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Abstract  Slow feature analysis (SFA) is a bioinspired method for extracting slowly
varying driving forces from quickly varying nonstationary time series.
We show here that it is possible for SFA to detect a component which is
even slower than the driving force itself (e.g. the envelope of a modulated
sine wave). It depends on circumstances like the embedding dimension,
the time series predictability, or the base frequency, whether the driving
force itself or a slower subcomponent is detected. Interestingly, we ob-
serve a swift phase transition from one regime to another and it is the
objective of this work to quantify the influence of various parameters
on this phase transition. We conclude that what is perceived as slow by
SFA varies and that a more or less fast switching from one regime to
another occurs, perhaps showing some similarity to human perception.
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1. Introduction

The analysis of nonstationary time series plays an important role in
the data understanding of various phenomena such as temperature drift
in an experimental setup, global warming in climate data, or varying
heart rate in cardiology. Such nonstationarities can be modeled by un-
derlying parameters, referred to as driving forces, that change the dy-
namics of the system smoothly on a slow time scale or abruptly but
rarely, e.g. if the dynamics switches between different discrete states
[11].

Often, e.g. in EEG-analysis or in monitoring of complex chemical or
electrical power plants, one is particularly interested in revealing the
driving forces themselves from the raw observed time series since they
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show interesting aspects of the underlying dynamics, for example the
switching between different dynamic regimes.

Several methods for detecting and visualizing driving forces have been
developed; based on recurrence plots [2], feedforward ANNs with extra
input unit [9] or, as Wiskott [11] recently proposed, by Slow Feature
Analysis (SFA), a versatile, robust, and fast algorithm. SFA has been
originally presented in context of a bioinspired model for unsupervised
learning of invariances in the visual system of vertebrates [10] and is de-
scribed in detail in [11, 12]. SFA works fully unsupervised, just by search-
ing nonlinear combinations of the input signals which vary as slowly as
possible in time.

What is ’slow’ in the driving forces compared to the raw observed
time series? Often it might be the case that a driving force contains
components on different time scales and it is crucial to understand which
time scale will be selected by the driving force algorithm. As an example
we consider driving forces made up of two overlayed frequencies f; < fa.
Will the driving force detection algorithm detect the slower one of the
frequencies, f1, thus being more slow, or the combined driving force
made up of fi and fo, thus being more accurate? With this paper we
try to deepen our understanding which parameters influence whether
the first or the second choice is taken.

2. Slow Feature Analysis

We briefly review here the SFA approach described in [11]. The
general objective of SFA is to extract slowly varying features from a
quickly varying multidimensional signal. For a scalar output signal and
an N-dimensional input signal * = x(t) where t indicates time and
x = [r1,...,xn]T is a vector, the question can be formalized as follows:
Find the input-output function g(x) that generates a scalar output sig-

nal

y(t) = g(=(t)) (1)
with its temporal variation as slowly as possible, measured by the vari-
ance of the time derivative:

minimize A(y) = (5?) (2)

with (-) indicating the temporal mean. Wiskott and Sejnowski [12] pro-
pose a closely related slowness indicator 1 proportional to \/A(y). Low
n-values indicate slow signals, high n-values fast signals.

To avoid the trivial constant solution, the output signal has to meet
the following constraints:

(y) = 0 (zero mean), (3)
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(y*) = 1 (unit variance). (4)

This is an optimization problem of variational calculus and as such dif-
ficult to solve. But if we constrain the input-output function to be a lin-
ear combination of some fixed and possibly nonlinear basis functions, the
problem becomes tractable with the mathematical details given in [11].
A typical choice for the nonlinear basis functions are monomials of de-
gree 2, but other choices, e. g. monomials of higher degree or radial basis
functions could be used as well. Basically, SFA searches the eigenvector
in the expanded space with the smallest eigenvalue and projects the ex-
panded signal onto this eigenvector to obtain the output signal, which
we denote here by y or y;.

3. Experiments

In the following we present examples with time series w(t) derived
from the well-known logistic map [7, 11] to illustrate the properties of
SFA. The underlying driving force is always denoted by v and may vary
between —1 and 1 smoothly and considerably slower (as defined by the
variance of its time derivative (2)) than the time series w(t). The ap-
proach follows closely the work of Wiskott [11] but with more systematic
variations in the driving force.

We consider here a driving force that is made up of two frequency
components

7(75):%(sin(0.0005uft)+Sin(0.00471/ft)) e 1,1, (5

—s() = (1)

where the first component ~g is roughly ten times slower than yg. The
question is whether SFA as the driving force detector detects solely the
slower component g of the driving force (in an attempt to minimize n) or
the full driving force v (in an attempt to extract the underlying system
dynamics as accurately as possible). A second question is whether a
phase transition between the two choices might occur as we vary the
base frequency v;.

In order to visually inspect the agreement between a slow SFA-signal
and the driving force v we must bring the SFA-signal into alignment
with v (since the scale and offset of the slow signal y(t) formed by SFA
is fixed by the constraints and the sign is arbitrary). Therefore we define
a y-aligned signal

Ay(y(8)) = ay(t) +b (6)
where the free parameters a and b are chosen in such a way that the
signal A, (y(t)) is in best possible alignment with ~(t).
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Fig. 1. Time series w(t) derived _ 0.6 .-
from the logistic map with driving = §
force according to Eq. (7) for vy = 20 )
and ¢ = 0.1. For all ¢ < 0.33, no o2} .~ '
structure from the driving force is di-
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The following simulations are based on 6000 data points each and
were done with MATLAB 7.0.1 using the SFA toolkit sfa-tk [1].

3.1 Logistic map in chaotic and in predictable regime

We consider a time series derived from a logistic map
w(t+1)=(4.0—q+0.1v(t)w(t)(1 —w(t)), (7)

which maps the interval [0, 1] onto itself and has the shape of an upside-
down parabola crossing the abscissa at 0 and 1. The logistic map exhibits
an interesting and complex dynamic behaviour, since its parameter q €
[0.1,3.9] controls different forms of predictabilty: For ¢ < 0.33 the map
is fully in its chaotic regime (a map with no visible structure, see Fig. 1),
for 0.33 < ¢ < 0.53 we have a mixture of chaotic and predictable periods
and for 0.53 < ¢ < 3.9 it is long-term predictable.

To allow SFA to reconstruct the driving force, it is necessary to gen-
erate from the scalar w(t) a time series of embedding vectors x(t) as
input to SFA. The embedding vector at time point ¢ is defined as

x(t) == [w(t — s,), w(t — (sy — 1)), oo, w(t + s,)]7 (8)

with delay 7, odd dimension m and s; := 7(m — 1)/2. Centering the
embedding vectors results in an optimal temporal alignment between
estimated and true driving force.

Fig. 2 shows the estimated driving force (from SFA with m = 19, ¢ =
0.1, 7 = 1 and second order monomials) and the true driving force. At
the higher frequency vy = 60 the estimated driving force is in alignment
with the slower component yg(¢). This is remarkable since the slower
component is not directly visible in the driving force, only indirectly as
envelope of the solid curve. Quite clearly there is a phase transition
occuring around vy = 40.

In Fig. 3 we vary the base frequency vy € [4,80] and we see a swift
phase transition. The transition frequency v(P.T.) is the crossover point
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of the two correlation curves, shown in Fig. 3 as black dot. For small
g = 0.1 (fully chaotic w; left part of Fig. 3) a phase transition occurs
at v(P.T.) = 34 (black dot) while for larger ¢ = 0.4 (mix of chaotic
and non-chaotic periods in wj; right part of Fig. 3) the phase transition
happens earlier and occurs swifter at v(P.T.) = 17.
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Figure 2. SFA outputs y1(t) (solid lines) aligned to the driving forces (see Eq. (6))
for base frequencies vy = 20,40,60 clearly show a phase transition from the complete
driving force y(t) (dotted line) to its slower subcomponent ys(t) (dashed line). We
see two solid curves since we align the slowest SFA signal once with (t) and once
with vs(t). For clarity only the first 500 time steps out of 6000 are shown.
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Figure 3. We show the correlation of the SFA-output y1 with the driving force
(dash-dotted line) and with its slow component s (thick dashed line). The black dot
indicates the phase transition at v(P.T.). The slowness quotient n(y1)/n(v) (solid line)
drops largely near the phase transition. Left: ¢ = 0.1, phase transition at v(P.T.) =
34. Right: q = 0.4, phase transition at v(P.T.) = 17.
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3.2 The phase transition as a function of g and m

How does the phase transition frequency v(P.T.) vary as a function of
the predictability ¢ and the embedding dimension m of the SFA-input
signal? Both parameters are varied systematically over a broad range
and the results are depicted in Fig. 4. First of all it is interesting to note
that the SFA algorithm, being basically parameter-free, works very well
over this broadly varying input material, which makes SFA a robust and
versatile algorithm.

A second remark is necessary concerning the SFA implementation
sfa-tk [1]: While it worked well for small embedding dimensions m,
larger m led quite inevitably to numerical instabilities resulting in wrong
”slow” signals y; which were neither slow nor did they respect the unit
variance condition (y?) = 1. We presented in [6] a slightly modified
implementation (closer along the lines of [12]) and based on SVD which
successfully avoids these numeric instabilities. This modified implemen-
tation is used throughout the experiments in this paper.

4. Discussion

It is important for driving force analysis with SFA to understand
the mechanisms by which the slowest signal is selected. If the driving
force contains two components of different frequencies, two interesting
things might happen: If the base frequency v is large enough then SFA
will return the slower component as the slowest signal. This is quite
remarkable, since SFA detects a signal with a smaller 7 than the driving
force itself. Recall that this slower component is not directly visible in
the driving force, only indirectly as the modulation. But after all, it is
also quite understandable: If we view the dynamical system as a two-
stage process where the slow component ~vg is considered as a modulating
force acting on the other (faster) component vr with the output of this
stage acting on the dynamical system, then in such a system description,
the slower component vg becomes directly visible.

Surprisingly, if we lower the base frequency vy, we reach the point
where the slow component comes ”out of sight” and the slowest signal
returned by SFA is well-aligned with the driving force itself (slow plus
fast component). Why is the slow component alone no longer detected
by SFA? We hypothesize that two reasons are responsible for this:

1. If we lower the base frequency vy, the fast component vz becomes
slower and thus contains less information within a given embedding
horizon m. This makes the reconstruction of the slow component
vs more and more noisy. We finally reach the point where for a
given embedding dimension m the smoother reconstruction of
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gets a smaller 1 (becomes slower) than the noisy reconstruction of
vs. Increasing m should make the reconstruction of vg smoother,
thus making vs again detectable as the slow component.

2. Another reason might be the chaotic nature of the logistic map. In
the chaotic region of the map w(t), noise is amplified and makes
the reconstruction of the slow component g noisier until it again
comes to the point where the noisy reconstruction has a larger n
than the (smoother) reconstruction of +. If this is true, then mov-
ing to a better predictable region of the logistic map (increasing
q) should make the slow component again detectable.

Both hypotheses are well-supported by the results shown in Fig. 4. On
the left-hand side we see the location of the phase transition. For most
input signals which are a function of ¢ and v; there seems to be a
sufficiently large m so that the slow component becomes detectable.
For ¢ = 0.7 this occurs already at very low frequencies. The curve for
g = 0.6 (not shown) is for m > 10 very similar to ¢ = 0.7, which is
well-understandable if we recall that all ¢ > 0.53 make the time series
long-term predictable, thus even a very slow subcomponent becomes
detectable. On the right-hand side of Fig. 4 we see that both methods,
increasing m or increasing ¢, finally lead to a reliable detection of the
slow subcomponent as it is claimed by our hypotheses.

Hypothesis 1 is also supported by the following experiment: If we
lower the frequency of the slow component ~vg but keep the fast compo-
nent yr the same, then SFA will always reliably detect the slow com-
ponent g, even if only a quarter of its wave length appears in the time
series data. This is because the same vyr allows a reconstruction of ~g
at always the same smoothness level.

Nonlinear Regression. Hypotheses 1 and 2 are also supported by
the following nonlinear regression experiment: For the set of nonlinear
basis functions used by SFA (e.g. monomials of degree 2) and for a
given output signal (e.g. ~ and 7g) we seek the best reconstruction
in the least-square sense. Decreasing m or g leads to more and more
noisy reconstructions of vg. We find empirically that quite precisely at
the same phase transition points as in Fig. 3 the reconstruction of ~g
gets a higher n (becomes less slow) than the reconstruction of 4. This
is remarkable since the slowness principle was not used at all in this
nonlinear regression experiment.

Connection to human perception.  Since SFA has been originally
developed as a model for neural information processing [10], it might be
natural to ask, whether the observed switch between components and
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Figure 4.  Left: Phase transition frequency v(P.T.) as a function of ¢ and m. Right:
Absolute values of correlation at fized vy = 40 when varying either m or q.

its phase transition has any parallel to human perception and motion
coordination. Several phenomena with switching effects are discussed in
the literature:

The well-known backward spinning-wheel illusion [8] occurs frequently
in movies or under stroboscopic lighting conditions and it shows the
transition from a fast forward rotation detection to a slow backward
rotation detection. This effect is usually explained by the snapshot-like
presentation of the percept which has ambiguous motion interpretations.
Somewhat less known is that a similar, although harder to perceive ef-
fect can occur under plain sunlight and direct view with the eye [5, 8].
No snapshot-like explanation is possible here, the percept is continous
having a greater resemblance to the smoothly varying driving force of
our SFA experiments. A possible explanation of the sunlight spinning-
wheel illusion is that rivalry between different motion detectors in the
brain occurs [5].

Another well-known phase transition occurs in bimanual motion co-
ordination when performing certain movements with the index fingers
of both hands [4]. For the observed phenomena there exists a theoreti-
cal model, the Haken-Kelso-Bunz model [3], which describes the phase
transition and certain hysteresis effects.

SFA has shown similar capabilities in the sense that the same setup
can learn to synchronize with different components of a driving force,
depending on the experimental conditions. It remains however to be
studied, whether one trained SFA system can (without further learn-
ing) switch between different components when applied to signals with
smoothly varying base frequency and whether a hysteresis effect can be
observed.
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5. Conclusion

In this paper we have investigated the notion of slowness in slow fea-
ture analysis (SFA). It has been verified that SFA can reliably detect
slow driving forces or their subcomponents over a broad range of pa-
rameters in nonstationary time series, even in the presence of chaotic
motion.

However it has also been seen that what is perceived as slow can
vary for driving forces made up of components on different time scales.
Depending on the embedding dimensions and the predictability of the
underlying dynamical system we observe phase transitions where the
slowest SFA-signal moves from alignment to a slow subcomponent to
alignment with the (faster varying) complete driving force. Notably,
when alignment to the slow subcomponent occurs, SFA is capable of
detecting slow signals with an n-indicator considerably lower than the
n-value of the true driving force. We found that the slow subcomponent
is lost precisely in the moment when its reconstruction in the expanded
function space used by SFA has more temporal variation than the re-
construction of the complete driving force.

In real world data it is often not possible to vary the base frequency
or the degree of nonlinearity in the observed dynamical system system-
atically. Therefore, one advice from the present study should be to vary
the embedding dimension over a broad range in order to detect possible
slow signals which otherwise might be hidden. In any case, SFA has
shown to be robustly working on a broad range of input data and it is
able to reveal subtle components in the driving forces, thus making it a
versatile tool for driving force detection.
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