Bereiten Sie die Aufgaben für Termine ab dem 12.06.17 so vor, dass Sie in der Lage sind, Ihre Lösungen vorzutragen.

Übungsblatt 8 Komplexe Zahlen + DGL

In den nachfolgenden Aufgaben bezeichnet i jeweils die imaginäre Einheit.

Aufgabe 8.1 Rechnen mit komplexen Zahlen

Berechnen Sie:

b)
$$4i - 5 + i(1 - i)$$

c)
$$|4 + 6i| - |4 - 6i|$$

$$3 + 2i$$

d)
$$\frac{}{3-2i}$$

e)
$$\frac{i}{5+2i}$$

Hinweis: Der Bruch zweier komplexer Zahlen "Zähler durch Nenner" wird berechnet, indem man mit dem komplex-konjugierten Nenner erweitert:

$$z = \frac{z_1}{z_2} = \frac{z_1 \cdot z_2^*}{z_2 \cdot z_2^*}$$

Aufgabe 8.2 Darstellungsformen komplexer Zahlen

Ergänzen Sie die jeweils fehlenden Darstellungsformen

	kartesische Form	Polarform	
		trigonom. Form	Exponentialform
a)	i		
b)			$2e^{i\pi}$
c)		$\cos(\frac{3}{2}\pi) + i\sin(\frac{3}{2}\pi)$	
d)	-3 + 6i		
e)	4 – 12i		

Aufgabe 8.3

a) Man berechne Real- und Imaginärteil von

$$z_1 = (1 - \sqrt{3} \cdot i)^5$$
 und $z_2 = \left(\frac{1}{\sqrt{2}}(1+i)\right)^{20}$

b) Gegeben ist $z = -8 + 8i\sqrt{3}$. Man berechne $\sqrt[4]{z}$.

Bereiten Sie die Aufgaben für Termine ab dem 12.06.17 so vor, dass Sie in der Lage sind, Ihre Lösungen vorzutragen.

Aufgabe 8.4 Graphisches Rechnen mit komplexen Zahlen

Gegeben sind die beiden komplexen Zahlen: $z_1 = 1 - 5i$; $z_2 = 4 + 3i$.

- a) Addieren und subtrahieren Sie die Zahlen graphisch in der Gaußschen Zahlenebene. Zeichnen Sie die konjugiert komplexe Zahl zu z₁ ebenfalls ein.
- b) Man stelle Z_1 und Z_2 in Exponentialform dar. Bilden Sie nun Z_1^2 , $\sqrt[3]{Z_1}$, $Z_1 \cdot Z_2$ ebenfalls mit graphischen Methoden.

Aufgabe 8.5 Additionstheoreme

Leiten Sie die "normalen" Additionstheoreme

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

aus der Eulerschen Formel (Satz S 11-4) her.

Aufgabe 8.6 DGL mit nur einem Ableitungsterm

Die Beschleunigung einer Kugel in einem Computerspiel sei gegeben durch die Differentialgleichung $\ddot{s}(t)=2t$

- (a) Interpretieren Sie die Differentialgleichung (Ordnung, explizit/implizit, homogen/inhomogen), jeweils mit einem Begründungssatz.
- (b) Ermitteln Sie die allgemeine Lösung der Differentialgleichung. Wieviel freie Parameter hat sie?
- (c) Lösen Sie die Differentialgleichung für die Anfangsbedingungen s(0) = 5, $\dot{s}(0) = 3$.

Aufgabe 8.7 Anfangswertproblem

Ermitteln Sie die Lösung des Anfangswertproblems (Ansatz: $Ae^{\lambda t}$, $\lambda \in \mathbf{C}$)

$$\ddot{x}(t) + 6\dot{x}(t) + 8.75x(t) = 0$$
, $\dot{x}(0) = 8$, $x(0) = 0$

Aufgabe 8.8 Lineare DGL

Ermitteln Sie die allgemeine Lösung der DGL (Ansatz: $Ae^{\lambda t}$, $\lambda \in \mathbf{C}$)

$$y''(t) + 2y'(t) + 5y(t) = 0$$