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Abstract— Slow Feature Analysis (SFA) has been established
as a robust and versatile technique from the neurosciences to
learn slowly varying functions from quickly changing signals.
Recently, the method has been also applied to classification
tasks. Here we apply SFA for the first time to a time series
classification problem originating from gesture recognition. The
gestures used in our experiments are based on acceleration
signals of the Bluetooth Wiimote controller (Nintendo). We
show that SFA achieves results comparable to the well-known
Random Forest predictor in shorter computation time, given
a sufficient number of training patterns. However — and this
is a novelty to SFA classification — we discovered that SFA
requires the number of training patterns to be strictly greater
than the dimension of the nonlinear function space. If too few
patterns are available, we find that the model constructed by
SFA severely overfits and leads to high test set errors. We
analyze the reasons for overfitting and present a new solution
based on parametric bootstrap to overcome this problem.

I. INTRODUCTION

Slow Feature Analysis (SFA) is a new learning algorithm
emerging from neuroscience which is capable of learning
unsupervised new features or 'concepts’ from multidimen-
sional time signals. SFA has been originally developed in
context of an abstract model of unsupervised learning of
invariances in the visual system of vertebrates [Wis98] and
is described in detail in [WS02], [Wis03]. Although SFA is
inspired from neuroscience, it does not have the drawbacks
of conventional ANNs such as long training times or strong
dependencies on initial conditions. Instead, SFA is fast in
training and it has the potential to find hidden features out of
multidimensional signals, as has been shown impressively by
[Ber05] for handwritten-digit recognition. For these reasons
we apply SFA for the first time to a complex time series
classification problem originating from gesture recognition,
namely acceleration signals of the Nintendo Bluetooth Wi-
imote controller and observe several interesting facts when
applying this method to small data sets.

The inclusion of accelerometers in electronic devices such
as mobile phones or game controllers for gesture recognition
has become more and more popular in consumer electronics.
While in the nineties, the recognition of gestures placed a
high demand on hardware and was only present in the labs
of research institutes, gesture recognition has now made its
way into the homes. With over 50 million units sold [Shi09]
the reason for the success of the Nintendo Wii console can
be connected to the novel type of controller handling, which
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clearly differs from traditional game controllers. But even
though there exist a large number of games for the Nintendo
Wii, recognition of complex gestures is still a challenging
task. In spite of the large number of classification approaches
using the Wiimote controller with the infrared device, e.g. the
work from Lee [Lee08], we focus here on approaches where
no infrared device is used. Although the task becomes more
difficult then, we are not so dependent on the Wii structure
and can easily transfer our approach to other applications.
This can be of high importance when the use of infrared
is not possible for any reason and only acceleration based
sensors are available. Similar works exist, e.g., a recent study
by Schlomer er al. [SPHBOS8], who present a classification
tool based on a Hidden Markov Chain approach and Liu et
al. [LWT09] who apply personalized gesture recognition to a
user authentication problem. Rehm et al. [RBAO8] describe
classification of Wii gestures with different methods and
expose the influence of cultural behaviours in gestures. Mal-
mestig and Sundberg [MSO08] use the Wiimote to recognize
gestures for sign language recognition with good results. The
commercial product LiveMove2 [Inc09] integrates features of
the Nintendo Motion Plus addon but no benchmark results
are available for publicity.

The Slow Feature Analysis and Random Forest algorithms
are briefly introduced in the next section. We also give
detailed information about the acquisition and preparation of
the gathered data. The experimental results are described in
Sec. 3 and discussed in Sec. 4. We finish with a conclusion of
the results and give an outlook of our future work in Sec. 5.

II. METHODS
A. Slow Feature Analysis

Slow Feature Analysis has been invented by Wiskott
and Sejnowski [WS02], [Wis03] and later extended by
Berkes [Ber05] for classification. The original SFA approach
for time series analysis is defined as follows: For a multivari-
ate time series signal Z(t) where ¢ indicates time, find the set
of real-valued output functions ¢ (%), g2(Z), ..., gn (Z), such
that each output function

y;(t) = g;(Z(t)) M
minimally changes in time!:
Ay;(t) = (4;*); is minimal 2)

To exclude trivial solutions we add some constraints:
(yj)+ = 0 (zero mean) 3)

1(.)¢ means average over time and 7 indicates the time derivative.



<y]2>t =1 (unit variance) 4)

(Yry;)t = 0 (decorrelation for k > j) (5)

The third equation is only relevant from the second slow
signal on and higher ones to prevent higher signals from
learning features already represented by slower signals.

For arbitrary functions this problem is difficult to solve,
but SFA finds a solution by expanding the input signal
into a nonlinear function space by applying certain basis
functions, e.g. monomials of degree d. This expanded signal
is sphered to fulfill the constraints of equations (3), (4) and
(5). Then SFA calculates the time derivative of the sphered
expanded signal and determines from its covariance matrix
the normalized eigenvector with the smallest eigenvalue.
Finally the sphered expanded signal is projected onto this
eigenvector to obtain the slowest output signal y ().

Berkes [Ber0S] has extended this approach to classify a
set of handwritten digits. The main idea of this extension is
to create many small time series out of the class patterns.
Let us assume that for a K-class problem each class ¢, €
{c1,...,cx} has got N, patterns. We then reformulate the
A-objective function (2) for SFA with distinct indices k& and
[ as the mean of the difference over all possible pairs:
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where 1,4, denotes the total count of all pairs and p,(fm)

and pl(m) represent the k-th and [-th class pattern of class
m. In our case such a pattern can be understood as a
gesture, consisting of a concatenated signal from the 3 axis
accelerometer of the Wiimote controller. Constraints (3), (4)
and (5) can be reformulated then by substituting the average
over time with the average over all patterns, such that the
learned functions are going to have zero mean, unit variance
and be decorrelated [Ber05].

As [Ber05] has shown, the (K — 1) slowest SFA output
signals are expected to have a low intra-class variation, but
usually a high inter-class variation. Therefore it is natural
to train a standard Gaussian classifier on the slowest (K —
1) SFA outputs produced from the training records. The
Gaussian classifier will seek an optimal position and shape of
a Gauss function for each class in this (K — 1)-dimensional
space.

All SFA calculations were performed with the extended
MATLAB toolkit sfa-tk V2.0 from [Kon09], [Ber05].

B. Random Forest

The Random Forest (RF) predictor by Breiman [Bre01] is
an extension of the well-known classification and regression
trees (CART) [BFSO84]. The method is a combination of
several tree predictors and hence is comparable to other
ensemble methods as bagging or boosting. We use here the

TABLE I
ABSOLUTE EXECUTION TIMES (IN SECONDS) FOR FIVE EXAMPLE
GESTURES PERFORMED BY TEN TEST PERSONS. EACH GESTURE WAS
RECORDED TEN TIMES.

Gesture Minimum  Median Maximum  Std.Dev.
Circle 0.773 1.607 4914 0.343
Throw 0416 0.957 2.306 0.471
Frisbee 0.376 0.883 2.036 0.353
Bowling  0.530 1.325 2.303 0.377
Z 0.980 1.607 4.280 0.453

R-implementation of Random Forest [LWO02]. It has been
shown in the past that the algorithm is quite robust to
overfitting and noise, that is why we use it as a comparison
to the SFA approach.

Fig. 1. Wiimote Controller

C. Data Acquisition and Data Preparation

Nintendo has invented the Wiimote Controller (Fig. 1)
as a Bluetooth compliant game controller for the Nintendo
Wii console. In its basic version an acceleration sensor, a
so called accelerometer, is implemented inside the device,
as well as one infrared device for position determination
of the controller during games. Additionally there exists
an extension to the Wiimote, the Wii Motion Plus which
contains two gyrometers for calculation of angular velocities.
In order to keep things as simple as possible with respect
to the sensor and hardware side we neither use the sensor
information from the Wii infrared sensor (sensor bar) nor
from the Wii Motion Plus sensors. As observed in other
studies by Schlomer et al. [SPHB08] and Rehm er al.
[RBAOS] we expect to get comparably good and accurate
recognition rates with the sensor data solely taken from the
accelerometer.

We recorded five different gestures from ten test per-
sons with the Avetana Bluetooth library together with a
modified implementation of the Wiigee framework by Pop-
pinga [PopO7b]. Accelerometer data were recorded with
their timestamps at a rate of approximately 100 Hz, not
equidistantly delivered from the Bluetooth interface. In a
preliminary data preparation step we interpolated the ac-
celerometer data at 300 equidistant time points between the
first and the last timestamp. A first view on the data revealed
that the patterns usually vary strongly in execution time and



amplitude; even execution times from the same person seem
to be rather volatile. In Tab. I we present a summary of
the execution times of a single gesture set, resulting from
the ten test persons. Due to the large variance we conduct
a smoothing of the gestures by taking the mean of each
10 consecutive data points, resulting in a set of n = 30
points for each accelerometer dimension Zucc(t), Yace(t)
and z,..(t). Another preliminary observation was that the
gestures from different persons usually vary in the size of
the amplitude. Hence, as an additional operator we use an
amplitude normalization by dividing the accelerometer data
of each gesture by its standard deviation. In Fig. 2 the
difference between the gesture signals before and after data
preparation can be seen. It is clearly visible that despite
the normalization steps taken, there is still considerable
variation within the same gesture type from the same person.
Although there is only a small difference between the time-
normalized gestures in the middle column and the gestures
with amplitude normalization in the right column, the results
became slightly better with amplitude normalization for all
classifiers.

Fig. 2.
Left column: Tqce, Yace and zqce acceleration sensor values before time-
and amplitude-normalization. Middle column: Sensor values after time
normalization. Right column: Final curves for classification after amplitude
normalization.

Sensor data for all frisbee gesture patterns from one person.

In order to produce one vector for each gesture we
concatenate the multivariate time series data from the three
acceleration sensors Zace(t)s Yace(t), Zace(t) into a single
pattern X (t) = (Zace(t) B Yace(t) @ Zace(t)), where &
denotes concatenation. X () has the dimension 3n = 90.
We concatenate the raw gesture execution time in seconds
as the last dimension, making X (¢) finally a 3n + 1 = 91-
dimensional vector.

Since 91 dimensions as input to SFA lead to very large
processing times and memory requirements, we reduce the
dimensions as a final data preparation step by PCA to the n,,,
dimensions which carry most of the variance in the training
data. Usually we let n,, vary between 3 and 20, since higher
values are computationally expensive and lower values have
a negative impact on the classification. In the case of RF we
do not need this dimension reduction.

III. EXPERIMENTAL RESULTS

Experimental Setup

The gestures recorded for recognition were performed by
each person ten times. The participants had to push and hold
a button on the Wiimote while performing the gestures. The
recorded gestures were passed through the data preparation
steps as described in Sec. II-C. These preprocessed patterns
were passed into the SFA and Random Forest classifiers. The
gesture set used in our work is thought to be almost realistic
for the application in games, since a set of five common
gestures is used:

o Circle,

e Throw,

o Bowling,

o Frisbee,

e Z (the letter ’Z’ painted in the air)

In future work we plan to extend this choice to a more
complex gesture set in order to find out how well similar
looking gestures can be classified. The acceleration values
for several patterns of the frisbee gesture are exemplarily
plotted in Fig. 2.

Both SFA and RF need some number of training and test
data in advance. Since classification results usually depend
highly on the chosen division of training and test data we
differ in the following between different recognition tasks
with respect to test and training sets:

A. Random Sampling: Classification on the recorded ges-
tures with random sampled test and training set. 10-fold
cross validation is used to certify the gathered results.

B. Recognition of unseen persons: Partitioning of training
and test set by leaving all gestures from a certain person
out of the training set. This partitioning is done for all
persons sequentially.

C. Small number of patterns: Recognition of gestures, when
only a marginal number of training patterns is available.

A. Random Sampling

In Fig. 3 and Tab. II we show results of 10-fold cross
validation (CV) from ten independent runs on randomly
sampled data. The 716 gestures were divided into 10 folds
containing 71 or 72 records. Each fold in turn was considered
as test data while the remaining data were training data. The
test error rate on unseen gestures decreases quickly to values
around 2% as the PCA-reduced dimension reaches ny, = 12
or above. As a comparision we directly trained a Gaussian
classifier on the same preprocessed input of dimension n,,,
and tested its performance on the same unseen test data. For
npp > 12 the pure Gaussian classifier is worse by a factor
of 6, showing the strength of the feature combinations found
unsupervisedly by SFA. We also show in Fig. 3 and Tab. II
the results of RF (blue dash-dotted line). RF is slightly better
for n,, =12, but for n,, =15 and above SFA and RF are very
similar.
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Fig. 3. Error rates achieved with SFA for different preprocessed dimensions
npp used after PCA preprocessing. Shown are the averages out of 10 runs
with different seeds for the CV fold generation. We show for comparision
the mean RF error rate 2.09% from Tab. II (independent of npp).

TABLE I
ERROR RATES OBTAINED FROM TEN RUNS OF 10-FOLD CROSS
VALIDATION ON RANDOM SAMPLED GESTURE DATA.

Classifier Best Mean  Worst  Std.Dev.
SFA(npp =12) 2.37 2.82 3.21 0.25
SFA(npp =15) 1.68 2.03 2.24 0.18
RF 1.54 2.09 2.37 0.30
Gauss 13.55 14.02 14.39 0.22

B. Classification of Gestures from New Persons

In classification with random sampling of training and
test sets it is indirectly presumed that the training data is
representative for the test set. However, in gesture recognition
it is of high importance that gestures of persons who never
occured in the training data can also be recognized by
the classifier. Rehm er al. [RBAOS] stressed that gestures
are influenced by the expressivity of the user. Factors for
expressivity are e.g. speed, space used for the gesture and
the cultural background. Due to the large differences between
several persons this may be a quite difficult task for any clas-
sifier. Nevertheless this experiment can be of high relevance
for the game industry, because when a good classification is
possible, no person-specific calibration will be needed.

In Fig. 4 we show the results of a cross validation
experiment for SFA with parametric bootstrap (SFA+PB,
see Sec. IV), Gauss-Classifier and RF when the gestures
of each person in turn are put completely into the test set.
As expected, the error rates are considerably higher than
with random sampling. Tab. III shows the error rate when
averaging over all gestures which are {15.3, 14.8, 19.6}%
for {SFA, RF, Gauss}, resp. But the most striking feature
of Fig. 4 is the great variety of error rates between persons.
Some persons, e.g. ID 127, 129, 130, are extremely well
classifiable for SFA and RF, while others, most prominently
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Fig. 4. Error rates when classifying gestures of persons unseen in the

training set (SFA+PB see Sec. IV, Gauss: Gaussian Classifier, RF: Random
Forest).

the person with ID 128, are hard to classify for all algorithms.
Presumably this person has very different characteristics
when performing gestures, but further research is necessary
to analyze this more quantitatively.

C. Marginal Training Data

Sometimes data is rare, e.g. for classification with few
observations. In our case there were only ten patterns per
person available, which makes training more difficult for
function learning classifiers as SFA or ANNs. The gener-
alization ability for such methods usually increases with
more training examples. Surprisingly we encountered a SFA
specific problem, namely when only a small number of
training data is available for classification and this number
is even smaller than the defined expanded function space
denoted by D,,,.

To clarify this issue we applied SFA and RF as reference
methods in five runs with different random seeds to the
same set of gestures. The ratio of training and test set was
varied starting with a high number of training data and low
number of test data and then sequentially decreasing the
training data and increasing the test data respectively. The
final classification results for this experiment can be seen in
Fig. 5(a) for SFA and in Fig. 5(b) for RF.

Both plots show that the classification rates of the two
classifiers are promising with enough training data available
(e.g. > 120 training patterns). However, with less training
patterns especially the SFA detection rates become quite
unsatisfying. The error rate increases immensely for < 90
training patterns, while the error on the training set constantly
stays at zero level. The random forest predictor is not so
largely affected by this problem, because the subspaces de-
termined during classification should still be correct, though
the results are not so accurate any longer. But as a peculiarity
of the RF classifier the error rates on training and test set
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Fig. 5. (a) Error rates achieved with SFA in the interval of [40, 200] training patterns (parameter setting: npp, = 12). The test set error suddenly increases
when the number of patterns is too small for a sufficient rank of the covariance matrix (< 90 patterns), while the error on the training set stays constantly
near zero. (b) The RF error rates also increase with fewer training patterns, but do not rise to an unnatural high level in contrast to SFA. Additionally, the

training set error is a good predictor for the test set error on unseen data.

correlate with each other. This observation is an indicator for
the robustness against overfitting and is well supported by the
almost linear decreasing classification error in Fig. 5(b) when
adding more training data.

Why is this not the case for the classification with SFA?
The answer to this question becomes obvious when we look
into SFA’s computation of the output signal. The algorithm
computes the covariance matrix of the expanded input signal
and determines its eigenvalues. We show in the Appendix
that a certain covariance matrix becomes rank deficient if
too few training examples are available. This leads to an
underdetermined linear system to be solved by the algorithm.
As a necessary precondition to avoid rank deficiency in SFA,
the following constraint has to be met (see Appendix):

N>D,,+K (7

where N is the number of patterns available for training and
K is the number of classes and D,,, is the dimension of the
nonlinear expanded function space used by SFA.

Fig. 6(a) shows the results from SFA on a sufficient
number of training records with 121 training records (from
two persons) which is enough for D,, = 77. There is some
intra-class variation and a sharp inter-class separation, at
least for the slower signals. A Gaussian classifier trained on
Y1,---,Y4 can learn quite robustly to separate the 5 classes.
In contrast, Fig. 6(b) shows the results from SFA when
there are too few training records. Here the number of 46
training records is much smaller than D,, + K = 82 as
required by Eq. (7). Consequently we get rank(Cov(?)) =
rank(Cov(?)) = 46 — 1, i. e. the matrices are rank deficient
and the SFA ouput signals show absolutely no intra-class
variation. The SFA model will select any of the 77 — 45
dimensions not within the eigenvector basis of Cov(%), and
almost surely this dimension will be meaningless for the test
data. As a result we get high error rates (60%-100%) on
independent test data.
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Fig. 7. SFA with marginal data: Too high np, yield unsatisfactory error

rates. Experimental settings: 74 gestures from one person (ID 122), cross
validation with 10 folds. Shown is the average out of 5 runs with different
seeds for the fold generation.

IV. DISCUSSION

While SFA works well in classification experiments with
sufficient training data, where it achieves results comparable
to the well-known Random Forest classifier, it shows severe
limitations on cases with marginal training data. Are there
possibilities to overcome these limitations? There are two
options:

1) Small n,,: We have shown that N > D, + K (see

Appendix or Eq. (7)) is a necessary condition to get
a full-rank covariance matrix from N training records.
For monomials of degree 2 the relation

Tpp(Mpp + 1)

5 ®)

Dyp = npp +
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Training data output of the two slowest SFA signals for D, = 77 on the 5-class gesture classification problem when there are (a) sufficient

training data (121 records) The x-axis shows the training record index. For better visualization the training records are ordered: first 35 class-1 records
(leftmost white area), then 14 class-2 records (grey area) and so on up to class 5 (rightmost white area). (b) Too few training data (only 46 records, where
at least Dyp + K = 82 records are required). The output on the training data shows severe overfitting.
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Fig. 8. Bootstrapping SFA in the case of marginal data: SFA with too few
training data (n¢rqin = 66, Ncopies = 0) gets very high test set errors
(approx. 80%). By applying a statistical bootstrap, which adds Ncopies
noisy replica to the 66 training data, we decrease the SFA test set error
dramatically to values around 2% (thick line "SFA+Gauss”). This is by a
factor of 3 smaller than the test set error from a Gaussian classifier (thin line
“Gauss only”). Experimental settings: Same as Fig. 7, additionally npp =
12 (hence Dyp = 90) and ope = 0.8.

holds. Therefore, one option is to decrease n,, until the
constraint of Eq. (7) is fulfilled. An example is shown
in Fig. 7, where the task was to classify the gestures of
one person: For each cross validation run we have 66 or
67 training data (90% of 74 gesture records in 10-fold
cross validation). This leads to the necessary condition
D, <66—5 =59 orn,, <9 acc. to Eq. (8), which is
confirmed by the steep incline of the red curve between
npp = 9 and 10 in Fig. 7. Best results are obtained
with np, € {5,6}. — This option works, but it has the
drawback that the number of information transferable to
the classification algorithm is quite severely limited to
5 or 6 input dimensions.

2) SFA+PB: Another option is to keep ny, at its desired
value, but to enrich the training data by parametric
bootstrap [HTFO1, pp. 264]: This method increases the
number of training instances by adding Ngpies new
records which are 'noisy copies’ of original training
records X: Here we estimate first the centroid ugm) for
each class m and the standard deviation o (X;) for each
component X; of the data records X. Then we form
new patterns whose ith component is given by

X" =™ 1 0,0 74 )

where Z; is a random number drawn from the normal
distribution N(0,0(X;)?) and o, is a free strength
parameter. Fig. 8 shows the resulting CV error rates
as a function of Ng,pies. We expect to need at least
Neopies = 90 + 5 — 66 = 29 additional records and
we find from Fig. 8 that the steepest decline of the
red curve is exactly at this value. However, to get a
low error rate, Ncopies should be higher, between 150
and 300. Note that the parametric bootstrap affects only
the training data, and no changes to the test data are
made. Therefore the CV test error rate remains realistic.
— The option parametric bootstrap allows to put more
of the original training information into the SFA model
since we can work with n,, =12 or higher and are not
restricted to n,, =6. We name this enhanced algorithm
SFA+PB.

Parameter sensitivity =~ We ran several tests with other
values of parameter o,,.. The algorithm is not very sensitive
to this parameter, since we get nearly identical results if we
halve or double the value, ie. 0,. = 0.4 or o,. = 1.6.
But the right order of maginitude is important: With too
small values, e.g. 0, = 0.1, the convergence as a function
of Neopies 18 very slow, while with too large values, e.g.
One = 3.2, the error rates rise after a small dip quickly to
unsatisfactory high error rates of 25% and above.

Best results  As a summary we show in Tab. III for the
three tasks A), B) and C) (cf. Sec. III) and for our three
algorithms the best error rates. (SFA-settings: n,, = 12,
One = 0.8 plus Negpies = {0,200,200} in cases {A),



TABLE III
BEST CROSS VALIDATION TEST SET ERROR RATES FOR THE THREE
ALGORITHMS SFA+PB, RF AND GAUSSIAN CLASSIFIER.

Settings CV test set error

SFA+PB_ | RF | Gaussian
A) random sampling
(716 records) (2.940.3)% (2.1£0.3)% (14.0£0.6)%
B) unseen persons
(716 records) (153£14.9)%| (14.8+15.3)%| (19.6£11.3)%
©) marginal data (741 ) 3.1 1oy | 2.8+04% | (5.0£1.7)%
records, 1 person)

TABLE IV
CPU TIMES FOR SFA+PB, RF AND HIDDEN MARKOV [POPO7A]. N 1s
THE NUMBER OF RECORDS FOR EACH TASK.

Task N CPU time [sec]
RF SFA+PB [PopO7a]
npp =12 | npp =15
train 74 0.55 0.52 0.82 60
train 716 5.60 5.16 8.00 -
apply 64500 6.61 1.09 1.89 -

B), O)}, resp. RF settings: 500 trees, mt ry=3). The shown
results are averages and standard deviations from 10 runs
with randomly different cross validation sets in cases A)
and C). With the enhancement of parametric bootstrap the
resulting CV test set errors from SFA+PB and RF are similar.
They are in cases A) and C) considerably better than a
Gaussian classifier (by a factor of 2-6).

Case B) has only one cross validation index (defined
by the person ID). The standard deviation is in this case
taken with respect to the different persons. It is very large
(approximately as large as the CV error itself), because
there is a large inter-person variation as already described
in connection with Fig. 4.

As a surprise we found that case B) also benefits from
the parametric bootstrap enhancement which was originally
designed only for case C). If we run case B) without
bootstrap (Nopies = 0 instead of 200) we get a CV error
rate of 17.7% instead of 15.3%. We assume that the variation
introduced by the noisy copies of the parametric bootstrap is
beneficial for the generalization to unseen persons.

Other approaches We compared our results to another
gesture recognition engine in order to exclude that our
gesture set is perhaps ’easier’ than others. The Hidden
Markov model [SPHBOS] is available as software library
Wiigee [Pop07a] and we used it on a small set of our gestures
(74 patterns). The error rate on this training set was 26%
which has to be compared with the RF training set error of
about 17% from Fig. 5(b) for the same training patterns (and
with 15% for SFA+PB). Wiigee tests with larger training
sets or on unseen test patterns were currently not possible
due to memory and time restrictions. We conclude however
that our gestures do not seem to be fundamentally ’easier’
for other classifiers. — As another comparision we performed
the ”same-person CV error’-task of [SPHBOS] on our data
and with our SFA+PB model and got a (2.3 £ 1.5)% CV

error rate where [SPHBOS] reports 10%.

Performance In Tab. IV we show the CPU times for
SFA and RF. Both, RF and SFA, are quite fast algorithms,
since the training takes only about 0.5 seconds for 74
records and 5 seconds for 716 records on a standard laptop
processor?. This is faster by a factor of 100 compared to the
Hidden Markov recognition engine Wiigee [PopO7a], which
we tested with the same 74 patterns. The training time for
the Gaussian classifier is negligible, actually it is contained
in the reported SFA time. The times for SFA include the
extra 200 parametric bootstrap records. They are based on
an unoptimized MATLAB-implementation, so there may be
some room for improvements. Since a trained SFA model
has a very simple structure, we found that applying a trained
model to new gestures (last line in Tab. IV) is for SFA 3-6
times faster than for RF.

Importance of Data Preparation We finally inves-
tigated the impact of the preliminary normalization steps
described in Sec. II-C on the overall accuracy. As an example
we skipped the amplitude normalization and repeated the
experiments of Tab. III. The results of SFA+PB were 6.8% in
case A and 3.2% in case C, i.e. they got considerably worse,
roughly by a factor of 2. We conclude that data preparation
is important, even if visually the difference between column
2 and column 3 in Fig. 2 appears small.

V. CONCLUSION AND OUTLOOK

In this paper we applied Slow Feature Analysis (SFA) to
a time series classification problem originating from gesture
recognition. SFA has proven to be considerably better (by a
factor of 2-6) than a simple Gaussian classifier. Surprisingly
we experienced that small problems are more difficult for
SFA than larger problems. More precisely, the number of
training records has a large impact on the classification
performance for independent test records. If a sufficient
number of data is available to train the classifier, the results
of SFA are comparable to other state-of-the-art methods like
the Random Forest (RF) predictor. But for marginal training
data — more precisely: if the number of training patterns is
lower than the dimension of the expanded function space of
SFA — the algorithm severely overfits, which causes a high
classification error on the test set.

We proposed here an enhancement to SFA for the case of
marginal data, which is based on parametric bootstrapping.
With that we got SFA results comparable or better than RF
results on the same data. The parametric bootstrap was found
to be beneficial for generalization to unseen persons, too.

We used here a very simple — however broadly applicable
— parametric model for the bootstrap, namely a model based
on a Gaussian noise distribution. For the gesture classification
task we plan to investigate as future work a more specific
parametric model where the creation of virtual patterns is
based on gesture-specific geometric operators, e.g. rotations
of real class patterns, or timeline operators like shift of start
and stop point. We expect that with such virtual patterns

2Intel® Core2 Duo CPU T7700, 2.4GHz.



the generalization capabilities, especially towards unseen
persons, can be enhanced.

A strength of SFA is its capability to analyze unsupervis-
edly continuous time streams. Therefore, a future application
for SFA in gesture analysis is the automatic separation of
gesture- and non-gesture-periods on the continuous timeline.
At the moment, most gesture-recording devices require an
additional button to be pressed while the gesture is per-
formed. If SFA were able to distinguish gesture and non-
gesture-periods this would permit continuous online gesture
recognition inside applications. — A third line of research is
to analyze in more detail, why some gestures / some persons
are harder to classify than others.

In summary, the neuro-inspired algorithm SFA has shown
to be fast and precise on classification tasks and it needs only
few parameters. Due to its simple projection approach, the
application of the trained model is 3-6 times faster than the
already fast RF method. With SFA+PB, our new parametric-
bootstrap extension, the algorithm can also deal with few
training data, which was not possible for plain SFA.
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APPENDIX: LOWER BOUND ON THE NUMBER OF
TRAINING PATTERNS

Given a classification problem with N patterns (™) from
K classes m = 1,..., K: After SFA-expansion each pattern
#(™) is transformed to a point 7™ in the nonlinear expanded
function space of SFA with dimension D,,,. The SFA matrix
C := Cov(A%) is formed from all intra-class difference
vectors A7 = ﬁfm) —17§m), where ﬁgm) and ﬁ;m) are patterns
belonging to the same class m. We show here that matrix C'
is rank deficient as soon as N — K < Dy,

Lemma:

rank(C) < min(D,,, N — K) (10)

Proof: Each of the N patterns belongs to one class m.
If N,, is the number of patterns belonging to class m =
1,..., K, we have

N+ Ny+...+ Ng=N.

The difference vectors Av = o for class m will
span at most an (XN,,, — 1)-dimensional subspace, since the
N,,, points 17'§m) can not span more than N,, —1 dimensions.
The matrix C' is formed from these subspaces and thus can
not have a rank larger than the direct sum of these subspaces:

rank(C) < Ny —1+ Ny —1+ ...+ Ny —1=N — K.

Since on the other hand C'is a square matrix with D, rows
and columns, it can not have a rank larger than D,,. In
combination this proves the Lemma above.

Similarly, it is easy to see by spezializing to K = 1 that

rank(Cov(v)) < N — 1.

If rank(C) = N — K < D,, then C is rank deficient.
There remain at least D, — (N — K) dimensions perpen-
dicular to all difference vectors. One of the directions in
this perpendicular subspace is arbitrarily picked by SFA but
it is almost surely not the best direction for slow variation.
Therefore we will get 0% training set error (by construction),
but with high probability a large test set error. In other words,

N=Dy+K (11)

is the minimum number of training records required to avoid
rank deficiency and overfitting.
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