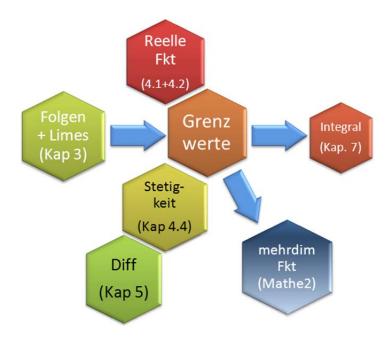
4. Reelle Funktionen

4.1. Warum Informatiker Funktionen brauchen


Funktionen beschreiben Zusammenhänge zwischen Zielgrößen und Einflussgrößen und sind damit Grundlage für das Verständnis dynamischer Systeme und für die technischen Revolutionen der vergangenen Jahrhunderte.

Funktionen bilden Zusammenhänge ab >> Grundlage für <u>jede</u> **Simulation**, mathematische **Modellierung**, **Computeranimation** und Visualisierung.

Ohne Funktionen keine Differential- und Integralrechnung >> keine Optimierung, Approximation (z. B. Splines) usw.

Probleme der Informatik erfordern es oft, **Nullstellen** von Funktionen zu bestimmen. Wir lernen mit der **Regula falsi** am Ende dieses Kapitels eine numerische Methode dafür kennen.

Einordnung:

Def D 4-1 Funktion

Eine Funktion f ist eine Abbildungsvorschrift, die <u>jedem</u> Element aus einer Menge D, dem Definitionsbereich, <u>genau ein</u> Element y aus einer Menge Z, der Zielmenge, zuordnet. Für eine reelle Funktion müssen Definitionsbereich und Zielbereich reellwertig sein.

Das bedeutet: $D \subseteq R$ und $Z \subseteq R$.

Schreibweise: $f: D \to Z$, mit $X \mapsto f(X)$.

Beispiele reeller Funktionen

a) Eine Zahlenfolge $(a_n)_{n \in \mathbb{N}}$ ist Spezialfall einer reellen Funktion mit $D = \mathbb{N} \subset \mathbb{R}$.

b)
$$f(x) = \frac{x+1}{x}, D = R \setminus \{0\}, Z = R$$
 ist eine reelle Funktion

c) $g(x) = \frac{x+1}{x}$, mit $g : \mathbf{R} \to \mathbf{R}$ ist <u>keine</u> reelle Funktion, da g(x) an der Stelle x = 0 nicht definiert ist.

Weitere Beispiele in Vorlesung!

Wenn kein Definitionsbereich angegeben ist, nehmen wir den **maximalen Definitionsbereich** an (d.h. die größte Teilmenge von **R** auf der die Funktion definiert ist). Betrachte zum Beispiel

$$f(x) = \frac{1}{x \cdot (x-5)}$$
. Dann ist $D_{max} = \mathbf{R} \setminus \{0,5\}$

In Vorlesung vertieft: Definitionsbereich bei komplizierteren Funktionen über **Pfeildiagramm** an reeller Achse!

4.2. Verkettung von Funktionen, Umkehrfunktion

Ein wichtiger Operator ist die Verkettung zweier Funktionen. Er erlaubt es, relativ komplexe Funktionen als Verkettung mehrerer relativ einfacher Funktionen zu betrachten.

Satz S 4-1 Verkettung zweier Funktionen

Sofern die Definitionsbereiche von f und q "passen":

Die **Hintereinanderausführung** oder **Verkettung** von f und g ist ergibt eine neue Funktion h: die Funktion $h = (g \circ f)$ (sprich: "g verkettet f"). Es gilt:

$$h(x) = g(f(x))$$

f heißt die **innere** Funktion und g die **äußere** Funktion.

Der Verkettungsoperator ist **nicht** kommutativ. Es gilt i.a.: $g \circ f \neq f \circ g$.

Beispiel: Gegeben seien die Funktionen

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \text{ mit } f(x) = \frac{x+1}{x} \text{ und } g: \mathbb{R} \to \mathbb{R}^{\geq 0} \text{ mit } g(y) = y^2.$$

Die Verkettung lautet

h:
$$\mathbf{R} \setminus \{0\} \to \mathbf{R}^{\geq 0}$$
 mit $h(x) = (g \circ f)(x) = g(f(x)) = \left(\frac{x+1}{x}\right)^2 = \frac{x^2 + 2x + 1}{x^2}$

Dagegen ist $k = f \circ g$ eine <u>andere</u> Funktion, nämlich $k(x) = f(g(x)) = \frac{x^2 + 1}{x^2}$

Def D 4-2 injektiv, surjektiv, bijektiv

 $f: D \to Z$ heißt **injektiv** \Leftrightarrow Zu jedem $y \in Z$ gibt es höchstens ein $x \in D$ mit y = f(x).

 $f: D \to Z$ heißt **surjektiv** \Leftrightarrow Zu jedem $y \in Z$ gibt es <u>mindestens ein</u> $x \in D$ mit y = f(x).

 $f: D \to Z$ heißt **bijektiv** \Leftrightarrow Zu jedem $y \in Z$ gibt es ein <u>eindeutiges</u> $x \in D$ mit y = f(x).

Also: bijektiv = injektiv UND surjektiv.

Die Eigenschaften "injektiv" und "surjektiv" sind mit der Lösbarkeit der Gleichung f(x)=y verknüpft. Im Falle reeller Funktionen: Die Gleichung f(x)=y hat für gegebenes y eine (mehrere) Lösungen x, wenn die **Horizontale in Höhe y** einen (mehrere) Schnittpunkte mit dem Graphen von f(x) hat. Das ist in Abbildung 4-1 dargestellt: Bei der Funktion in (a) gibt es für jede Gerade mindestens einen Schnittpunkt, im eingezeichneten Fall sogar drei: (a) ist daher surjektiv, aber nicht injektiv. In (b) gibt es für jede Gerade höchstens einen Schnittpunkt, im eingezeichneten Fall aber keinen: Die Funktion ist injektiv, aber nicht

surjektiv. Im Fall (c) schließlich hat jede Gerade genau einen Schnittpunkt, die Funktion in (c) ist bijektiv.

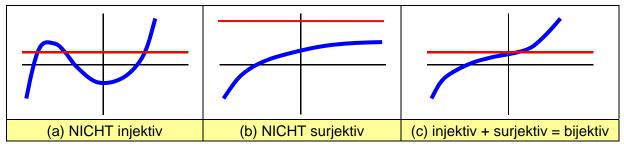


Abbildung 4-1: Injektivität und Surjektivität

[Teschl05, Bd. 1, S. 126]

Beispiel / Übung: Prüfen Sie auf Injektivität und Surjektivität

a) $f : \mathbf{R} \to \mathbf{R}$, f(x) = 2x+1

b) $g : \mathbf{R} \to \mathbf{R}^{\geq 0}, g(x) = x^2$

Def D 4-3 Umkehrfunktion (inverse Funktion)

Gegeben sei eine <u>injektive</u> Funktion $f: D \rightarrow Z$, y=f(x).

Die Funktion $g:Z\to D$, die jedem $y\in Z$ das eindeutig bestimmte $x\in D$ mit y=f(x) zuordnete, heißt **Umkehrfunktion von f**. Schreibweise $g=f^{-1}$.

Bemerkungen:

- 1) Die Umkehrfunktion $f^{-1}(x)$ hat NICHTS zu tun mit der Funktion $(f(x))^{-1} = \frac{1}{f(x)}$ (!!)
- 2) Die Verkettung von f mit ihrer Umkehrfunktion f ⁻¹, führt auf die Identitätsfunktion in D bzw. Z. (Identitätsfunktion ist die Funktion, die X unverändert lässt):

h: D
$$\rightarrow$$
 D, mit $x \mapsto h(x) = (f^{-1} \circ f)(x) = x$ bzw.

k:
$$Z \rightarrow Z$$
, mit $y \mapsto k(x) = (f \circ f^{-1})(y) = y$.

Beispiele:

- a) $e^x : R \to R^+$ und $In(x) : R^+ \to R$ sind Umkehrfunktionen zueinander.
- b) $f : \mathbf{R} \to \mathbf{R}$, $f(\mathbf{x}) = \mathbf{x}^2$ ist nicht injektiv und damit auch nicht umkehrbar.

Aktivierung: Wie kann man $f(x) = x^2$ umkehrbar (also injektiv) machen?

Anschaulich: Die Umkehrung einer Funktion entspricht der **Spiegelung an der Winkelhalbierenden** des x-y-Diagramms. Denn die Umkehrfunktion vertauscht die Rollen von y und x, und Vertauschen der Koordinaten im Punkt (x,y) führt auf den Punkt (y,x), welches der an der Winkelhalbierenden gespiegelte Punkt ist.

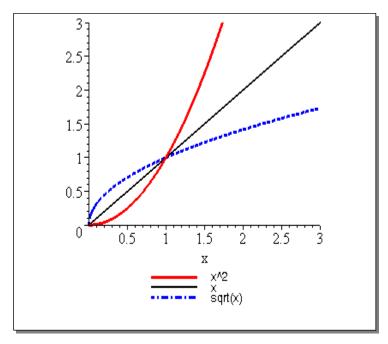


Abbildung 4-2: $f(x) = x^2$ und die zugehörige Umkehrfunktion $f^{-1}(x) = \sqrt{X}$

b) Bestimmen Sie Definitionsbereich und die Umkehrfunktion für f(x) = 2x+1.

Weitere Eigenschaften von Funktionen und die Kenntnis elementarer Funktionen gehören zum Vorkurswissen über Funktionen. Diese sind im Kapitel <u>04V-VORKURS Funk. pdf</u> zusammengestellt.

4.3. Grenzwert einer Funktion

Der Grenzwert einer Funktion hat eine zentrale Bedeutung in der Differential- und Integralrechnung. Mit Hilfe von Grenzwerten werden wir den Ableitungsbegriff und das Integral einer Funktion einführen.

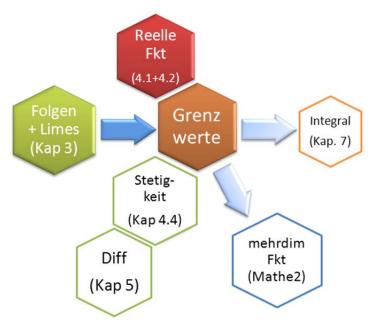
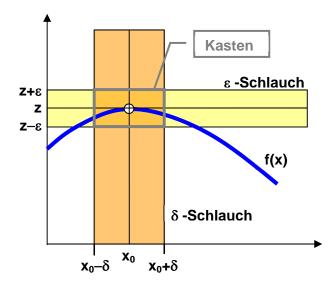


Abbildung 4-3: Begriffliche Einordnung

Def D 4-4 Grenzwert von Funktionen

f(x) hat an der Stelle x₀ den Grenzwert z , geschrieben


$$\lim_{x\to x_0} f(x) = z$$

 \Leftrightarrow Zu jedem ε > 0 existiert ein δ > 0, so dass aus $0<|x-x_0|<\delta$ stets $|f(x)-z|<\epsilon$ folgt.

Die Definition des Grenzwertes Z verlangt nicht, dass $f(x_0)$ existiert oder dass $z = f(x_0)$. Das kommt nachher in Abschnitt 4.4 bei der Stetigkeit.

f(x) muss nur in einer " δ -Umgebung" von x_0 existieren.

Veranschaulichung in Vorlesung: "ε-Schlauch", "δ-Schlauch" >> Funktion liegt "im Kasten"

Eine alternative Definition des Grenzwertes gibt folgender Satz (o. Bew):

Satz S 4-2 Grenzwert von Funktionen

f(x) hat an der Stelle x₀ den Grenzwert z

$$\Leftrightarrow$$
 Für jede (!) Folge $(x_n) \xrightarrow{n \to \infty} x_0$ gilt: $\lim_{n \to \infty} f(x_n) = z$

Dieser Satz ist nützlich, wenn man zeigen will, dass eine Funktion *keinen* Grenzwert hat: Es genügt, *eine* Folge anzugeben, die nicht gegen **z** konvergiert.

Er ist ebenso nützlich, um einen Funktionsgrenzwert zu berechnen:

Beispiel:

$$\lim_{x\to 1} f(x) = \lim_{x\to 1} (2x + x^2)$$

Sei x_n eine beliebige Folge mit Grenzwert 1. Dann gilt

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (2x_n + x_n^2) = 2 \cdot 1 + 1^2 = 3$$

Also ist
$$\lim_{x\to 1} f(x) = 3$$

D.h.: Immer wenn ich den Grenzwert x_0 problemlos in die Funktion einsetzen und auswerten kann, ist die Berechnung von $\lim_{x\to x_0} f(x)$ eine einfache Sache.

Weitere Beispiele in Vorlesung!

Def D 4-5 Einseitiger Grenzwert

f(x) hat an der Stelle x_0 den linksseitigen Grenzwert z^- , geschrieben

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = \lim_{\substack{x \to x_0 -}} f(x) = f(x_0 -) = z^{-}$$

 \Leftrightarrow Zu jedem $\varepsilon > 0$ existiert ein $\delta > 0$, so dass aus $x_0 - \delta < x < x_0$ stets $|f(x) - z^-| < \varepsilon$ folgt

$$\Leftrightarrow$$
 Für jede (!) Folge $(x_n) \xrightarrow{n \to \infty} x_0$ und $x_n < x_0$ gilt: $\lim_{n \to \infty} f(x_n) = z^{-n}$

Analog: rechtsseitiger Grenzwert
$$\lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \lim_{\substack{x \to x_0 + \\ x > x_0 + }} f(x) = z^+ \equiv f(x_0 +)$$

Satz S 4-3 Existenz des Grenzwertes einer Funktion

Eine Funktion f besitzt genau dann den Grenzwert g an der Stelle x_0 , falls z^- und z^+ existieren und gleich sind. Dann ist $z^- = z^+ = g$.

Analog zum Grenzwert an der Stelle x_0 kann auch der Grenzwert für $x \to \infty$ oder $x \to -\infty$ betrachtet werden. Dieser Grenzwert wird wie bei Folgen (s. **Def D3-4**) definiert:

Def D 4-6 Grenzwert von Funktionen für $X \rightarrow \infty$

f(x) hat für $x \to \infty$ den Grenzwert $z \Leftrightarrow$

Zu jedem $\varepsilon > 0$ existiert ein $X(\varepsilon)$, so dass aus $x > X(\varepsilon)$ stets $|f(x)-z| < \varepsilon$ folgt. Man schreibt

$$\lim_{x\to\infty}f(x)=z$$

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{für } x \in \mathbb{R}^+ \setminus \{1\} \\ -\frac{1}{x} & \text{für } x < 0 \end{cases}$$

mit den folgenden Grenzwerten:

$$\lim_{x \to -\infty} f(x) = 0$$

$$\lim_{x \to \infty} f(x) = +\infty$$

$$\lim_{x \to 0^{-}} f(x) = +\infty \text{ (Polstelle, s.u.)}$$

$$\lim_{x \to 0^{+}} f(x) = 1$$

$$\lim_{x \to 0^{+}} f(x) \text{ nicht definiert}$$

$$\lim_{x \to 1^{-}} f(x) = 2 = \lim_{x \to 1^{+}} f(x) = 2 = \lim_{x \to 1} f(x)$$

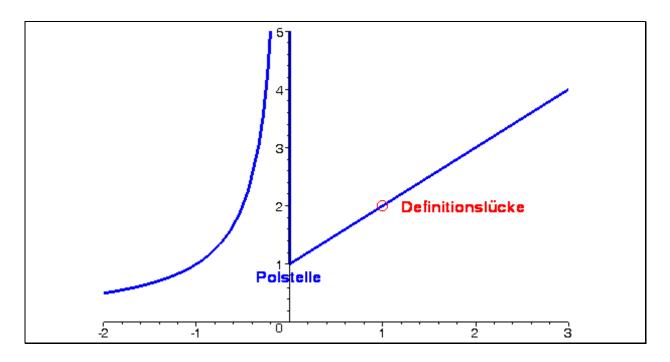


Abbildung 4-4: Graph der Funktion f

Def D 4-7 Polstelle

 x_0 heißt **Polstelle** von f(x)

 $\Leftrightarrow \text{ Es gibt eine Umgebung von } \ x_0 \text{ in der der Betrag } |f(x)| \text{ "uber jede Schranke K w"achst.}$

 $\Leftrightarrow \text{ Es gibt eine Folge } (x_n) \xrightarrow{n \to \infty} x_0 \text{ , für die die Folge } f(x_n) \text{ bestimmt-divergent ist}$

Weiteres Beispiel: $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$

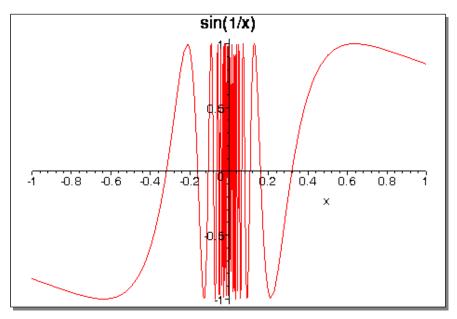


Abbildung 4-5: Graph der Funktion $\sin \frac{1}{x}$

Wie die Abbildung zeigt, oszilliert diese Funktion bei Annäherung an 0 immer schneller. x=0 ist ein sog. **Oszillationspunkt** und dort ist die Funktion divergent.

Beweis: $x_n = \frac{1}{n\pi/2}$ ist eine Nullfolge. Aber

$$\lim_{n \to \infty} \sin \left(\frac{1}{x_n} \right) = \lim_{n \to \infty} \sin \left(\frac{n\pi}{2} \right) = \lim_{n \to \infty} [+1, 0, -1, 0, +1, 0, -1, ...]$$

und diese Folge hat keinen Grenzwert, sie oszilliert hin und her.

Satz S 4-4 Rechnen mit Grenzwerten

Seien die Funktionen f_1 , und f_2 in einer Umgebung von x_0 definiert und in x_0 konvergent mit den Grenzwerten z_1 und z_2 . Dann existieren auch die folgenden Grenzwerte, und es gilt:

den Grenzwerten Z₁ und Z₂. Dann existieren auch die folgenden Grenzwerte, und es gilt:

a)
$$\lim_{x \to x_0} (c_1 f_1(x) \pm c_2 f_2(x)) = c_1 z_1 \pm c_2 z_2$$
b) $\lim_{x \to x_0} (f_1(x) \cdot f_2(x)) = z_1 \cdot z_2$
c) $\lim_{x \to x_0} \left(\frac{f_1(x)}{f_2(x)} \right) = \frac{z_1}{z_2}$ für $z_2 \neq 0$
d) $\lim_{x \to x_0} f_2(f_1(x)) = f_2(z_1)$

(Im Fall d) muss zusätzlich f_2 in Z_1 und in einer Umgebung von Z_1 definiert sein.)

Kompakt: Der Operator $\lim_{x \to x_0}$ kann in die Rechenoperationen "hineingezogen" werden. Als

Merkregel:

$$\lim(a\#b)=\lim(a)\#\lim(b)$$
 und $\lim(f_2(f_1(x)))=f_2(\lim(f_1(x)))$

wobei "#" für jede beliebige Grundrechenart steht.

Wie beim Grenzwert von Folgen dürfen wir in gewissen Fällen (s. **Satz S3-5**) auch mit dem Grenzwert ∞ weiterrechnen.

Wenn beim "Durchziehen" eine 0/0-Situation, eine ($\infty - \infty$)-Situation oder Ähnliches (s. Satz S3-5) entsteht, dann muss man anders weiterrechnen.

Rezept für die Berechnung von Grenzwerten $\lim_{x\to x_0} f(x)$ bei Funktionen:

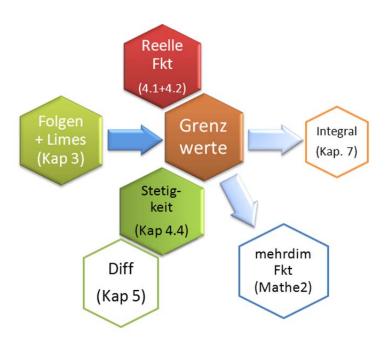
- 1. Ist eine <u>Umgebung von</u> x_0 im Definitionsbereich von f? Nein: Grenzwert existiert nicht. Ja: Weiter bei 2. (BEACHTE: Es ist <u>nicht</u> nötig, dass x_0 selbst in D_f liegt.)
- 2. Kann man x_0 direkt in f(x) einsetzen, ohne dass ein 0/0- oder (∞ ∞)-Situation o.ä. entsteht? Ja: fertig. Nein: Weiter bei 3.
- 3. Ist x_0 eine Zahl und f(x) ein Bruch? Ja: Versuche, $(x x_0)$ auszuklammern und zu kürzen. Weiter bei 2. Nein: Weiter bei 4.
- 4. Ist $x_0 = \pm \infty$ und f(x) ein Bruch? Versuche es mit "größte Potenz im Nenner" (g.P.i.N.).
- 5. Ist f(x) eine Summe oder Differenz von Brüchen mit $(\infty \infty)$ -Situation? Prüfe, ob eine Zusammenfassung (z.B. auf gemeinsamen Hauptnenner) Klärung bringt.
- 6. Ansonsten: Versuche, über eine Folge x_n , die gegen x_0 konvergiert, (Satz S4-2) zu argumentieren (Beispiele s. o.)

(Dieses Rezept deckt zahlreiche, aber nicht alle Fälle ab.)

Einfaches Beispiel
$$\lim_{x\to 1} \frac{\ln(x) + x^2}{(x-1)\sin x + 1} = \frac{\ln 1 + 1^2}{(1-1)\sin 1 + 1} = 1$$

Berechnen Sie die Grenzwerte:

(a)
$$\lim_{x\to 1} \left[(x+1)\cos(x-1) + \frac{\sin(x-1)}{x+1} \right]$$


(b)
$$\lim_{x\to 1} \left[\frac{x+2}{x-1} - \frac{x^2+2x+3}{x^2-1} \right]$$

4.4. Stetigkeit einer Funktion

-- dieses Kapitel im Selbststudium --

Wieso ist Stetigkeit wichtig?

- Die Stetigkeit einer Funktion bildet die Grundlage des Ableitungsbegriffes einer Funktion.
- Mit der Stetigkeit können wir Funktionen "festnageln", sie können uns nicht "entwischen". Beispiel s. Regula Falsi am Ende von Kapitel 0

Def D 4-8 Stetigkeit einer Funktionen

Eine Funktion $f:D\to Z$ mit y=f(x) heißt an einer Stelle x_0 stetig, wenn dort Funktionsund Grenzwert existieren und übereinstimmen:

$$\lim_{x\to x_0}f(x)=f(x_0)$$

f heißt auf Intervall [a,b] stetig, wenn f für jedes $x_0 \in [a,b]$ stetig ist.

f(x) heißt **rechtsseitig stetig** bzw. **linksseitig stetig** in x_0 , wenn $f(x_0+)$ bzw. $f(x_0-)$ mit $f(x_0)$ übereinstimmt.

Bemerkungen:

- a) Stetigkeit an einer Stelle $x_0 \in D$ setzt also voraus, dass rechtsseitiger und linksseitiger Grenzwert in $x_0 \in D$ existieren und gleich sind (vergleiche Definition des Grenzwertes) und dass der Grenzwert gleich $f(x_0)$ ist.
- b) Eine Funktion heißt in $x_0 \in D$ unstetig, falls f in einer Umgebung von x_0 definiert ist, f aber in x_0 nicht stetig ist.

Beispiel:
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{für } x \in \mathbb{R}^+ \setminus \{1\} \\ -\frac{1}{x} & \text{für } x < 0 \end{cases}$$
 (s. Abbildung 4-4)

f ist für alle x aus den Intervallen $(-\infty,0)$, (0,1) und $(1,\infty)$ stetig. Mit der zusätzlichen Definition f(1) = 2 wäre f auch an der Stelle x = 1 stetig (behebbare Unstetigkeit). f ist an der Stelle x = 0 rechtsseitig stetig, aber nicht linksseitig stetig (keine behebbare Unstetigkeitsstelle).

Bemerkungen: Eine Funktion ist in $X_{\underline{0}}$ unstetig, wenn $f(x_{\underline{0}})$ nicht existiert. Wir unterscheiden vier Typen von Unstetigkeitsstellen:

Тур	Beschreibung	Beispiel	
(be)hebbare	rechts- und linksseitiger Grenzwert existieren und	$\frac{\sin x}{x}$ bei $x_0=0$	
Unstetigkeit	sind gleich ($Z^+ = Z^-$), aber $f(x_0)$ ist anders oder gar		
	nicht definiert. Mit der Umdefinition $f(x_0) = z^+ =$, ,	
	Z wird die Unstetigkeit behoben.		
Sprungstelle	rechts- und linksseitiger Grenzwert existieren und	Х	
	sind ungleich ($\mathbf{Z}^{\dagger} \neq \mathbf{Z}^{-}$)	X bei X ₀ =0	
Polstelle	zumindest für eine Seite ist $\lim_{x \to \pm \infty} f(x) \to \pm \infty$	1	
	x→x₀ (uneigentlicher Grenzwert)	$\frac{1}{x-2}$ bei $x_0=2$	
Ospillations		(.)	
Oszillations- punkt	weder rechts- noch linksseitiger Grenzwert existieren, auch nicht uneigentlich	$\sin\left(\frac{1}{x}\right) \text{ für } x_0 \rightarrow 0$	

Beispiel stetiger Funktionen auf ihrem gesamten Definitionsbereich: X, Sin(X), COS(X), In(X), e^{x} , x^{b} für $b \in \mathbb{R}^{+}$.

Für stetige Funktionen gelten die folgenden Sätze

Satz S 4-5 Stetigkeit zusammengesetzter Funktionen

- 1.) Es seien f_1 , f_2 in x_0 stetig. Dann sind $f_1\pm f_2$, $f_1\cdot f_2$ und $|f_1|$ in x_0 stetig.
- 2.) Es sei zusätzlich $f_2(x_0) \neq 0$, dann ist $\frac{f_1(x_0)}{f_2(x_0)}$ stetig.
- 3.) Es sei zusätzlich $f_1(x_0) > 0$ dann ist $f_1(x_0)^s$ stetig für beliebiges $s \in \mathbf{R}$
- 4.) Es sei zusätzlich g eine in $f(x_0)$ stetige Funktion, dann ist g(f(x)) stetig in x_0 .
- 5.) Es sei f auf einem Intervall I stetig und umkehrbar. Dann ist die Umkehrfunktion f^{-1} auf dem Intervall f(I) stetig.

© W. Konen ZDgesamt-ext.docx Seite 58

Übung: In $X_0 = 0$ stetig oder nicht?

$$f_{1}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases} \qquad f_{2}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{für } x \neq 0 \\ 1 & \text{für } x = 0 \end{cases}$$

$$f_{3}(x) = \begin{cases} \frac{x^{2} - x}{x(x+1)} & \text{für } x \neq 0 \\ -1 & \text{für } x = 0 \end{cases} \qquad f_{4}(x) = \frac{x-1}{x+1}$$

Satz S 4-6 Beschränktheit einer Funktion

Ist eine Funktion $f:[a,b] \to Z$ auf dem abgeschlossenen Intervall [a,b] stetig, dann ist sie dort beschränkt.

Satz S 4-7 Zwischenwertsatz für stetige Funktionen

Ist eine Funktion $f:[a,b] \to Z$ auf dem abgeschlossenen Intervall [a,b] stetig und V eine Zahl zwischen f(a) und f(b), dann gibt es mindestens ein $U \in [a,b]$ mit f(u) = V.

Ist eine Funktion $f: [a,b] \to Z$ auf dem abgeschlossenen Intervall [a,b] stetig und gilt $f(a) \cdot f(b) < 0$, so gibt es mindestens ein $u \in [a,b]$ mit f(u) = 0.

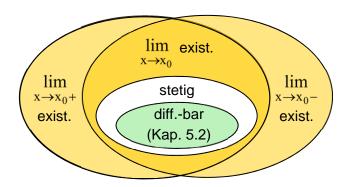
Bemerkung:

Der erste Teil besagt: Jeder Zwischenwert zwischen a und b wird angenommen (daher der Name des Satzes).

Der zweite Teil ist einfach eine Spezialisierung für v=0: Die Bedingung $f(a) \cdot f(b) < 0$ kann leicht interpretiert werden:

$$\begin{array}{ll} f(a) \cdot f(b) < 0 & \Leftrightarrow & (\text{es gilt} \quad f(a) > 0 \text{ und } f(b) < 0) & \quad \underline{\text{oder}} \\ & & (\text{es gilt} \quad f(a) < 0 \text{ und } f(b) > 0) \end{array}$$

Anwendungsbeispiel: **Regula falsi** zur Nullstellenbestimmung [Teschl, Bd. 2, S. 92-94] [Press et al., S. 354] >> s. Vorlesung (wenn Zeit). Animation in function-plots.mws.


© W. Konen ZDgesamt-ext.docx Seite 59

4.5. Fazit

(Einfache) Eigenschaften von Funktionen				
Definitionsbereich D,	Zielmenge Z			
Symmetrie (*)	gerade oder ungerade			
Monotonie (*)	normal oder streng, wachsend oder fallend			
Nullstellen (*)				
Periodizität (*)				
injektiv	jedes $z \in Z$ wird höchstens einmal getroffen >> umkehrbar			
surjektiv	$\text{jedes } z \in Z \text{ wird mindestens einmal getroffen}$			
bijektiv	injektiv UND surjektiv			

(*) : s. <u>04V-VORKURS_Funk.pdf</u>

Zusammenhang Grenzwert – Stetigkeit – Differenzierbarkeit:

Übung: [dem Nachbarn erklären]

Geben Sie für jeden der unterschiedlich gefärbten Bereiche (außer "differenzierbar") ein Beispiel {Funktion f(x), Stelle x_0 } an!