaphor.

Should
l	 In choosing metaphors to test, teams should choose the most distinctive meta-

phors. This will enable test participants to give better feedback and increase 
the opportunity of the team to learn.

l	 Each interface should be “rigorous” in its representation of the metaphor. This 
means that the interface should not be a compromise. The team should go so 
far as to retain elements that they think may be suboptimal in order to faithfully 
depict the metaphor.

l	 Initial tests should be directed at refining the metaphors. The goals of this 
refinement are to remove obstacles to interaction and to more clearly depict 
the metaphor.

l	 Metrics for comparison should be chosen before the tests and assessed 
throughout.

l	 Opinion questions should be used to understand the users’ thinking.
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Could
l	 Teams can segment the RITE test. That is, they can iterate in the early stages 

and then lock the interface halfway though the tests.

l	 The quantitative and qualitative data regarding the interfaces can be collected 
throughout, but the team may choose to focus on the data collected after the 
interface was “locked down.”

SUMMARY
The choice of a metaphor for a NUI system is both important and challenging. RITE 
testing provides a way to refine the design of the interface so that it better con-
veys the underlying metaphor. In order to choose a metaphor, RITE testing needs to 
be complemented by a quantitative evaluation of user preference for the interface 
and by a set of qualitative open-ended questions that allows the team to assess user 
understanding of the metaphor.

FURTHER READING
The RITE method describes an approach to rapid iteration of designs. It is widely practiced and 

consistently shows measurable improvement in usability of products. The original description 
of the RITE method is contained in Medlock, M. C, Wixon, D., Romero, R., and Fulton, B. Using 
the RITE Method to Improve Products: A Definition and Case Study. Presented at the Usability 
Professional Association, 2002, Orlando, FL. Several examples are presented in Medlock, M., 
Wixon, D., McGee, M., and Welsh, D. (2005) The Rapid Iterative Test and Evaluation Method: 
Better products in less time. In Bias, G., and Mayhew, D. (eds.) Cost Justifying Usability, 
pp. 489–517. San Francisco: Morgan Kaufmann.

Hofmeester, K., and Wixon, D. Using Metaphors to Create a Natural User Interface for Microsoft 
Surface. Conference on Human Factors in Computing Systems. Proceedings of the 28th 
International Conference on Human Factors in Computing Systems, Atlanta, GA, pp. 4629–4644, 
2010.
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CHAPTER

30A Word About Engineering

The future ain't what it used to be.
—Yogi Berra

DESCRIPTION
Bringing a new human-computer interaction paradigm to life is no easy task. The 
history of innovation is littered with products that were “ahead of their time." Often 
these “failed" innovations contained a number of innovative attributes that found 
their way into subsequent successful products. Alternatively, these innovations 
were successful in niche markets but did not reshape an entire industry. Some sim-
ply failed and were forgotten.

In a sense, NUIs stand at a crossroads, and three possible options loom ahead. The 
first option is that NUIs will become the next paradigm for how people interact with 
computers. The second option is that NUIs succeed in niche markets. These niches may 
be large or small. The last option is that NUI elements get incorporated into existing 
products with varying degrees of success. To refer to these alternatives succinctly, let’s 
call them dominant, niche, and assimilation. Our hope is that NUIs will be dominant and 
replace the GUI. But NUIs may only thrive in niche markets. Finally, assimilation would 
indicate the “death” of the NUI as a type of HCI and its rebirth as a facilitator of other 
dominant forms. In this scenario, the NUI could be a facilitator of the GUI.

Of these three outcomes (dominant, niche, assimilation), which one is most likely? 
One way to anticipate the future is to look at the past. Although this may seem like 
looking into a rear view mirror to see where you are going, it can be instructive. 
Examining the past becomes instructive when we extract some principles that we can 
apply to the future. These principles can be enriched if we also examine some con-
crete examples. Finally, which past should we consider? Probably the best place to 
look is the near-term history of HCI. If we look at the near-term history of computer-
human interaction, three interface paradigms are instructive. The first is the GUI. The 
second is the World Wide Web. The web presented its own browsers, search engines, 
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and hypertext links. The final paradigm is computerized gaming. The latter may seem 
an odd choice, but the computer gaming industry is huge and diverse. Gaming con-
soles represent state-of-the-art hardware. In many respects, gaming interfaces employ 
cutting-edge interactive approaches and represent an instructive if heterogeneous set 
of interaction techniques.

When we look at the recent history of HCI we need to take a holistic view. 
Technologists tend to focus narrowly. They would focus exclusively on Moore’s 
law. While the ever-increasing power of computing is an important determinant of 
what made the GUI, the web, and computerized gaming possible, there are large 
social, economic, and cultural factors and trends that determined their relative dom-
inance. In addition to these factors and trends, we need to consider some specific 
elements of the GUI products, web interfaces, and games. These specific elements 
enabled exemplary products not only to become widely used but also to become 
the dominant mindset in HCI. In fact, it is the combination of increasing computer 
power (with reduced cost), large social, cultural, and economic trends, and unique 
element design that has made computing a dominant force and shaped the ways we 
interact with this technology.

LESSONS FROM THE PAST
What are the dominant trends and design elements that have shaped HCI over the 
past 60 years and that will determine the success of the NUI?

First, computing power will increase and become cheaper. This will drive the 
computer industry to seek more diverse markets. The quest for new markets opens 
the space for new HCI paradigms and was one of the key drivers of the broad adop-
tion of the GUI paradigm. Computer companies knew that costs were coming down 
and that they needed to broaden their market to a mass market. Ease of learning and 
use were significant barriers to widespread adoption of the GUI, the World Wide 
Web, and computer games.

However, lowered costs also facilitated the evolution and adoption of a number 
of niche technologies and interfaces. For example, laser scanners were adopted in 
retail and deskilled retail work to the point that customers are now asked to per-
form the retail work for their own transactions. For example, ATMs employed a 
menu interface of limited choices and thereby enabled 24-hour banking at lower 
costs; provided you wanted to be your own teller. But menu interfaces did not 
become the new paradigm of HCI. Similarly, laser scanning did not emerge as the 
technological base of new millennium human-computer interaction. They were 
highly successful in their niches, but they stayed confined to these niches.

Second, the form factors of computing changed. The original mainframe with its 
limited interface gave way to time sharing, which provided more flexibility. Time 
sharing was supplanted by PCs. The form factor of the PC was very well suited to 
office work. In many ways its keyboard and screen mimicked the typewriter of the 
time and thus fit naturally into the office environment. However, a well-adapted 
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form factor would not have been sufficient to induce a paradigm shift. Instead, a 
family of applications emerged that were well suited to office work. Most office 
work consisted of dealing with documents in one form or another and keeping 
track of money. Hence, word processing and spreadsheet applications adopted the 
GUI paradigm and made office work accessible to “the rest of us." This combination 
of form factor and applications that could do economically useful work drove broad 
adoption of the GUI, and it became a dominant mode of interacting with computers.

Third, the world was shrinking and becoming more interdependent. Commerce 
was becoming international. Communication became global. Time and distance 
between people shrank. In that fertile environment the World Wide Web flourished. 
Prior to that, the basic technology of the Internet was a comparatively obscure 
DARPA (Defense Advanced Research Projects Agency) project that was intended to 
create a computing and communication network that could survive a nuclear holo-
caust. Connecting computers and giving them a simple way to exchange informa-
tion provided the technological underpinnings of the World Wide Web. Supplement 
that with a simple way of accessing information (click a link) and the fact that such 
information could take any form (text, images, videos) and you have the formula for 
increasing the diversity of people producing information and those consuming it. 
Mix in the first factor of more power and lower cost (for every base technology—
information, richness of information, low cost storage, and easy transfer), and you 
have a recipe for widespread use and adoption.

Fourth, the GUIs actually assimilated interface elements from other systems and 
incorporated useful features that propelled them to dominance. Menus were not 
new. They solved the problem of remembering and reproducing a large number of 
commands and memorizing an elaborate syntax of commands and their qualifiers 
and elements. Combined with dialog boxes, they made functionality accessible. But 
the dominant GUI systems also eliminated the gap between input and output and 
reduced the gap between screens and printing.

APPLICATION TO NUI
What do these four trends—more computer power at lower cost, an emergence and 
proliferation of form factors, the shrinking of time and distance, and the tendency of 
new paradigms to borrow from other models—mean for the NUI paradigm?

First, the trend of ever-shrinking costs and ever-increasing power of the com-
puters will not simply make NUIs possible; it will drive their broad adoption. The 
computer industry will seek to entice more people to use more computers to do a 
wider range of activities. Many of these people do not work in offices, sit at desks, 
and produce documents and spreadsheets. The industry will create offerings that 
fit with the environments they work in and the things they need to do. These envi-
ronments and activities will transcend the domain of the typical GUI, that is, office 
work. These new offerings will have to provide a quick and seamless transition from 
novice to expert. People will expect them to be intuitive, efficient, and enjoyable.
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Second, emerging form factors will need to be streamlined and simple. They will 
be without mediating devices like mice and keyboards. They will fit into their con-
texts naturally. We are already seeing this trend with book readers like the Kindle 
and touch platforms like the iPad. Similarly, form factors for entertainment devices 
will diversify, and with that diversification will come a broader range of apps 
appealing to a broader range of users. A few years ago the idea that folks in retire-
ment homes would be playing computer games seemed far-fetched. But a platform 
that provided a more natural way of interacting—the Wii with its gestural inter-
face, combined with some appealing games such as bowling—was very appealing 
to people who retained their passion for bowling despite some minor but critical 
infirmities, for example, the loss of grip strength. These and other NUI platforms 
and accompanying applications will gain wide and unanticipated popularity because 
they will make use of a wider range of human capabilities and modalities than tra-
ditional interfaces and will compensate for infirmities of the same that preclude 
unassisted play and use. In these contexts the NUI plays an interesting role: It must 
retrain the “fun” of the interaction while removing the constraints. The success of 
the Wii is proof that this is possible.

Third, the World Wide Web with its proliferation of information and entertain-
ment and its widespread distribution drives adoption of NUIs. Information exchange 
comes in many diverse forms, from farmers in third-world countries checking com-
modities on their cell phones to commuters watching videos as they ride high-speed 
trains. One hardly needs a mouse and keyboard to consume information or to be 
entertained. Simple, natural, and direct interfaces not only will fill the need, but also 
are easier to learn, more flexible to use, and more fun than traditional interfaces.

Finally, successful NUIs will borrow from existing interfaces. Such borrowing 
will have certain characteristics. First, it will morph beyond easy recognition. The 
GUI adopted menus as a way of making choices, but these menus bore little resem-
blance to the previous menus. There were many more of them. They used a new 
input device—the mouse. They were always present and did not represent a “mode." 
In short, they looked and acted nothing like the menus of the previous systems such 
as the WANG word processor or the IBM display writer. Indeed, only a student of 
HCI would see the logical similarity between menus at an ATM and the menus of 
Microsoft Office. Similarly, choosing functions in a NUI may be logically equivalent 
to menus in a GUI (or any other system, for that matter). In other words, they allow 
a choice of functions without relying on recall memory, but their form, their activa-
tion, and their behavior could and should be different. Making them like a GUI menu 
simply recreates a GUI with a different (and less efficient) input device. Just as it 
would have been nonsense for the GUI to copy the menu of an IBM display writer 
it would be insanity for a NUI to reproduce the GUI. Similarly, activating items by 
touching would seem to make sense for a NUI, but to make that the default action 
would render NUIs merely the web interfaces with a different (and less efficient) 
pointer. Instead, a responsive system that shows affordances and leads the user to 
the next logical step is a true NUI. That next logical step may be one of several, but 
to the user the choice and its implications will be clear. A true NUI will not produce 
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frustrating cul-de-sacs so common on the web. It will also avoid the long searches for 
the location of the intended action common to the GUI. A true NUI will not leave its 
users wondering what the advantage of the NUI is over and above a GUI.

SUMMARY
Our bias (or aspiration) is clear. We hope and expect that NUIs will become the 
dominant form of human-computer interaction over the next few years. The realiza-
tion of that hope will depend on the pioneers who create innovative NUIs and the 
settlers who build on those ideas and designs in a practical and compelling way. 
Our intent in writing this book was to facilitate that process. We don’t underes-
timate its difficulty. That is why we did not write a “NUI for dummies” or imply 
that one could create a NUI by following a simple 10-step process. Instead, we’ve 
provided a variety of essays on the NUI and grounded these essays in specific rec-
ommendations. We do provide an overarching broad process that is outlined in  
Figure 1.1 in Chapter 1. Here our aim was to segment and structure the challenge 
of creating a NUI. We also provided a general flow for approaching the creation of a 
NUI. Both the structure and the process flow emerged out of our struggles in creat-
ing NUIs. While we don’t dwell on the mistakes we made, our concrete recommen-
dations and abstract reflections emerge from them.

In the end, we implore you to do two things. Learn from us. Apply our learnings 
to your challenges and build on or transcend what we have said. Second, share what 
you have learned. Ultimately the fate of your efforts, be it a commercial product, a 
research effort, or a platform, and the fate of the NUI in general will depend on you.
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biomechanics, 200, 200f
contact data, 192
fat fingers, 74f, 75–76, 80, 85
pressure, 193–194
SimPress technique, 194f

Contact data
application, 189–190
basic considerations, 189
design guidelines, 192–193
harpsichord example, 191, 191f
hover, 193
multi-touch systems, 190f

pressure, 193–195
real-world advice, 197
requirements, 195
SimPress technique, 194f

Contact differentiation, input capability, 171–173
Contact point

contact data, 190
fat fingers, 80
second finger touch, 183
touch, 171
user design, 185

Contact sensing, device comparison, 170f
Contact shape, multi-touch systems, 200–203
Contact Visualizer

characteristics, 87, 87f
fat fingers, 74f
feedback, 88

Content
contextual environments, 28–29
feedback error, 85
scaffolding concept, 55
social NUI design, 41
super realism, 49

Contexts, see also Environments
affordance, 30
characteristics, 28–30
design guidelines, 31–32
design/research questions, 27–28
NUI elements, 29
user differentiation, 59–61

Continuation phase
gesture ambiguity, 132
gesture design, 134
as gesture stage, 127, 127f, 128t
self-revealing multi-touch gestures, 151

Continuous hover, contact data, 193
Continuous pressure, contact data, 194–195
Control elements

contextual environments, 29, 32
ecological niche, 18
error sources, 85
fat fingers, 74, 75
feedback visualization, 91, 93f
interaction at distance, 86
MDA, 114
platform knowledge, 167–168
primitives, 116, 116f, 118–121
scaffolding, 56
seamlessness, 45
social NUI, 41
spatial NUI, 34
super real, 48
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Control hotkeys
example, 147f, 148f
and gulf of competence, 146–148
learning curve, 148f

Copy gesture
ambiguity, 129, 129t
classification, 130
engineering issues, 226–227
touch vs. in-air gestures, 102

Coupled tasks
contextual environments, 28–29
scaffolding, 56
social NUI, 40, 41
spatial NUI, 35

Crossing, primitive design, 119–120, 120f
Crossy, 121
Cursor position, mouse feedback, 83

D
Delete gesture

ambiguity, 128, 131–133
classification, 130
false-gesture recognition, 213–214
gesture language pruning, 214
inconsistent languages, 215
iOS, 135f
iPhone, 134t
stages, 129t
superstitious behavior, 216

Delivery promises
application, 177
definition, 177
design guidelines, 179–180
historical perspective, 177–179

Demonstration environments, definition, 28–29
Desktop metaphor

interface evolution, 3–4
and RITE method, 220

Direct-touch systems
display properties, 174
feedback, 81, 89–90, 92
multiple capture states, 86
number of contacts, 184–185
social NUI, 41
and spatial memory, 10
state-transition model, 65, 66f
tracking state emulation, 69

Discoverability, scaffolding concept, 56
Discrete hover, contact data, 193
Discrete pressure, contact data, 194–195

Display properties, input capability, 173–174
Divide and conquer, definition, 40
Dots per inch (DPI), display properties, 173–174
Double-click, as primitive, 121–122
DPI, see Dots per inch (DPI)
DT Mouse, state-transition model, 69–70

E
Echo feedback, vs. semantic feedback, 83
Ecological niche

computing history, 15–17
lessons from past, 18–19
and NUI, 17–19
PC sales, 16f

E-mail
gesture language, 214–215
iPhone gestures, 134t
social computing, 39

Englebart, Doug, 177–178
Entry primitive, definition, 120–121
Environments, see also Contexts

affordance, 30
design guidelines, 31–32
design/research questions, 27–28
NUI elements, 29
spatial NUI, 33–34
super realism, 50
2-D planar space, 35
types, 28–29

Errors
clutch reserving, 101
in-air gestures, 98–99, 102
multi-step gestures, 128–129
scaffolding concept, 57

Error sources, feedback
accidental activation, 85–86, 88–89
activation, 85
activation event, 85, 88–89
basic considerations, 84–88
fat fingers, 85, 89
interaction at a distance, 86, 89, 90–91
Microsoft Surface Contact Visualizer, 87, 87f
multiple capture states, 86, 89
nonresponsive content, 85, 88–89
overcaptured state, 89–90
physical manipulation constraints, 86, 89,  

90–91
stolen capture, 86–87, 89
tabletop debris, 87, 91

Escape primitive, definition, 120–121
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Escape technique
example, 78f
fat fingers problem, 77–78

Ethernet, social computing, 39
Expert users

Alt hotkeys, 149
chess mechanics, 112
contextual environments, 28–29
Control hotkeys, 147
marking menu system, 149–150
primitive count, 122
primitive sets, 121–122
scaffolding, 53
super realism, 50

Exploration
scaffolding concept, 53–54, 56
super real NUI, 50
UI language, 124

F
False-gesture recognition

application, 212
balance, 213–214
basic considerations, 211–212
design guidelines, 216–217
false-negative, 213
false-positive, 212–213
gesture language inconsistencies, 215
gesture language pruning, 214–215
historical perspective, 212–216
superstitious behavior, 216
user guessing and learning, 214

False negatives
basic considerations, 213
clutch, 101
definition, 211
gesture language inconsistencies, 215
gesture language pruning, 214–215
guessing/learning, 214
superstitious behavior, 216
touch vs. in-air gestures, 98–100

False positives
basic considerations, 212–213
clutch, 101
definition, 211
gesture language pruning, 214–215
gesture system flow, 160
mouse click, 117–118
touch vs. in-air gestures, 98–100, 102

Fat fingers problem
application, 73–74

basic issue, 73
control size, 75
design guidelines, 75–79
Escape technique, 77–78, 78f
feedback error, 85, 88–89
finger/object interactions, 77f
historical perspective, 74–75
iceberg target technique, 76–77, 76f
land on technique, 77–78
real world example, 79–80
user perception, 75–76

Features
DT Mouse project, 69–70
scaffolding concept, 55–56

Feedback
ambiguity problem, 84
animation visualizations, 89f
application, 82–83
basic considerations, 81–82
contact visualization, 90f
design guidelines, 88–95
echo vs. semantic, 83
error sources

accidental activation, 85–86, 88–89
activation, 85
activation event, 85, 88–89
basic considerations, 84–88
fat fingers, 85, 89
interaction at a distance, 86, 89, 90–91
Microsoft Surface Contact Visualizer, 87, 87f
multiple capture states, 86, 89
nonresponsive content, 85, 88–89
overcaptured state, 89–90
physical manipulation constraints, 86, 89–91
stolen capture, 86–87, 89
tabletop debris, 87, 91

false-gesture recognition, 216
Freddy Krueger effect, 91
gesture design, 134
historical perspective, 83–84
lag, 92, 93f, 94f
multi-touch example, 90f
scaffolding concept, 56
and seamlessness, 45
social NUI design, 41
superstitious behavior, 83–84
tethers, 92f, 93f
touch visualization states and transitions, 88f
unexpected responses, 82t

Finger/object interactions, fat fingers problem, 77f
First-person shooter (FPS), fat finger problem, 74
Flick gesture
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ambiguity, 128, 133
example stages, 129t

Foreshadowing
contextual environments, 30
scaffolding concept, 55

Freddy Krueger effect, definition, 91
FUI, see Fun user interface (FUI)
Function-click, as primitive, 121–122
Fun user interface (FUI), vs. GUI, 17

G
Game play

contextual environments, 28–29, 31
designing for users, 185
ecological niche, 17–18
engineering issues, 224, 226
fundamental considerations, 180
game vs. NUI interfaces, 24
gesture language properties, 139–140
MDA, 107–108, 110, 113–114
multi-touch as multi-cursor, 197
platform knowledge, 168
seamlessness, 43–44
social NUI, 37
spatial NUI, 33–34
touch vs. in-air gestures, 98
user differentiation, 60
Wii, 174

Gestural user interface, development, 145
Gesture language

application, 138
community, 143f
commutativity concept, 142–143
definition, 137–138
design guidelines, 143–144
historical perspective, 138–143
identity concept, 139–140, 140f
inconsistencies, 215
negation concept, 140–141, 142f
pruning, 214–215
reciprocal concept, 141
reversibility concept, 141f

Gestures
ambiguity, 128–134
ambiguity solutions, 131–133, 133f
application, 128
classification, 130, 131f
design guidelines, 134–136
example implementation, 129
example stages, 129t
iPhone, 132t, 134t

multi-step problems, 128–129
self-revealing, see Self-revealing gestures
stages, 127, 127f, 128t
states and phases, 130f
super realism, 48f, 49
UI as language, 124

Gesture systems, mode and flow model
application, 157–158
definition, 157
design guidelines, 163–164
flow action tweaking, 162–163, 163f
flow options, 160
Safari gesture language, 158–163, 159f
splitting/combining modes, 160–161, 162f

Graffiti text input language
description, 12
example, 12f

Graphical user interface (GUI)
checkbox example, 119f
commutativity, 142
computing history, 3–4
contextual environments, 29, 31
desktop, 5
ecological niche, 16–18
element size, 73
evolution, 177–178
gesture language properties, 138–139
land on, 77
MDA development, 114
mouse-based, 85, 117–118, 170–171
NUI engineering, 223
number of contacts, 184
RITE, 219–220
scaffolding, 54
simplicity, 23, 25
social computing systems, 37–38, 41
“space” concept, 34
super real, 48
traditional models, 33
UDI, 209
WIMP, 4, 67, 71, 86, 119, 121–122, 124, 182

Gulf of competence
Alt hotkey, 149f
avoidance, 152
and Control hotkeys, 146–148
definition, 147
learning curve, 148f

H
Halo, 74–75
Hand gesture, states and phases, 130f
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Hardware platforms
computing history, 18
contact data, 189
ecological niche, 15, 17–18
number of contacts, 181–182

Harpsichord, contact data studies, 191, 191f
Hawkins, Jeff, 11
HCI, see Human–computer interface (HCI)
Highly coupled tasks

definition, 40
scaffolding, 55–56
social NUI, 41
spatial NUI, 35

Hotkey languages
Control vs. Alt hotkeys, 146–151
learning, 147

Hover
contact data, 193
input capability, 173
requirements, 195

Hover Widgets, 99–101, 100f
Human–computer interface (HCI)

application, 225–227
computing history, 16
engineering considerations, 223–224
evolution, 3–4
functionality gains, 4–5
historical perspective, 224–225
social NUIs, 38
UI as language, 124
user differentiation definition, 59

I
Iceberg target technique, 76–77, 76f
Identity (I)

application, 138
concept, 139–140
design guidelines, 144
example, 140f
gesture language properties, 137
INRC definition, 137–138

Idle mode, Safari gesture language, 158
IM messaging, 39
In-air gestures

application, 97
clutch reserving, 100–101
design guidelines, 102–103
historical perspective, 98–102
multi-modal input, 101–102
reserved actions, 99–100
touch computing comparison, 97

Indirect-touch systems
display properties, 174
number of contacts, 184–185

Information architecture, software design, 115
Input capability

contact differentiation, 171–173
display properties, 173–174
vs. quality, 170
sensed information, 171
sensed objects, 171
sensing properties, 172f

Input devices, see also Joystick- Mouse
echo vs. semantic feedback, 83
fat finger problem, 74
gesture stages, 127f
MDA framework, 112–113
state-transition model

application, 67–69
definition, 65–67
design guidelines, 69–71
example, 66f
historical perspective, 67–69
impoverished devices, 70–71
mouse example, 68f
mouse and touch, 67–69
tracking state, 69–70

INRC group
application, 138
commutativity concept, 142–143
design guidelines, 143–144
historical perspective, 138–143
identity concept, 139–140, 140f
negation concept, 140–141, 142f
properties, 137
reciprocal concept, 141

Instructions, scaffolding concept, 57
Interaction design, definition, 115
Interaction at a distance, 86, 89–91
Interaction language, primitives, 116
Interaction metaphors

scaffolding concept, 54, 56
seamlessness, 45
software design, 115

Internet
engineering issues, 225
NUI fundamentals, 3
social computing, 39

Inter-user task coupling, social computing,  
39–40

Inversion
gesture language properties, 143–144
INRC application, 138
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iOS (Apple)
chassis vs. touch gestures, 202
hierarchy issues, 201
list gestures, 135f
windowed/non-windowed interactions, 201

iPad (Apple)
contact sensing, 170f
gesture models, 158
HCI applications, 226

iPhone (Apple)
false-gesture recognition, 217
fat fingers problem, 80
gesture language inconsistencies, 215
gesture language pruning, 214
gesture models, 158
gesture set, 134t
input devices, 65
move/zoom gestures, 132, 132t
multi-modal input, 101
recognition balance, 213–214
self-revealing multi-touch gestures, 152
super realism, 47
superstitious behavior, 216

iPod Touch (Apple), gesture models, 158

J
Joystick, see also Input devices

ecological niche, 18
fat finger problem, 74, 75
primitives, 117–118

Just-in-time chrome, 152, 154f

K
Keyboard

accelerators/modifiers, 182
Alt hotkeys, 149
contact data, 192
Control hotkeys, 146
ecological niche, 17–18
gesture ambiguity, 129t
land on, 77
MDA, 108, 112–113
NUI basics, 9
NUI design fundamentals, 179
NUI engineering issues, 224–226
platform knowledge, 175
pressure sensing, 194
primitives, 121–122
social NUI, 37
spatial NUI, 34

touch vs. in-air gestures, 97, 102
WIMP primitives, 121–122

Kindle, 226

L
Lag

ambiguity, 133
feedback visualization, 92, 93f, 94f
super real, 50

Land on technique, fat fingers problem, 77–78, 77f
Learning options

Alt hotkeys, 149
false-gesture recognition, 214
scaffolding concept, 54–55

Lightly coupled tasks
definition, 40
social NUI, 41

Links
interaction design, 115
NUI engineering issues, 223–224
WWW, 17

“Live mic” problem
definition, 98
design guidelines, 102–103
multi-modal input, 101–102

Localized pressure, contact data, 194

M
Mac OS X

Control vs. Alt hotkeys, 146
primitives application, 117
primitive types, 121–122
tracking issues, 68

Macro interaction metaphors, scaffolding concept, 
54

Magnet metaphor, and RITE method, 220–221
Manipulation-based gestures, and false-gesture 

recognition, 217
Marking menu system

example, 150f
as first self-revealing gestures, 149–150
self-revealing multi-touch gestures, 151–152

MDA, see Mechanics–dynamics–aesthetics (MDA) 
framework

Mechanics–dynamics–aesthetics (MDA) 
framework

aesthetics definition, 109
application, 111–113
chess application, 111–112
design guidelines, 113–114
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Mechanics–dynamics–aesthetics (MDA) framework 
(Continued)

dynamics definition, 109
example, 110f
historical perspective, 113
mechanics definition, 107
natural mechanics, 111
product applications, 110
skill development, 112

metaDESK system, 183, 183f
Micro interaction metaphors, scaffolding concept, 

54
Microsoft Surface

contact sensing, 170f
Contact Visualizer, 87, 87f, 88
contextual environments, 31
RITE tests, 220–221
self-revealing multi-touch gestures, 151–152
SimPress technique, 194f
stolen capture, 86–87
super realism, 50
tabletop debris, 87
user perception, 75–76
windowed/non-windowed interactions, 201

Midas touch problem, definition, 68–69
Modal spaces, social NUI, 42
Mode and flow model, gesture systems

application, 157–158
definition, 157
design guidelines, 163–164
flow action tweaking, 162–163, 163f
flow options, 160
Safari gesture language, 158–163, 159f
splitting/combining modes, 160–161, 162f

Modifiers
Control hotkeys, 146
number of contacts, 182–183

Moore's law, 3, 224
Mouse

accelerators/modifiers, 182
activation event, 85
contact data, 189
contextual environments, 31
Control shortcuts, 147, 148f, 149
emulation, 70
false-positive recognition, 212–213
fat finger problem, 73, 74
feedback considerations, 81, 83
feedback types, 83
vs. fingers, 23
interaction at a distance, 86
inventor, 177–178

MDA framework, 108, 112–113
NUI basics, 9, 10, 179
NUI engineering, 226
platform knowledge, 167, 175
primitives, 115, 117–122
second-finger touch, 184
self-revealing gestures, 152
social NUI, 37
spatial NUI, 34
state-transition model, 67–69, 68f
vs. touch, 67–69
touch vs. in-air gestures, 98, 102
tracking state, 69
weaknesses, 118
WIMP, 67, 86

Mouse pointer
Control hotkeys, 147
feedback, 81, 82, 82t
hover, 193
pressure, 195
social NUI, 41
stolen capture, 86–87

Move object gesture
classification, 130
example, 131f
iPhone example, 132, 132t

Multi-cursor, multi-touch as, 197
Multi-finger interfaces

Adobe Photoshop, 182
example, 184f
MacBook trackpad, 184
number of contacts, 183–185

Multi-modal input, live mic problem, 101–102
Multiple capture states, feedback error, 86, 89
Multiple users

number of contacts, 182, 187
vs. one-user design, 185
scaffolding concept, 57
social NUI, 37, 39

Multi-touch systems
accidental activation, 85–86
application, 199–200
as multi-cursor, 197
basic considerations, 199
basic issues, 89
biomechanics, 200–203
chassis vs. touch gestures, 202
contact area, 200f
contact data, 190, 190f
contact shape, 200–203
contact visualization, 89
design guidelines, 200–203
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gesture ambiguity, 132
gesture applications, 128
historical perspective, 200
impoverished input device, 70
input device design, 70
interaction areas and privacy, 201
multiple capture states, 86
second-finger touch, 183
self-revealing gestures, 151–153
social NUI, 41
stolen capture, 86–87
tabletop debris, 87
visual states and transitions, 90f
windowed/non-windowed, 201

Multi-user gestural
number of contacts, 182
vs. single user, 185

N
Naturalness

contextual environments, 30
feedback types, 83

Natural user interface (NUI) basics
Apple Newton vs. Palm Pilot, 11–12
computing history, 16
creation framework, 7f
design guidelines, 13
design issues, 10–11
design/research questions, 27
elements, 29
engineering considerations, 223–224
vs. GUI, 17–18
interface considerations, 13
interface evolution, 5
“natural” definition, 9–10
UI as language, 124

Negation (N)
application, 138
concept, 140–141, 142f
design guidelines, 144
gesture language properties, 137
INRC definition, 137–138
vs. reciprocal concept, 141

Nonresponsive content
feedback error, 85, 88–89
unexpected behavior, 82t

Non-windowed interactions, multi-touch systems, 
201

Novice users
Alt hotkeys, 149
chess mechanics, 112

Control hotkeys, 147
marking menu system, 149–150
primitive count, 122
primitive sets, 121–122
scaffolding, 53, 56
super realism, 50

NUI, see Natural user interface (NUI) basics
Number of contacts

accelerators and modifiers, 185
application, 181–182
basic considerations, 181
design guidelines, 185–187
one user vs. multiple, 185
second-finger touch, 183–185, 184f
toolbar example, 186f, 187f

O
Objects

gestural user interface, 145
identity concept, 139–140
mechanics definition, 107
negation concept, 140–141
rules of operation, 108
sensed objects, 171

One-bit discrete pressure, contact data, 195
Orientation

contact data, 192–193
display properties, 173

Out of range (OOR)
gesture stages, 127f
self-revealing gestures, 151f

Overcaptured state, feedback error, 86, 89–90
Ownership, social NUI design, 41

P
Pad-wide pressure, 194
Palm Pilot, 11–12, 12f
PCs, see Personal computers (PCs)
Pen

marking menu system, 149–150, 150f
strengths, 119
weaknesses, 118–119

Personal computers (PCs), sales growth, 15–16, 
16f

Personal identification, see also User 
identification

user differentiation, 60
Physical manipulation constraints, feedback error, 

86, 89–91
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Physical repsonses
and seamlessness, 45
super realism, 49

Pigtail gesture
reserved actions, 99
selection with, 99f

Pinch
gesture applications, 128
primitives, 121
as reserved clutch, 101
self-revealing gestures, 156

Platform knowledge
application, 167–168
capability vs. quality, 170
demonstrated vs. as-yet-undemonstrated 

capabilities, 170–171
design guidelines, 169–175
display properties, 173–174
importance, 167
real-world advice, 175–176
sensed objects, 171
surface computing sensing properties, 172f
tailored design, 174
Wii vs. Power Glove, 168–169

Point and click
as primitive, 122
contextual environments, 31
gesture system mode/flow, 158
mouse strengths, 117–118
mouse vs. touch, 67
vs. scroll, 122

Pointer, see Mouse pointer- WIMP (Windows, 
icons, menus, pointer)

Pointing
as button push, 98–99
as primitive, 118–122
feedback, 83
mouse strengths, 117–118
mouse weaknesses, 118
multi-modal input, 101–102
pen weaknesses, 118–119
primitive design, 119–120
reserved actions, 100
state-transition model of input, 70f

Pointing devices
contextual environments, 31
ecological niche, 17–18
joystick as, 74
MDA, 108, 112–113
NUI basics, 3–4

Points of contact
basic considerations, 181

second finger touch, 183
Power Glove, 168
Precise pressure, contact data, 193–194
Pressure

as NUI enabler, 194
contact data, 193–195
requirements, 195

Pressure proxies, contact data, 193–194
Primary objects

learning, 111–112
mechanics, 110
rules of operation, 108

Primitives
application, 117
checkboxes example, 119f
construction/evaluation, 122–123
crossing, 119–120, 120f
definition, 116
design, 119–121
design guidelines, 121–124
design rules, 123
escape/entry, 120–121
example, 116f
historical perspective, 117–121
mouse strengths, 117–118
mouse weaknesses, 118
multi-touch systems, 202
novice/expert overlap sets, 121–122
number count, 122
pen strengths, 119
pen weaknesses, 118–119

Privacy, and interaction areas, 201
Programming languages, social computing, 38
Public environments, definition, 28–29
“Put that there” system, multi-modal input, 

101–102

R
Radio buttons

function, 48–49
NUI basics, 10–11
primitives, 120–121

Rapid Iterative Testing and Evaluation (RITE) 
method

application, 219–220
definition, 219
design guidelines, 221–222
gesture system mode and flow model, 160
historical perspective, 220–221
primitive design, 123

Rate control device, joystick as, 74
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Real-world experience
MDA, 113
and seamlessness, 44, 45
super real, 47

Reciprocal (R)
concept, 141
design guidelines, 144
gesture language properties, 137
INRC definition, 137–138

Reference documentation, scaffolding concept, 55
Registration phase

as gesture stage, 127, 127f, 128t
gesture ambiguity, 133f
gesture design, 134
hand gesture, 130f
Safari gesture language, 158
self-revealing multi-touch gestures, 151

Relative pressure, contact data, 194
Rename gesture

classification, 130
example, 129t, 131f

Reserved actions, in-air gestures, 99–100
Reversibility

example, 141f
negation operation, 137–138

Right-click
pen weaknesses, 118–119
primitives, 117, 121–122

RITE, see Rapid Iterative Testing and Evaluation 
(RITE) method

Role assignment, user differentiation, 60
Rules of operation

MDA, 107
objects, 108

S
Safari gesture language

flow action tweaking, 162–163
flow options, 160
mode and flow model, 158–163, 159f
recognition balance, 213–214
splitting/combining modes, 160–161, 162f

Scaffolding concept
application, 53–54
definition, 53
design guidelines, 55–57
historical perspective, 54–55

Scroll bar
interaction at a distance, 86
NUI basics, 10–11
primitives, 116f, 122

Scroll gesture
ambiguity, 133
false-gesture recognition, 213–214
flow options, 160
flow tweaking, 162
iOS, 135f
iPhone, 133, 134t
mode and flow, 158
modes, 162f
Safari, 158, 161, 162f

Scrolling
via drag, 201
feedback, 91, 92f
number of contacts, 184
vs. point and click, 122
primitive count, 122
primitives, 121–122
recognition balance, 213–214
scaffolding, 55
tabletop debris, 87
UI affordances, 154f

Scroll wheel
modifiers, 182
mouse, 122
primitives, 122

Seamlessness
Alt hotkeys learning, 149
concept application, 44–45
definition, 43
fragility, 44
historical perspective, 43–44

Secondary objects
MDA, 110
NUI chess, 111–112
rules of operation, 108

Selection event, land on, 77
Selection process

Escape technique, 78f
fat fingers, 75
feedback visualization, 88–89
hover, 173
with joystick, 75
pigtail gesture, 99f
tap as, 138–139
UI as language, 124

Self-monitoring, and seamlessness, 44
Self-revealing gestures

Alt hotkeys background, 149
application, 145–146
Control vs. Alt hotkeys background, 146–151
Control hotkeys background, 146–148
definition, 145
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Self-revealing gestures (Continued)
input stages, 151f
just-in-time chrome, 152, 154f
marking menu system, 149–150, 150f
multi-touch design, 151–153
photo resizing example, 153f
real-world advice, 155–156

Semantic feedback, vs. echo feedback, 83
Sensed information

biomechanics, 201
fat fingers, 75–76
in-air gestures, 97
input capability, 171
number of contacts, 181
pressure, 194–195
primitives, 123

Sensed objects, input capabilities, 171
Simplicity

application, 23
approach to, 23
design guidelines, 25–26
and fundamental system interactions, 24
lessons from past, 23–25

SimPress technique, 194f, 195
Single display groupware, social computing, 39
Single-user gestural

vs. multiple users, 185
number of contacts, 181

Single-user manipulation, number of contacts, 181
Single-user session, social NUI, 42
Size property, displays, 173
Skill development, MDA framework, 112
Sliders

feedback, 89–90, 93f
interaction at a distance, 86
multiple capture states, 86
primitives, 116
WIMP, 67

Social computing
historical perspective, 38–39
inter-user task coupling, 39–40
standard GUIs, 37

Social contexts
definition, 28–29
MDA, 108–109

Social design, social NUIs, 38
Social natural user interfaces

design guidelines, 40–42
historical perspective, 38
inter-user task coupling, 39–40
overview, 37
social design principles, 38

Sony EyeToy, 97
Spatial natural user interfaces

environments, 33–34
3-D space utilization, 35–36
traditional GUI types, 33
2-D planar space, 34–35

Speech input
with gesture, 101–102
platform knowledge, 175

Sphere metaphor, and RITE method, 220–221
State-transition model, input device

application, 67
definition, 65–67
design guidelines, 69–71
example, 66f
historical perspective, 67–69
impoverished devices, 70–71
mouse example, 68f
mouse and touch, 67–69
tracking state, 69–70

Stolen capture
feedback, 86–87, 89
iOS, 82t

Stylus input
Hover Widgets, 100f
platform knowledge, 167–168, 175
for pointing, 118–119
reserved actions, 99
sensed objects, 171

Super realism
application, 49–51
definition, 47–48
finger gesture example, 48f
historical perspective, 48–49

Superstitious behavior
false-gesture recognition, 216
feedback considerations, 83–84

Suspension of disbelief, and seamlessness, 43–44

T
Table PCs (Windows-based), pen weaknesses, 

118–119
Tabletop debris, feedback error, 87, 91
Tap event

gesture system mode and flow model, 160
stolen capture, 86–87

Task coupling
contextual environments, 28–29
definition, 40
levels, 39–40
scaffolding, 55, 56
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social computing, 39–40
social NUI, 40–42
spatial NUI, 35

Televisions
menu-only systems, 4
platform knowledge, 175–176

Termination phase
as gesture stage, 127, 127f, 128t
gesture design, 135
self-revealing multi-touch gestures, 151

Tethers, feedback visualization, 87f, 90–91, 91f, 
92f, 93f

Three-bit discrete pressure, 195
Three-dimensional techniques

early GUIs, 34
spatial NUIs, 33–36
traditional GUI types, 33

Toolbar example, 186f, 187f
Top-down approach, primitive design, 122–123
“Touch at a distance”, see In-air gestures
Touch computing

application, 97
clutch reserving, 100–101
design guidelines, 102–103
feedback considerations, 81
historical perspective, 98–102
in-air gesture comparison, 97
vs. mouse, 67–69
multi-modal input, 101–102
pressure input, 173
real world example, 79–80
reserved actions, 99–100
scaffolding concept, 56
sensed objects, 171
social computing, 39
social NUI design, 41
touch area vs. touch point, 77
touch vs. chassis, 202
and user perception, 75–76
visualization states and transitions, 88f

Touch point
feedback, 86
NUI fundamentals, 179
and user perception, 75–76
Windows 7 touch device, 170f

Tracking data, input capability, 173
Tracking state

clutch reserving, 100
emulation, 69–70
to engaged state, 101–102
feedback, 82–83
input models, 71

MDA, 114
mouse/tablets, 67
multi-touch as multi-cursor, 197
touch vs. in-air gestures, 98

Trackpad
accelerators, 184
feedback, 85
and hotkeys, 146
multi-finger interfaces, 184
one-bit pressure, 195
pressure detection, 194, 195
scrolling, 122
tracking state emulation, 69

“Training wheels,” scaffolding concept, 54–55
Transfer of learning problem, INRC group, 139
Transitions

ambiguity, 128–129, 134
contact visualization, 90f
Contact Visualizer, 87
feedback, 89f, 90f, 94f
gesture system mode/flow, 158
multi-modal input, 101–102
multi-touch systems, 90f
reserved actions, 99, 101
scaffolding, 55
seamlessness, 45
single-touch systems, 88
sources of error, 85
spatial NUI, 33
state-transition model, see State-transition 

model
super real, 49, 50
touch feedback, 88f

Two-and-a-half dimensional techniques, traditional 
GUI types, 33

Two-dimensional techniques
spatial NUI, 34–35
traditional GUI types, 33

U
Uncoupled tasks

definition, 40
social NUI, 40, 41
spatial NUI, 35

Unfold metaphor, and RITE method, 220–221
URP, super realism, 47–48
User-derived interface (UDI)

application, 207–208
definition, 207
design guidelines, 209
historical perspective, 208–209
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User differentiation
application, 59
definition, 59
design guidelines, 61–62
environments and contexts, 60
historical perspective, 59–61

User guessing, false-gesture recognition, 214
User identification, see also Personal identification

and user differentiation, 61
User movement, modeling, 65
User perception, touch point adjustments, 75–76

V
Virtual objects

MDA framework, 108
RITE, 220–221
seamlessness, 44, 45
super real, 48

Virtual-world experience, and seamlessness, 44
Visual design

multi-touch interaction, 202
software design, 115

Visual states
application integration, 92
Contact Visualizer, 87
feedback, 88
multi-touch systems, 90f

Voice commands
NUI basics, 9
social NUI, 38

W
Walk-up-and-use interfaces

contextual environments, 28–29
self-revealing gestures, 145–146
user differentiation, 59–60

Wii (Nintendo)
engineering considerations, 226
HCI applications, 226
MDA, 114
platform knowledge, 174
vs. Power Glove, 168–169

WIMP (Windows, icons, menus, pointer)
GUI, 4

mouse vs. touch, 67
multiple capture states, 86
number of contacts, 182
platform knowledge, 167–168
primitive sets, 121–122
state-transition model, 67, 68, 71

Windowed interactions, multi-touch systems,  
201

Windows, icons, menus, pointer, see WIMP 
(Windows, icons, menus, pointer)

Windows Mobile 7, self-revealing multi-touch 
gestures, 151–152

Windows operating systems
contact sensing, 170f
Control vs. Alt hotkeys, 146
primitives application, 117
primitive types, 121–122
self-revealing multi-touch gestures, 151–152
tracking issues, 68

World Wide Web (WWW), and HCI, 225–226
WYSIWYG

early GUIs, 34
social computing, 38–39

X
Xbox Kinect, 97
Xbox platform, 75

Z
z-axis, spatial NUIs, 35–36
Zoom gesture

anatomy, 128
gesture system mode/flow, 158, 160
iPhone, 132, 132t
multi-finger interfaces, 184
number of contacts, 181–182
primitives, 121
Safari gesture language, 158
seamlessness, 44
self-revealing gestures, 156
social NUI, 41
spatial NUI, 34–36
super real, 47
UI affordances, 154f
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