Dienstag, November 20, 2001 08:46

Round-Trip Prototyping based on Integrated Functional and User
Interface Requirements Specifications

Andreas Homrighausen, Hans-Werner Six, Mario Winter
University of Hagen, Dept. of CS, Hagen, Germany

Requirements engineering in the new millennium is facing different device and user interface requirements. The
an increasing diversity of computerized devices comprising diversity of devices ranges from narrowband devices,
an increasing diversity of interaction styles for an including cellular phones and pagers, up to workstations
increasing diversity of user groups. Thus the incorporation with high resolution graphic displays, while the diversity of

of user interface requirements into software requirements interaction styles ranges from the deck/card organizational
specifications becomes more and more mandatory.metaphor up to high sophisticated multi-window graphical

Validating these requirements specifications with hand user interfaces. Finally, user groups range from incidental
made, throw away prototypes is not only expensive, butto professional ones. Hence, as already pointed out in [16],
also bears the danger that validation results are not a meaningful software requirements specification (SRS) in
accurately fed back into the requirements specification. In such application domains must sufficiently take into

this paper, we propose an enhancement of the requirementaccount user interface requirements.

specification metho&coresfor an explicit capturing of — For practical use, it is important that abstraction level and
user interface requirements. The advantages of themodelling constructs of functional and user interface
approach are threefold. First, the user interface requirements specifications match well such that they can
requirements specification is UML-compliant and pe composed into an integrated overall specification.
integrated into the functional requirements specification. nporeover, like any suitable SRS such an entire

Second, prototypes for validation purposes can semi-gpecification must support validation, verification, and test
automatically be generated. Third, the model based processes.

generation of prototypes allows for “round-trip
prototyping“ such that manual changes of the prototype
during the validation process are automatically fed back
into the requirements specification.

To achieve these goals, we have enhana@oR&S[21], an
approach for a UML-based description of the functional,
behavioural, and structural system requirements, by
i) i essential elements ofLBID [20], a specification method
Keywords: Requirements engineering; User Interface for the requirements of direct manipulation user interfaces.
Requirements; ~ UML; Prototyping; Round-Trip e call the resulting integrated SRS framewatioSes+.

Prototyping; Validation The original $orREsmethod provides a refinement of use
cases (actually of the use case behaviour) to get a proper
. coupling of use cases and domain class model which
1 Introduction allows for consistency and completeness checks of the
T o . multi model specifications. Concerning the validation
Due to the “ubiquitous computing® paradigm, the new ,.ocess, Soresprovides inspections and walkthroughs of

millennium opens with an increasing diversity of (pysiness) scenarios [17][19] which are recommended
computerized devices comprising an increasing diversity of | 5jigation means [4][25][38].

interaction styles for an increasing diversity of user groups . . L . .
[26]. For example, modern eBusiness domains demand forSiNg SORESIN a couple of applications with different

application families with shared functional cores but vastly gg‘rﬂzes\;vg:lz:zgts'gg Sé¥let?1,eaT/iliLéz?ii)r?rosjr?)i er:jﬁerevlzeii?d

- _ o o although we provided domain specific pictograms and
Correspondence and offprint requests Mario Winter, FernUniversitat screen mock-ups sometimes the imagination of the users

Hagen, Prakt. Inf. 11/ 1Z, Feithstr. 142, D-58084 Hagen, Germany. Email: . . .
mario.winter@fernuni-hagen.de was overstrained and a more tangible representation

2 Round-Trip Prototyping for the Validation of Requirements Specifications

seemed desirable. Second, wrong or missing requirementselements of S8ORES [21], namely actors and use cases,
which were detected during the validation and materialized activity graphs, and the domain class model.
by changed pictures or mock-ups, did not always trigger

the necessary changes of the requirements specifications. . .
y g d P According to the UML [29], actors characterize roles

Prototyping is usually recommended as a more appropriate,|aveq by external objects which interact with the system
validation technique in such a context. In requirements ;¢ part of a coherent work unit (a use case)usk case
engineering for information syéstems, often eXIPIOra.toryldescribes a high level task which should be related to a
presentation prototypes and sometimes functional n,qicylar goal [28] of its participating actors. The
prototypes are used to _valldate the SRS [2][11]: While {nctional profile of a use case comprises usage frequency,
presentation prototypes illustrate how an application may citicality, and some risk factorsRf, how difficult to
solve given requirements from a user interface point of implement, Rg, publicity, sales arguments, arRh, how
view, functional prototypes implement important parts of 5y dependencies). Additionally we add to each use case
bo”;.’ the user interface and the functionality of the e minimal interaction style requirements like desktop/
application. _ _ _ WIMP, navigational (HTML), or cardbox (WML).
Unfortunately, developing a meaningful prototype is a hard tha UmL proposes theactivity graph concept for the

and expensive work to do [32]. A purely generative gnecification of processes involving one or more classifiers
approach of building prototypes needs a detailed 159 |n [21] we extend activity graphs to meet the needs

specification and does not allow for an easy change or¢, 5 gyitable modelling of use case behaviour. We describe
extension of prototypes during validation sessions. Hand g.tions within activity graphs more precisely by

made throw away presentation prototypes are also costly t%troducing three stereotypes. An action stereotyped

develop and bear the danger that changes of the prototyp&ontextual action is performed by an actor without the

are not consistently fed back .into“the SRS. As pointed out help of the system. An action stereotypédteraction is
by Ravid and Berry, the question "When the prototype and q,nnorted or carried out by the system. Theaero
the SRS disagree, which do one believe?* often arises [30]. 5 tions stereotype reflects theinelude> and <extend

To tackle the problems mentioned above, we extendrelationships between use cases in the context of activity
Scoresby RuID user interface modelling elements in a graphs by "calling” or "activating" the activity graph of the
UML-compliant way. FEUID captures the static structure of associated use case. The stereotygueay in actions refers

the user interface (a basic description of scenes, e.gto an (anonymous) instance or “role® [6] of an actor
windows, and their relationships), the basic dynamic involved in an action.

behaviour (e.g. the navigation structure), and (parts of) the :
domain objects to be presented [20]. Before gettingii 2.2. Domain Class Model

elements integrated intoccBREswe had to refine them for ~ The domain class model in the sense of Jacobson et al. [17]
this purpose. comprises the most important types of objects which

represent "things" that exist or events that occur in the
context in which the system works. Inc8Res [21], for
each use case and each interaction in the activity graphs we
determine a so-calle¢lass scopedenoting the set of
(domain) classes involved in its execution, i.e. classes with
instances being created, retrieved, activated, updated, or
deleted. Furthermore we balance activity graphs and the
class model such that for eachnteraction» in the activity
graphs a so-calledoot classexists that provides &ot
operation accomplishing the interaction> in the class
model.

Running Example: We take WEBADMIN, a virtual

. ; . X university [7] component for the web-based administration
Scores while section 3 is devoted to the refinement of of events at the FermUniversitit Hagen, the German

FLUID elements and their integration int@SRES Section distance teaching university, as running example.

4 deals with prototyping and explains the round-trip \yepnpvin covers the scheduling of, registration for, and
prototyping process. Section 5 summarizes our experlence%wcomplishment of written examinations and seminars.

with the prototype based validation. Section 6 concerns the) T ;
related work and section 7 concludes the paper. Students can attend written examinations at two different

dates at some 10 different sites in Germany, Austria, and
Switzerland. In the left part of Fig. 1, the use case diagram
for the registration functionality of WBADMIN is shown.

We identify the actor Student and the use cases

2.1. Actors, Use Cases, and Activity Graphs

The resulting integrated metho@SRES+ allows not only

for a combined specification of functional and user
interface requirements but also — mainly due twib —

for a cheap, semi-automatic construction of exploratory,
horizontal (presentation) prototypes for different devices
and interaction styles. Moreover, because of the traceability
of the prototype construction processround-trip
prototypind is carried into effect and the requirements
specification can automatically be reconciled with manual
changes of the prototype.

The paper is structured as follows. Section 2 briefly
reviews the specification of functional requirements with

2 Functional Requirements

In this section we briefly review the basic modelling

A. Homrighausen, H.-W. Six, M. Winter 3

Exam Registration ‘ []
Written Exam «refine» Select
Registration - — — § ~ ~ | Lecture
~
~
P
-
— Identification S
\ [0
Select Site | | Select Sne
:Student 1st Exam 2nd Exam
Student
Cancel
Registration
—

Fig. 1.Use case diagram and activity graph for use vagen Exam Registration

Identification, Written Exam Registration, and Cancel 3 User Interface Requirements

Registration. Fig. 2 provides a textual description of the use

case Written Exam Registration. Fig. 3 depicts some As explained in the introduction, a suitable SRS should
domain classes. The class scope of the use casénclude the basic characteristics of the user interface,
WrittenExamRegistration consists of the classeBvent, among them the static structure, the basic dynamic
Lecture, WrittenExam, andRegistration. behaviour, and usability aspects. It may simply comprise a
The activity graph in the right part of Fig. 1 refines use case /ISt f do's and don’ts on how the system will appear to the
Written Exam Registration. A student can (repeatedly) YS€r:

select a lecture and registrate for the first and/or the secondlo specify user interface requirements more precisely and
examination of this lecture at a particular site. The to support the convenient construction of presentation

interactionsSelect Site 1st Exam andSelect Site 2nd Exam prototypes for validation purposes, we exploitib [20].
invoke their corresponding root operatiorgisterTo() As a user interface analysis (UIA) method U captures
defined in the clasBvent. only the most important decisions concerning the user

interface and specifies neither the concrete interaction style
nor the detailed GUI design.

Use Case Written Exam Registration in Model WebAdmin

Actors: Student, Supervisor FLUID as introduced in [20] does not address a full fledged
Usage Frequency : high SRS as needed in the application context described in the
Criticality : low _ _ introduction of this paper. It also does not use the UML as
Risk: {Rt=medium, Rb=high, Rp=high} modelling language because the UML was not at hand at

Minimal Interaction Style : cardbox

Pre-Condition: Student identified and exam sites exist that time. Therefor_e, we first refined theuid elements to
Description: A student registers for the offered written exams by meet the abStraC“_On level OfCSRES_ elements and ma_de
selecting one of the certified sites. them UML compliant. Then we integrated the refined
Extension Point - Special Case Student FLUID elements into SorREsby adding them to use cases

Post-Condition: 1st exam registration or 2nd exam registration Fn .
or special case registration conducted and activity graphs approprlately.

End Written Exam Registration The resulting UIA elements provide modelling concepts
aiming at complex user interfaces with a broad range of
display and interaction styles. They are based on the
assumptions that a direct manipulation user interface is

Fig. 2. Textual descriptions of use casgtten Exam Registration

__Event [writenExam | | -Student composed of building blocks, like e.g. windows and sub-
date] PAHCPA name windows, and that domain objects (more precisely: their
R . . attributes and associations) appear inside of such building
registerto0 — : blocks where they can be viewed, selected and directly
4 \ﬁ — = 1—*:4\ = 'dﬁ%‘%’ manipulated by the user.
gégﬁﬂfﬁm __Leoture . T_r_at'on Room 3.1. UIA static structure: Scenes and Class Views
ES . .
lecture-ID Evenisie |address The fundamental UIA elements are scenes comprising
own N . . . A
1 class views and user operations. Scenes together with their
relationships and class views determine skaic structure

Fig. 3. WEBADMIN Domain class diagram of the user interface. The scene concept provides for a

4 Round-Trip Prototyping for the Validation of Requirements Specifications

Written Exam
Registration

«refine»

3.2. UIA dynamics: User Operations

To model the dynamic dialogue behaviour of the user

\éVritten interface, i.e. the navigation between scenes, the selection
Xam

Registration or manipulation of presented (displayed) domain objects,
we adapt the notion of a user operation fromud to the
UML-based $0oRrEs+ modelling environment.

In SCORESH, a scene provides two different kinds wder

«dependsOn»

operations
i _ Lectures * A user can (explicitly) navigate from one scene to
Select | — Lecture another. The according user operation is stereotyped as
Lecture Shortform . .
«navigatiorp.
* A «manipulatio» denotes selection or editing of
Fig. 4. Use cas@Vritten Exam Registration with partial activity instances of domain classes which are presented in
graph, Scenes and a class view some class view of the scene. If emanipulation has

homogeneous decomposition of a user interface into its triggered the root operation of the interaction related to
main building blocks. A scene may later be implemented as the scene, an implicit navigation may happen. Such an
a window or sub-window, a deck of cards, or a similar user implicit navigation is triggered by the system and not
interface feature. However, these implementation details by the user.

are beyond the focus of requirements engineering. Wea «navigation> can be marked asreationor deletion In
come back to these details in section 4 where we disCussase of acreation the target scene must be marked as
the semi-automatic construction of prototypes. multiple Here the user’s explicit change of focus creates a
A scene is modelled by a UIA class stereotypedene new instance of the target scene together with a navigation
and complements a use case or antetactior» of an to that instance.

activity graph. In the first case, the scene is calledstiet

sceneof the use case. A scene can be characterized a o, i D ot Visualizati
multiple (there may exist multiple instances of the scene) ereotype escription Isuafization
and/or modal (all other scenes are locked until the A class stereotyped]
aCCOfd|ng task is CompletEd). «SCEN® «scene represents a mair

An n-ary association relationship stereotypemiutually building block of the user
exclusive denotes that each associated scene is modal with interface.

respect to only the associated scenes rather than to &

. . . A class stereotyped
scenes. At any time, at most one of the associated scenesl|is yp

o . «class view is an
visible and available to the user. «class view abstract presentation of E Class view
An aggregation relationship stereotypediependsOmn instances and relations of
between two sceneS and T denotes that sceng only a domain class.

exists or is visible if scend exists or is visible. For An operation stereotyped
example, in many cases there exists dependsOn «mar?ipulatior» denoteps
relationship between the start scene of a use case and tH €manipulation | selection or editing of Manipuiation
scenes of the interactions in the according activity graph. presented instances of
A scene may comprise class views. dass viewis domain classes.
modelled by a UIA class stereotypedlass views. It is an

abstract presentation of instances and associations of a
domain class involved in the according user activity (i.e. A «navigation marked asdeletion deletes the source

O o S ot e e checg op S8 When [he User changes e (cus 0 the trgetscenc
as navigation aid Aélass view abstracts from actual usgrNOte that creation concerns the target scene of a
9 : «navigation», whereagsleletionrelates to the source scene.

U’;g\r/fzgisdﬁﬁ'lssu flf?cic(:eﬁlesc\;lvggc?té?iiedtisgrsligﬂggo?\f aeclai?sA scene in a set ofmutually exclusive associated scenes
y €9 1T g implicitly deleted, when the user changes the focus to

domain gpecn‘lllc renderlnrg]js are required, graphical draftsanother scene in the set. A scene which is part of a
may additionally be attached. «dependsOn association is also implicitly deleted, if the
Example:The left side of Fig. 4 shows the use cagetten aggregating scene is deleted.

Exam Registration and a part of its activity graph. The right
side depicts three scenes, one of them containing a clas
view, and a dependsOm relationship.

Table 1.UIA elements as stereotypes

“Semanticless” user operations like window moving and
?e—sizing or scrolling are not considered. Like the other

A. Homrighausen, H.-W. Six, M. Winter 5

4 Prototyping

Written Exam 8 \é\gg:ﬁ " H
Registration Registration The coupling of 80ORES elements and UIA elements
) ! - (SCOR.ESF_ eIements_for short) aims at an |n.tegrated
«refine> specification of functional and user interface requirements.

! the expressive power of CBRES+ elements is still not

| «dependson»:: For a semi-automatic generation of prototypes, however,
sufficient. To this end, we introduce the additional concept

¢ Lectures of a domain object variable forming the basis for the
$ construction of meaningful prototypes.
]
> Seet | | eoure 4.1 Domain Object Variables

Class scopes and scenes of use cases or interactions deal
with domain classes and not with concrete instances of that

e

7_ «dependsOn»

 —— classes. The expressive power of such an approach is too
o O Exam weak to specify the semantics on the level of preciseness
Select Site Select Site Registration - A \
1st Exam | | 2nd Exam . needed for a (semi-automatic) construction of prototypes.
\—— | | [SelectlstSiy Here, the specification must come down to the object level.
p—— For example, it must be possible to express that objects like

“the currently edited registration” or “the currently selected
site” can manipulated, and corresponding application
functionalities can be invoked.

To this end, we introduce domain object variables which
are associated with class views.damain object variable
(DOV) is a UIA class that references a single domain

UIA elements, user operations abstract from concrete usetobject (stereotypesingleDOW) or a collection of domain
interface details. For example, the particular interaction Objects (stereotype cellectionDOW) presented in the
technique invoking a user operation, e.g. menu item class view associated with the domain object variable.
selection or drag and drop, is not specified. Likewise, low While a domain object variable references one or more
level interactions like mouse button presses or basic textinstances of exactly one domain class (and its subclasses),

I El g-ﬁgrtfor

i

Fig. 5.Use cas@&Vritten Exam Registration with activity graph
and UIA elements (actors suppressed)

editing operations are not considered. a domain class may be referenced by more than one
domain object variable. Tab. 2 describes the two kinds of

The UIA elements can be modelled as elements of a clas%

; . ; - OvVs.

diagram or as object flow states [29] in an activity graph. A

«navigation» is simply visualized by a derived association

between the according scenes. Tab. 1 comprises the Stereotype Description Visualization

visualizations of UIA elements together with their short -

descriptions. Class stereotypedsingle- Sngie

. . . . «singleDOW | DOV» references one DomainObject

Example:The right part of Fig. 5 depicts the UIA elements instance of a domain class| LY21able

for the use cas@vritten Exam Registration and for the

according activity graph. The upper right scene is the start . Class stereotyped eollec-

scene of the use case. Via dependsOn relationship it «collection- | tionDOW references sev- ——

aggregates the (sub-)scenectures which provides the DOV» eral instances of a domain| | Somzinobject II

«manipulation SelectLecture(). The scene.ectures also class Variable

contains the class viewectureShortform which presents a Table 2.Proposed stereotypes for domain object variables

shorthand form of all lectures enrolled by the student. The

scene Exam Registration contains the class view A gomain object variable can be associated with class
SiteShortform which represents short form information of \jews of more than one scene. This models the situation
The scend&xam Registration is attached to both of the two \jjews of different scenes. (To handle such situations was
interactionsSelect Site 1st Exam andSelect Site 2nd Exam the main reason to introduce domain object variables.) For
in the activity graph. The two dnanipulation user g class view of a multiple scene, the domain object variable
operationsSelectlstSite() and Select2ndSite() trigger the can pe specified dscal. Then to every new instance of the
according root operations. scene, a new ‘“instance” of the domain object variable is

attached to the new class view.

For a more precise specification of manipulatiomn user

6 Round-Trip Prototyping for the Validation of Requirements Specifications

operation, DOVs can be used as parameter types.attached to aUIl-Client which specifies the dialog
According to the UML, each (DOV) parameter of a behaviour of a functionally cohesive part (normally a use
«manipulatior» can be characterized &s out, or inout, case) of the wuser interface. Ul-Clients are often
denoting read, creation, and update of the DOV. hierarchically arranged, so we can talk about a "Ul-
Additionally, DOVs can be associated with each other Superclient® and a "UI-Subclient". Objectholder
using the <ontent related association (aggregation), accommodate domain objects from the business logic tier
denoting that domain objects referenced by the part DOV of the application. To make the domain objects accessible
are also referenced by the aggregate DOV. For example, thédrom the Ul-Clients, objectholders are associated with
(DOV) parameters of most selection operations are contenthem. An objectholder associated with a "Ul-Superclient”
related. is also accessible from each of its "UI-Subclients".

Example: Fig. 6 shows the scene WritterExam The first step of the prototype generation process starts
Registration and its dependent scehectures from Fig. 5, with assembling a Ul-Spec for each scene. To this end the
the latter complemented by the DOMAI Lectures and class views of the scene become (sets of) abstract widgets.
Selected Lecture. The «ollectionDOW All Lectures The widget types like e.gTextField or NumericField are
contains references to all lectures available to the studentderived from the attribute types of the domain objects
The «wingleDOW Selected Lecture references the lecture presented in the class views (eString or Integer) and the
which is currently selected by the stude®¢lected Lecture types of the DOVs involved gingleDOW and

is «content related to All Lectures because the selected «collectionDOW). Each user operation is also mapped
lecture has to be among all lectures. With the onto an abstract widget, e.enenu or push button. Note
«manipulation> SelectLecture() the user selects one of the that the execution of a user operation belongs to the
lectures referenced il Lectures and the selected lecture responsibilities of the Ul-Client the Ul-Spec is attached to.

is then referenced bgelected Lecture. Accordingly, the For each start scene of a use case, a Ul-Client is generated.
parameter types of themanipulation SelectLecture() are The UI-Specs of the start scene and the UI-Specs of all
All Lectures and $lected Lecture. scenes related to the activity graph of the use case are
attached to the UI-Client. If a scenk «dependsOm a
scenes, the Ul-Spec foIT is embedded into the Ul-Spec
the DOVs takes place in two steps. The first step for S except the Ul-Specs fof and T are attached to

automatically transforms the SRS and the DOVs into the different UI-Clients. .]
more detailed user interface design (UID) model. The UID For the user operations of a scene, pseudo code is
model specifies, for example, abstract widget types andgenerated and collected in a command table contained in

4.2. Prototype Generation
The generation of prototypes from the@&es+ SRS and

how a navigation is invoked (e.g. via menu choice or push the client. In case of anavigatior» the pseudo code
button). The second step automatically generates angeneration process takes also thelegendsOm and

executable prototype for a target platform from the UID
model.

The UID model specifies static structure and dialog
behaviour of the user interface tier in the setting of a multi-
tier architecture in a platform-independent style. It
provides three fundamental modelling element&JIASpec

is a hierarchical composition of abstract widgets like
canvas, button, text field, label, and so on. Each Ul-Spec is

Written
Exam
Registration

«dependsOn»

All Lectures

Lectures

SelectLecture

Lecture
Shortform

«content related»

Selected
Lecture

Fig. 6. UIA scene class with domain object variables

«mutually exclusive associations into account. If two
scenes belonging to different use cases (resp. to their
activity graphs) are dependsOsm associated, the
corresponding UI-Clients are hierarchically related
accordingly.

Finally, for each DOV an objectholder is generated. The
Ul-Clients the objectholder is to be associated with are
determined as follows. Le§ be the set of all scenes
containing class views the DOV is associated with. Then
the objectholder will be associated with all UI-Clients to
which Ul-Specs of scenes 8fare attached.

Usually, the automatically generated UID model will be
"polished" manually to refine layout and navigation.

The second step of the generation process starts with
choosing a target implementation platform. So far, our
generation tool supports VisualWorks MVC [35] and Java
Swing. A support for HTML-based platforms is currently
under work. The generator substitutes (the abstract widgets
of) the Ul-Specs by the concrete widgets of the target
platform (if necessary, an abstract widget is mapped onto a
couple of concrete widgets). The tool also generates
executable code from (the pseudo code of) the command
tables of the UI-Clients. The objectholders are transformed

A. Homrighausen, H.-W. Six, M. Winter 7

Stakeholder Activities Artefacts
— i |4 — .
I |l-| 'ﬂi VWi amReprhaiorcpe | Dppn Car
| | = 1EH =l [P @] (P
- Class [Fagramar ful]
- _ - E = i . Wil
%% Selection and -7 B g o pr—] G [Leckre I
i P — — r ettt B 18
Generation - — =< [] .
/Snalys_t, Eester‘, == - EIeLrJnlénts] E @ M‘
omain Exper >~ 7 I—I ﬁ L (1]
7Y — i . ML -] ol
Manual =
% Adaption_> =1 up Intesrtacl:éion]
Analyst, Tester, - __|esctiption File Edil View Specisl Window Help

Developer

T N Floj@al elzjs] v PWE
L | é S P —1

e =
Prototype
. L] n
. . Wnkw L=

Fig. 7. Prototype construction process I o 2 T -
. j ‘WinenExamBaghbatiosSoar ||I EnyRspinbanap
into executable code, too. T
Finally, domain object are generated from the domain class ¥ Evsiepislonsig
model and fed into the prototype [31]. ¥! i
For each supported platform we have developed a | ExamPimgeisbonSpec II'

specialized framework that simplifies the code generation
process. Such a framework comprises objectholder classes; _ . _
(abstract) Ul-Client classes, and some complex widgets not Fig. 8.UID editor with generated UID elements

provided by the platform. The generated prototype is . o
executable on a real device like a desktop computerSchanvaS of the Ul-SpewrittenExamRegistrationSpec.

running SUN CDE or MS Windows, a PDA supporting N the prototype to be generated such a subcanvas will be
HDML [36], or a WAP/WML [37] compatible handy Presented within its containing canvas.

(simulator). After having chosen the WIMP platform, our tool
Fig. 7 shows the three activities of the semi-automatic transforms the UID model into an executable prototype
generation of prototypes, the artifacts and the stakeholderdvhich is fully integrated into the VisualWorks
involved. An important aspect of the generation process is€nvironment and can be manipulated with the

the traceability from each element of the prototype via the VisualWorks' IDE [15]. The prototype is invoked by
UID model back to the SRS. instantiating the main Ul-client class in the VisualWotks

environment.

|- J

Example:The window in the back of Fig. 8 shows the UlI- . . .

Spec editor depicting the hierarchical composition of the The left part of Fig. 9 depicts a screen shot of a window of
UIl-Spec WrittenExamRegistrationSpec. Because of the the WIMP-style prototype. In the right part of Fig. 9, a

«dependsOm association between the start scene SCreen s_,hot of th.e prototype for a WAP/WML compaubk_e
WrittenExamRegistration and the scengectures, the Ul- handy simulator is shown. The handy prototype was built
spec of the latter is embedded into the UI-Spec UP by a hand crafted simulation of the generation process.

WrittenExamRegistrationSpec. The abstract widgets 4.3. validation and “Round-Trip“ Prototyping

Lecture (label) andLecture list (combo box) are derived gefore a validation session starts, analysts, testers, and
from the «manipulation»SelectLecture(), the two DOVS g5 main experts select the part of the SRS to be validated
All lecture and Selected lecture, and from the class view 5,4 4 particular target platform. Based on these decisions
Lecture shortform. our prototyping tool generates the executable prototype.
The window on top shows a screen shot of the UID model The validation session comprises a series of walks through
editor. The displayed diagram represents the part of thebusiness scenarios conducted with the help of the
WEBADMIN UID model which belongs to therritten Exam prototype. The validation proceeds analogously to the
Registration use case. The UID model has automatically document based process described in [21]. During the
been generated from thecSRES+ model shown in Fig. 5 validation, the prototype can be modified by an assisting
and Fig. 6. The Ul-ClientwrittenExamRegistrationClient developer according to the actual findings. Typically,
has been generated from the start sc&wéten Exam further navigation relations between scenes or attributes to
Registration. The ExamRegistrationSpec has been class views are added. The changes can be accomplished in
assembled from the scerxam Registration and is a the prototype, the UID model, or the SRS. In the two latter

FIT . ompme n sym s Frop wrwa =
- y = wra
B - #n-"!dl ﬂl-irnlrll-lrirr-llil-
D - Endaraarsy & ol Thdson kg isrs [
[R T

:: | i i =
i | e —
ey |

.8
g':%.“ni'éu
":-T_ -
¢=»
oo
o
L
oo d

Fig. 9. Screen shots of a windows- and a handy prototype

cases, an incremental re-generation of the prototype takes

place.

Round-Trip Prototyping for the Validation of Requirements Specifications

Stakeholder Activities Artifacts
Busmess
i alkihroughs cenario N
U ofS Business "
cenano - — - _
Domainsellérkperl, - ‘
Tester <
=~ - / Prototype
Validation P N
Protocols ~ _ 2Vagdaalgon

%\l dras o

Developer, Analyst

>

Elements

Fig. 10.Round-Trip prototyping process

write the examinations in an embassy; handicapped
students are allowed to stay at home under the supervision
of an official personTo incorporate (and validate) these
requirements, the prototype is manually extended with the
VisualWorks canvas tool (Fig. 11). The canvas under work
is the VisualWorks presentation of the UI-Spec
WrittenExamRegistrationSpec. An abstract navigation
widgetSpecial Case is added together with a new Ul-Spec
SpecialCaseRegistrationSpec.

Our prototyping tool feeds these modifications back into
the UID model as follows. First, the modified and new
widgets and Ul classes of the executable prototype are
transformed back into Ul-Specs of the UID model. In case
of the new Ul-Spe@pecialCaseRegistrationSpec, the rule-
based consistency checker detects that it is not connected to
some Ul-Client. A new UI-Client is then automatically
created, named analogously, and the Ul-Spec is attached to
this Ul-Client.

If the prototype is modified, the prototyping tool
automatically feeds the modifications back into the UID
model. The UID model updates are than mapped back to
the SORES+ SRS. For example, a change of a dialogue
box triggers a change of the corresponding class view and
domain class, and a change of a window from modal to
non-modal triggers a change of the according scene. A
modification of the navigation structure is mainly reflected
by a change of the use case model. The round-trip
prototyping brings the prototype and the SRS in sync and
the prototype may be discarded when the validation
process is finished. Fig. 10 shows the stakeholders,
activities and artifacts of the round-trip prototyping
process.

Example:Suppose that the validation reveals the following
missing requirementsForeign students are allowed to

[oimdm Taild ma Wlidboa F oo Fiaod | plaas
Edit Teoks Layowt FAeenge Geid Loak -1|

Wl d B2 S 28 A |

Proportes | wan | vie | 0w Al=lE
BT E‘-ﬁ
'I.-n-u-mﬂ . I—E
I|I.I'.i-l-l-all-lll'Z-lll-ll ':Fl

Bopmes |

i @

i
L

ﬁlflam
8 =
% {10 i

Fig. 11.Manipulating the WIMP user interface prototype
with the VisualWorks CanvasTool

A. Homrighausen, H.-W. Six, M. Winter 9

action» Special Case Student in the according activity
diagram. Fig. 14 shows the updated use case diagram and
the modified activity graph of use cas&ritten Exam
Registration.

& =1 [
=EE

5 Experiences
i1 ot il hiemtie i We have applied the®RES+ specification and validation

P"ATLH’-E.I:HTEE:_IEIIJI:-D"I‘EHL
Trecid Lonn |2

| = I EIRY A v P N techniques to a couple of projects ranging from small
database applications over CASE tool components up to
e T"'.:—| s some main components of a “virtual university“. This
T section mainly summarizes our experiences with the
| al prototype-based validation of the SRS foEBMDMIN.
ﬂ-......-.:'r.p'!‘;:_.«.- SreceiCassRegmoncien i The SRS for VEBADMIN comprises 4 actors, 37 main use
P s 4 cases, 24 domain classes, and 28 main scenes. The
Iwg,mmpn,ﬂm ||' aqy presentation prototype for a window-based user interface
Emsinse st a0 architecture includes 13 windows with full navigation
— e . capabilities and some added application functionality like
fim:ﬂ:unﬂwwmc J object creation and manipulation. Some simple WAP/
P —— WML-bas_ed prototypes were built, too. The e_ffort for the
R construction of the prototypes and the validation data was
. less than one person-week.
Fig. 12.UID editor with the updated UID model The prototypes were used and adapted in several validation

sessions conducted for particular user groups. Most of the
participating stakeholders were experts of the problem
domain and used to window-based applications, and hence

In a second step, the modifications of the UID model are
automatically mapped back to thec&Rest SRS. The
mapping includes the generation of a new scene
SpecialCaseRegistration, which is target of a new
«navigation» starting from the scene Lectures. Fig. 13
depicts the updated UIA elements.

A consistency check of thec®BRes+ SRS now reveals a
scene that is not connected to a use case or an action (in an
activity graph). In our example, a new use c&ecial

Case Registration is now manually added whickextend»

the use casewritten Exam Registration. The «extend» Fig. 13.Updated UIA elements
association implies the manual creation of th@magro

Lectures

I«create&navigate» Special Case
Registration
Lecture

Shortform

Exam Registration l

Written Exam
Registration
Identification ‘

«extend»
Special Case Student

$
——>| Select
~ |_Lecture

~

«refine»

-

%/‘[: %Z-—__-X

g | =]}
| i Select Site Special Cas!
\TSe ect Slte‘ ’ ‘ %tudentC?D

:Student 1st Exam 2nd Exam

Student
Special Case J/
Registration @

Cancel
Registration

Fig. 14.Updated use case diagram and activity graph for usenéss Exam Registration

10 Round-Trip Prototyping for the Validation of Requirements Specifications

they did not encounter problems to identify the main tasks unrealistic expectations. On the other hand, for simple
in the prototype. All stakeholders felt much more inclined interaction styles like e.g. WAP/WML, every prototype

in the prototype based validation process compared to abears the danger of too early in-depth discussions about
rather document centred one. In accordance to a studylayout and usability, because at first glance the prototype
conducted by Cerpa and Verner [9], the analysts andappears to the user as the interface of the final application.

especially the developers felt much more “safe” during all \we share the common experience that users, when playing
development stages compared to former projects withoutaround with a prototype, usually demand for more and
prototype based validations. more functionality [14]. This is often due to the fact that
Due to the prototype-based validation, we found omissionsthe tangibility and modifiability of the prototype let them

in the SRS which would presumably not have been found easily imagine increased functionality without considering
when using the original ®Resvalidation approach. For the additional costs. In general “users do seem to always
example, the initial SRS defined that a supervisor of a ask for more” [30]. The most important functionalities may
written examination belongs to the staff of the be added to the prototype and validated at once, while
FernUniversitat. This is in contrast to reality where others are either discarded or first incorporated in the SRS
supervisors of written examinations which, for example, and validated later. In any case, each new functionality has
take place in foreign countries, can be staff members ofto be negotiated.

German embassies. During a validation session, some user

asked for a “free form entry* for supervisors which was

then added to the prototype. It was easy to feed the new6 Related Work

requirement via the UID model back into the SRS. It was As mentioned in the introduction, Ravid and Berry aim at

materialized as a new interaction of the use cagecify reconciling the difference between the prototype and other
Supervisor and a new domain class Foregypervisor. SRS documents [30]. Based on a case study, they propose a
This class and the original domain clas&niversityStaff generic approach to taylor the process of prototyping. The
became subclasses of a new ckiaff. main idea is to identify the kinds of requirements

In the initial SRS the actoiCoordinator modelled the information the prototype should, respectively should not
person that coordinates the rooms, supervisors, and theaddress before it is constructed. This information is called
colours of the cover sheets of all written examinations to be “intent-information” and should help answering the
conducted at a particular date. When we presented thequestion “When the prototype and the SRS disagree, which
prototype to some users from a particular faculty, they do one believe?".

immediately asked, why the coordinator could not select Schneider proposes a strategy to extract crucial pieces of
the examinations for a particular semester. The reason waknowledge from a prototype and from its developer [33].
that in their faculty the coordinator is responsible to The strategy is based on monitoring the explanations given
schedule all examinations of a semester, while in all otherpy the developer, analysing their structure, and feeding
faculties the scheduling belongs to the responsibility of a results back to support and to focus the explanations.
member of the examination commission. By the way, even puring this process, the prototype turns into the
the inspections of the data dictionary had not detected thiscentrepiece of a hyperstructured information base which
misconception. can be used to convey concepts, implementation tricks and
Our experiences with prototypes for interaction techniques experiences.

like WAP/WML browsers can be sketched as follows. In Both approaches are different from our attempt and the
the requirements elicitation activities, stakeholders often problem tackled by them seems to disappear or at least to
came up with a bunch of needs concerning WAP/WML- heavily be reduced by our “round-trip® facility
based services. Fortunately, walking through some usesynchronizing the prototype and the SRS.

cases with a WAP/WML browser prototype (as shown in o4 cjeyic [22] and Nunes [27] present extensions of the

Lheeeéoevc\ilesref\;/iirctegffr?r% v??sﬁfillpﬁ?n%r:Ot \I/r\}esﬁe%%rr%trlr?gn(rje; UML for task and user interface modelling. Conallen
9- proposes UML extensions and a process to model and

early prototyping of some of the WAPNVML-baseq develop HTML-based web applications [10]. These
services, which should be accomplished before negOt'at'ngapproaches neither focus on prototyping nor aim at an
the interaction styles for the whole bunch of use cases. integration of the functional and the user interface
For the rest of the section we report on some pitfalls of the requirements.
prototype-based validation of SRS. On the one hand, even- | outbi et al

T‘(r)(; hr'gm)rlotgfprg:tfﬁée? q t‘;‘g”ggr‘:‘;treg:’é:jonﬁf:tﬁél %nge interface prototype from scenarios via an intermediate
ugh' p yp u u Il P state-based specification of the system [12]. Scenarios of

:’hS:r;S :%IT?C;: ggr}he dg;‘gﬁgggﬁ' ;eb%lﬂtre(Qg}E daT&(),j gL?V:rTé%se cases are modelled as UML collaboration diagrams
Y y enriched with user interface information. For example,

usability features. It also reduces the risks that users inventmessages are labelled with an optional “widget mark*

suggest a process that generates a user

A. Homrighausen, H.-W. Six, M. Winter 11

indicating the widget-type the resulting user interface References

should provide. A drawback of their approach is the

tedious manual task of specifying all scenarios on the level 1. E. Arisholm, H. Benestad, J. Skandsen, H. Fredhall:
of widget interactions. The requirements engineer is forced ~ Incorporating Rapid User Interface Prototyping in
to have a concrete user interface in mind from the Object-Oriented Analysis and Design with Genova.
beginning. Another disadvantage is the missing support of ~ Proc. 8. Nordic Workshop on Programming Environ-
user interaction techniques other than menus and windows. ment"Research, R.onneby, Sweden, AUQUSt 19981)
The approach also lacks the mapping of validation results2- D. Baumer, W. Bischofberger, H. Lichter, H. Ziillig-

. ; hoven: User Interface Prototyping — Concepts, Tools,
from the (modified) prototype back to the requirements and Experience. Proc. ICSE-18, Berlin, Germany,

specification. March 25 - 29 1996, pp. 532-541

Many software tools for the generation of user interfaces 5 |y Balzert et al.. The Janus Application Development
are known [26]. Some of them, e.g. Lauesen's EFDD Epyironment: Generating More than the User Interface.
approach [23] or Balzert's Janus system [3], use only the |n: J. Vanderdonckt (ed.): Computer-Aided Design of
structural (data) model. Others, e.g. Johnson’s ADEPT [18] User Interfaces, Namur University Press, Namur, 1996,
or the approach of Bomsdorf and Szwillus [5], are based pp. 183-205

only on a functional (task) model. A few approaches, e.g. 4. Boehm B., Verifying and Validating Software Require-
Forbrig’'s and Schlungbaum’s TADEUS [13] or the Genova ments and Design Specifications. IEEE Software, Jan.
system by Arisholm et al. [1], are based on functional and 1984, pp. 75-88

structural models. All these approaches focus on thes B. Bomsdorf, G. Szwillus: Coherent Modelling & Pro-
generation of full fledged user interfaces as a starting point totyping to Support Task-Based User Interface Design.
for a complete application generation. They are not CHI'98 Workshop "From Task to Dialogue: Task-
concerned with the validation and none of them allows for ~ Based User Interface Design”, Los Angeles, California,
a round-trip prototyping. 1998

Formal specification based prototyping approaches like e.g.8- G Booch, J. Rumbaugh, 1. Jacobson: The Unified Mod-
the CAPS project by Lugi [24] mainly focus on the (semi-) €ling Language Users Guide. Addison-Wesley/acm

automatic generation of functional prototypes. Presentation Press, Reading, MA, 199_9)

manually. Assignments int% Virtual University — The WebAssign
System. Proc. 19 World Conf. on Open Learning and
) Distance Education, Vienna, Austria, 1999
7 Conclusion 8. J. M. Carroll (Ed.):Scenario-Based Design — Envi-
. e sioning Work and Technology in System Development
We have proposedC®RESH, a requirements specification J. Wiley & Sons, New York, 1995
method that covers functional and user interface N. Cerpa, J. Verner: Prototyping: some new Results
requirements in an integrated and UML-compliant way. A ™" |normation and Software Technology, Vol 38, Elsevire,

Scoresr SRS also forms the basis for the semi-automatic 1996, pp. 743-755

c?nfstructloln o(;d.p.rotot%pes running onhd]fferenltl targfet 10.Jim Conallen: Building web applications with UML.
platiorms. In addition, the generation technique allows for = Agdison-Wesley object technologiey series, 2nd print-
round-trip” prototyping. ing, February 2000

At the moment, we are applying our approach to several 11, A. Davis: Software Prototyping. in: M. Yovits, M.
problem domains for collecting more experiences and for Zelkowitz (Eds.): Advances in Computers, Vol. 40,
further validation of the method. We are also developinga Academic Press, San Diego, 1995, pp. 39-63
framework that conveniently supports web-based 12, M. Elkoutbi, I. Khriss, R.K. Keller: Generating User
environments as implementation platform for prototypes. Interface Prototypes from Scenarios. Proc. RE 99,
Main future work concerns the seamless transition of IEEE Computer Society Press, 1999, pp. 150-158
SCorest SRS into a software architecture and the 13 P, Forbrig, C. Stary et al.: From Task to Dialog: How
generation of test cases for user interface and acceptance Many and What Kind of Models do Developers Need?
tests. Proc. CHI'98 Workshops, April 1998

Acknowledgments 14.V. S. Gordon, J.M. Bieman: Rapid Prototyping: Les-

The authors like to acknowledge the comments of the SONS Learned. |[EEE Software, Vol. 15, Nr. 1, Jan. 1995,
anonymous referees which led to a considerable PP 85'95
improvement of the paper. We also thank Johanneslb5.A. Homrlghausen, J. Voss: Tool support for the model-

Akinlaja, who implemented thec®RES editor on top of based development of interactive applications - The
the TojgetherE*l [32] UML modelling tool P FLUID approach. Proc. 4th Eurographics Workshop on
' Design, Specification and Verification of Interactive

Systems, Granada, 1997

12 Round-Trip Prototyping for the Validation of Requirements Specifications

16. IEEE Guide to Software Requirements Specifications No. 1, March 2000, pp. 3-28
IEEE Standard 830, IEEE, New York, 1993 27.Nuno Jardim Nunes, Joao Falcao e Cunha: Towards a

17.1. Jacobson, G. Booch, J. Rumbaugh: The Unified Soft- UML Profile for Interaction Design: The Wisdom
ware Development Process. Addison-Wesley/acm Approach. Proc. <<UML>>2000 The Unified Model-
Press, Reading, MA, 1999 ing Language, York, UK, Oct. 2000

18. P. Johnson, H. Johnson, S. Wilson: Rapid Prototyping28. B. Nuseibeh, S. Easterbrook: Requirements Engineer-
of User Interfaces Driven by Task Models. Chapter 9 in ing: A Roadmap. ICSE-18, The Future of Software
[8]. Engineering, Limerick, Ireland, 2000, pp. 35-46

19. G. Kdsters, B.-U. Pagel, T. de Ridder, M. Winter: Ani- 29. Object Managment Group: Unified Modeling Language
mated Requirements Walkthroughs based on Business Specification. Version 1.3, OMG, June 1999
Scenarios. Proc. 5th euroSTAR, Edinburgh, 1997 30.A. Ravid, D. M. Berry: A Method for Extracting and

20. G. Kosters, H.-W. Six, J. Voss: Combined Analysis of Stating Software Requirements that a User Interface
User Interface and Domain Requirements. Proc. 2nd Prototype Contains. Requirements Eng 5 (2000) 4, pp.
IEEE Int. Conf. on Requirements Engineering, Colo- 225-241

rado Springs, 1996 31.J. Rogotzki: Generating Domain-Data from GeoOOA-
21.G. Kdosters, H.-W. Six, M. Winter: Coupling Use Cases Models. Diploma thesis, Dept. of CS, FernUniversitét
and Class Models as a Means for Validation and Verifi- Hagen, 1997 (in German)

cation of Requirements Specifications. Requirements3p . B. Rosson, J. M. Carroll: Narrowing the Specifica-
Engineering, Vol. 6, Nr. 1, Springer, London, January —tion-Implementation Gap in Scenario Based Design.

2001, pp. 3-17 . Chapter 10 in [8].

22. Srdjan Kovacevic: UML and User Interface Modeling. 33 K. Schneider: Prototypes as assets, not toys: why and
In: Jean Bezivin, Pierre-Alain - Muller (eds.): how to extract knowledge from prototypes. Proc. ICSE
<<UML>>'98 The Unified Modeling Language, Lec- 18, 1996, pp. 522 - 531
tzusrg Notes in Computer Science 1618, 1998, pp.253- 34. TogetherJ ControlCenter V.5.02, TogetherSoft Corpora-

tion, 2001

23.S. Lauesen, M. B. Harning, C. Grgnning: Screen : . .
Design for Task Efficiency and System Understanding. 35. VisualWorks Release 5i.1, Cincom Systems Inc., 1999

In: S. Howard and Y.K. Leung (eds.): OZCHI 94 Pro- 36.W3C: Handheld Device Markup Language Specifica-
ceedings, 1994, pp. 271-276 tion. May 1997

24. Lugi, et al.: CAPS as Requirements Engineering Tool. http://www.w3.0rg/pub/WWW/TR/NOTE-Submission-

Proc. RE and Analysis Workshop, SEI, CMU, Pitts- HDML-spec.html _ 3
burgh, 1991 tttp://wwwcaps.cs.nps.navy.mil) 37.WAP-Forum: Wireless Markup Language Specifica-

25.N.A.M. Maiden, S. Minocha , K. Manning, M. Ryan: tion. WAP-191, June 2000,
CREWS-SAVRE: Scenarios for Acquiring and Validat- ~ NttP://www.wapforum.org
ing Requirements. Proc. ICRE98, IEEE Press, 1998 38. Weidenhaupt K, Pohl K, Jarke M, Haumer P. Scenarios
26.B. Myers, S. E. Hudson, and R. Pausch: Past, Present, N System Development. Current Practice. IEEE Soft-
and Future of User Interface Software Tools. ACM ~ Ware, March/April 1998, pp 34-45
Transactions on Computer-Human Interaction, Vol. 7,

	1 Introduction
	2 Functional Requirements
	2.1. Actors, Use Cases, and Activity Graphs
	2.2. Domain Class Model
	Fig. 1. Use case diagram and activity graph for use case Written Exam Registration
	Fig. 2. Textual descriptions of use case Written Exam Registration
	Fig. 3. WebAdmin Domain class diagram

	3 User Interface Requirements
	3.1. UIA static structure: Scenes and Class Views
	Fig. 4. Use case Written Exam Registration with partial activity graph, Scenes and a class view

	3.2. UIA dynamics: User Operations
	Table 1. UIA elements as stereotypes
	Fig. 5. Use case Written Exam Registration with activity graph and UIA elements (actors suppressed)

	4 Prototyping
	4.1 Domain Object Variables
	Table 2. Proposed stereotypes for domain object variables
	Fig. 6. UIA scene class with domain object variables

	4.2. Prototype Generation
	Fig. 7. Prototype construction process
	Fig. 8. UID editor with generated UID elements
	Fig. 9. Screen shots of a windows- and a handy prototype

	4.3. Validation and “Round-Trip“ Prototyping
	Fig. 10. Round-Trip prototyping process
	Fig. 11. Manipulating the WIMP user interface prototype with the VisualWorks CanvasTool
	Fig. 12. UID editor with the updated UID model
	Fig. 13. Updated UIA elements
	Fig. 14. Updated use case diagram and activity graph for use case Written Exam Registration

	5 Experiences
	6 Related Work
	7 Conclusion
	References
	1. E. Arisholm, H. Benestad, J. Skandsen, H. Fredhall: Incorporating Rapid User Interface Prototy...
	2. D. Bäumer, W. Bischofberger, H. Lichter, H. Züllighoven: User Interface Prototyping — Concepts...
	3. H. Balzert et al.. The Janus Application Development Environment: Generating More than the Use...
	4. Boehm B., Verifying and Validating Software Requirements and Design Specifications. IEEE Softw...
	5. B. Bomsdorf, G. Szwillus: Coherent Modelling & Prototyping to Support Task-Based User Interfac...
	6. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language Users Guide. Addison-Wesley/...
	7. J. Brunsmann, A. Homrighausen, H.-W. Six, J. Voss. Assignments in a Virtual University — The W...
	8. J. M. Carroll (Ed.): Scenario-Based Design — Envisioning Work and Technology in System Develop...
	9. N. Cerpa, J. Verner: Prototyping: some new Results. Information and Software Technology, Vol 3...
	10. Jim Conallen: Building web applications with UML. Addison-Wesley object technologiey series, ...
	11. A. Davis: Software Prototyping. in: M. Yovits, M. Zelkowitz (Eds.): Advances in Computers, Vo...
	12. M. Elkoutbi, I. Khriss, R.K. Keller: Generating User Interface Prototypes from Scenarios. Pro...
	13. P. Forbrig, C. Stary et al.: From Task to Dialog: How Many and What Kind of Models do Develop...
	14. V. S. Gordon, J.M. Bieman: Rapid Prototyping: Lessons Learned. IEEE Software, Vol. 15, Nr. 1,...
	15. A. Homrighausen, J. Voss: Tool support for the model- based development of interactive applic...
	16. IEEE Guide to Software Requirements Specifications IEEE Standard 830, IEEE, New York, 1993
	17. I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process. Addison-Wesley/...
	18. P. Johnson, H. Johnson, S. Wilson: Rapid Prototyping of User Interfaces Driven by Task Models...
	19. G. Kösters, B.-U. Pagel, T. de Ridder, M. Winter: Animated Requirements Walkthroughs based on...
	20. G. Kösters, H.-W. Six, J. Voss: Combined Analysis of User Interface and Domain Requirements. ...
	21. G. Kösters, H.-W. Six, M. Winter: Coupling Use Cases and Class Models as a Means for Validati...
	22. Srdjan Kovacevic: UML and User Interface Modeling. In: Jean Bezivin, Pierre-Alain Muller (eds...
	23. S. Lauesen, M. B. Harning, C. Grønning: Screen Design for Task Efficiency and System Understa...
	24. Luqi, et al.: CAPS as Requirements Engineering Tool. Proc. RE and Analysis Workshop, SEI, CMU...
	25. N.A.M. Maiden, S. Minocha , K. Manning, M. Ryan: CREWS-SAVRE: Scenarios for Acquiring and Val...
	26. B. Myers, S. E. Hudson, and R. Pausch: Past, Present, and Future of User Interface Software T...
	27. Nuno Jardim Nunes, Joao Falcao e Cunha: Towards a UML Profile for Interaction Design: The Wis...
	28. B. Nuseibeh, S. Easterbrook: Requirements Engineering: A Roadmap. ICSE-18, The Future of Soft...
	29. Object Managment Group: Unified Modeling Language Specification. Version 1.3, OMG, June 1999
	30. A. Ravid, D. M. Berry: A Method for Extracting and Stating Software Requirements that a User ...
	31. J. Rogotzki: Generating Domain-Data from GeoOOA- Models. Diploma thesis, Dept. of CS, FernUni...
	32. M. B. Rosson, J. M. Carroll: Narrowing the Specification-Implementation Gap in Scenario Based...
	33. K. Schneider: Prototypes as assets, not toys: why and how to extract knowledge from prototype...
	34. TogetherJ ControlCenter V.5.02, TogetherSoft Corporation, 2001
	35. VisualWorks Release 5i.1, Cincom Systems Inc., 1999
	36. W3C: Handheld Device Markup Language Specification. May 1997 http://www.w3.org/pub/WWW/TR/NOT...
	37. WAP-Forum: Wireless Markup Language Specification. WAP-191, June 2000, http://www.wapforum.org
	38. Weidenhaupt K, Pohl K, Jarke M, Haumer P. Scenarios in System Development: Current Practice. ...

	Round-Trip Prototyping based on Integrated Functional and User Interface Requirements Specifications

