
he
s,
ns
f

nal
al
tal
6],
in
o

d
e
an
n.
e
st

l,
by

s.

e
per
ich
the
n
f
ed

led
st,
d

ers
ion

Round-Trip Prototyping based on Integrated Functional and User
Interface Requirements Specifications

Andreas Homrighausen, Hans-Werner Six, Mario Winter
University of Hagen, Dept. of CS, Hagen, Germany

Dienstag, November 20, 2001 08:46

Final version for RE Journal
Requirements engineering in the new millennium is facing
an increasing diversity of computerized devices comprising
an increasing diversity of interaction styles for an
increasing diversity of user groups. Thus the incorporation
of user interface requirements into software requirements
specifications becomes more and more mandatory.
Validating these requirements specifications with hand
made, throw away prototypes is not only expensive, but
also bears the danger that validation results are not
accurately fed back into the requirements specification. In
this paper, we propose an enhancement of the requirements
specification methodSCORES for an explicit capturing of
user interface requirements. The advantages of the
approach are threefold. First, the user interface
requirements specification is UML-compliant and
integrated into the functional requirements specification.
Second, prototypes for validation purposes can semi-
automatically be generated. Third, the model based
generation of prototypes allows for “round-trip
prototyping“ such that manual changes of the prototype
during the validation process are automatically fed back
into the requirements specification.

Keywords: Requirements engineering; User Interface
Requirements; UML; Prototyping; Round-Trip
Prototyping; Validation

1 Introduction

Due to the “ubiquitous computing“ paradigm, the new
millennium opens with an increasing diversity of
computerized devices comprising an increasing diversity of
interaction styles for an increasing diversity of user groups
[26]. For example, modern eBusiness domains demand for
application families with shared functional cores but vastly

different device and user interface requirements. T
diversity of devices ranges from narrowband device
including cellular phones and pagers, up to workstatio
with high resolution graphic displays, while the diversity o
interaction styles ranges from the deck/card organizatio
metaphor up to high sophisticated multi-window graphic
user interfaces. Finally, user groups range from inciden
to professional ones. Hence, as already pointed out in [1
a meaningful software requirements specification (SRS)
such application domains must sufficiently take int
account user interface requirements.

For practical use, it is important that abstraction level an
modelling constructs of functional and user interfac
requirements specifications match well such that they c
be composed into an integrated overall specificatio
Moreover, like any suitable SRS such an entir
specification must support validation, verification, and te
processes.

To achieve these goals, we have enhanced SCORES[21], an
approach for a UML-based description of the functiona
behavioural, and structural system requirements,
essential elements of FLUID [20], a specification method
for the requirements of direct manipulation user interface
We call the resulting integrated SRS framework SCORES+.

The original SCORESmethod provides a refinement of us
cases (actually of the use case behaviour) to get a pro
coupling of use cases and domain class model wh
allows for consistency and completeness checks of
multi model specifications. Concerning the validatio
process, SCORESprovides inspections and walkthroughs o
(business) scenarios [17][19] which are recommend
validation means [4][25][38].

Using SCORES in a couple of applications with different
devices, interaction styles, and user groups has revea
some weaknesses of the validation procedure. Fir
although we provided domain specific pictograms an
screen mock-ups, sometimes the imagination of the us
was overstrained and a more tangible representat

Correspondence and offprint requests to:Mario Winter, FernUniversität
Hagen, Prakt. Inf. III / IZ, Feithstr. 142, D-58084 Hagen, Germany. Email:
mario.winter@fernuni-hagen.de

2 Round-Trip Prototyping for the Validation of Requirements Specifications

s,

m

a

cy,

ase
p/

rs
s

ibe
y
ed

ity

r

17]
h

he

we

ith
, or
the

n
an
le.
d

nt
nd
m

seemed desirable. Second, wrong or missing requirements,
which were detected during the validation and materialized
by changed pictures or mock-ups, did not always trigger
the necessary changes of the requirements specifications.

Prototyping is usually recommended as a more appropriate
validation technique in such a context. In requirements
engineering for information systems, often exploratory
presentation prototypes and sometimes functional
prototypes are used to validate the SRS [2][11]. While
presentation prototypes illustrate how an application may
solve given requirements from a user interface point of
view, functional prototypes implement important parts of
both, the user interface and the functionality of the
application.

Unfortunately, developing a meaningful prototype is a hard
and expensive work to do [32]. A purely generative
approach of building prototypes needs a detailed
specification and does not allow for an easy change or
extension of prototypes during validation sessions. Hand
made throw away presentation prototypes are also costly to
develop and bear the danger that changes of the prototype
are not consistently fed back into the SRS. As pointed out
by Ravid and Berry, the question “When the prototype and
the SRS disagree, which do one believe?“ often arises [30].

To tackle the problems mentioned above, we extend
SCORESby FLUID user interface modelling elements in a
UML-compliant way. FLUID captures the static structure of
the user interface (a basic description of scenes, e.g.
windows, and their relationships), the basic dynamic
behaviour (e.g. the navigation structure), and (parts of) the
domain objects to be presented [20]. Before getting FLUID
elements integrated into SCORESwe had to refine them for
this purpose.

The resulting integrated method SCORES+ allows not only
for a combined specification of functional and user
interface requirements but also — mainly due to FLUID —
for a cheap, semi-automatic construction of exploratory,
horizontal (presentation) prototypes for different devices
and interaction styles. Moreover, because of the traceability
of the prototype construction process“round-trip
prototyping“ is carried into effect and the requirements
specification can automatically be reconciled with manual
changes of the prototype.

The paper is structured as follows. Section 2 briefly
reviews the specification of functional requirements with
SCORES, while section 3 is devoted to the refinement of
FLUID elements and their integration into SCORES. Section
4 deals with prototyping and explains the round-trip
prototyping process. Section 5 summarizes our experiences
with the prototype based validation. Section 6 concerns the
related work and section 7 concludes the paper.

2 Functional Requirements

In this section we briefly review the basic modelling

elements of SCORES [21], namely actors and use case
activity graphs, and the domain class model.

2.1. Actors, Use Cases, and Activity Graphs

According to the UML [29], actors characterize roles
played by external objects which interact with the syste
as part of a coherent work unit (a use case). Ause case
describes a high level task which should be related to
particular goal [28] of its participating actors. The
functional profile of a use case comprises usage frequen
criticality, and some risk factors (RT, how difficult to
implement,RB, publicity, sales arguments, andRP, how
many dependencies). Additionally we add to each use c
the minimal interaction style requirements like deskto
WIMP, navigational (HTML), or cardbox (WML).

The UML proposes theactivity graph concept for the
specification of processes involving one or more classifie
[29]. In [21] we extend activity graphs to meet the need
for a suitable modelling of use case behaviour. We descr
actions within activity graphs more precisely b
introducing three stereotypes. An action stereotyp
«contextual action» is performed by an actor without the
help of the system. An action stereotyped «interaction» is
supported or carried out by the system. The «macro
action» stereotype reflects the «include» and «extend»
relationships between use cases in the context of activ
graphs by "calling" or "activating" the activity graph of the
associated use case. The stereotype «actor in action» refers
to an (anonymous) instance or “role“ [6] of an acto
involved in an action.

2.2. Domain Class Model

The domain class model in the sense of Jacobson et al. [
comprises the most important types of objects whic
represent "things" that exist or events that occur in t
context in which the system works. In SCORES [21], for
each use case and each interaction in the activity graphs
determine a so-calledclass scopedenoting the set of
(domain) classes involved in its execution, i.e. classes w
instances being created, retrieved, activated, updated
deleted. Furthermore we balance activity graphs and
class model such that for each «interaction» in the activity
graphs a so-calledroot classexists that provides aroot
operation accomplishing the «interaction» in the class
model.

Running Example: We take WEBADMIN, a virtual
university [7] component for the web-based administratio
of events at the FernUniversität Hagen, the Germ
distance teaching university, as running examp
WEBADMIN covers the scheduling of, registration for, an
accomplishment of written examinations and seminars.

Students can attend written examinations at two differe
dates at some 10 different sites in Germany, Austria, a
Switzerland. In the left part of Fig. 1, the use case diagra
for the registration functionality of WEBADMIN is shown.
We identify the actor Student and the use cases

A. Homrighausen, H.-W. Six, M. Winter 3

ld
e,
ic
a

e

nd
on

er
yle

d
the
s
at

d
s

ts
of
he
is

b-
ir

ing
tly

ng
heir

r a
Identification, Written Exam Registration, and Cancel
Registration. Fig. 2 provides a textual description of the use
case Written Exam Registration. Fig. 3 depicts some
domain classes. The class scope of the use case
WrittenExamRegistration consists of the classesEvent,
Lecture, WrittenExam, andRegistration.

The activity graph in the right part of Fig. 1 refines use case
Written Exam Registration. A student can (repeatedly)
select a lecture and registrate for the first and/or the second
examination of this lecture at a particular site. The
interactionsSelect Site 1st Exam andSelect Site 2nd Exam
invoke their corresponding root operationregisterTo()
defined in the classEvent.

3 User Interface Requirements

As explained in the introduction, a suitable SRS shou
include the basic characteristics of the user interfac
among them the static structure, the basic dynam
behaviour, and usability aspects. It may simply comprise
list of do’s and don’ts on how the system will appear to th
user.

To specify user interface requirements more precisely a
to support the convenient construction of presentati
prototypes for validation purposes, we exploit FLUID [20].
As a user interface analysis (UIA) method, FLUID captures
only the most important decisions concerning the us
interface and specifies neither the concrete interaction st
nor the detailed GUI design.

FLUID as introduced in [20] does not address a full fledge
SRS as needed in the application context described in
introduction of this paper. It also does not use the UML a
modelling language because the UML was not at hand
that time. Therefore, we first refined the FLUID elements to
meet the abstraction level of SCORESelements and made
them UML compliant. Then we integrated the refine
FLUID elements into SCORESby adding them to use case
and activity graphs appropriately.

The resulting UIA elements provide modelling concep
aiming at complex user interfaces with a broad range
display and interaction styles. They are based on t
assumptions that a direct manipulation user interface
composed of building blocks, like e.g. windows and su
windows, and that domain objects (more precisely: the
attributes and associations) appear inside of such build
blocks where they can be viewed, selected and direc
manipulated by the user.

3.1. UIA static structure: Scenes and Class Views

The fundamental UIA elements are scenes comprisi
class views and user operations. Scenes together with t
relationships and class views determine thestatic structure
of the user interface. The scene concept provides fo

Fig. 1.Use case diagram and activity graph for use caseWritten Exam Registration

Student

Exam Registration

:Student
Select Site
2nd Exam

Select Site
1st Exam

Select
Lecture

«refine»Written Exam
Registration

Cancel
Registration

Identification

Fig. 2.Textual descriptions of use caseWritten Exam Registration

Use Case Written Exam Registration in Model WebAdmin
Actors: Student, Supervisor
Usage Frequency : high
Criticality : low
Risk : {Rt=medium, Rb=high, Rp=high}
Minimal Interaction Style : cardbox
Pre-Condition: Student identified and exam sites exist
Description: A student registers for the offered written exams by
selecting one of the certified sites.

Extension Point Special Case Student
Post-Condition: 1st exam registration or 2nd exam registration

or special case registration conducted
End Written Exam Registration

Fig. 3.WEBADMIN Domain class diagram

name
address
...

...

Room

name
date
...

registerTo()

Event

town

...

 EventSite
name
lecture-ID

...

Lecture

*

1

...

...

WrittenExam
participant

1..*

Written Exam

ID-number
name
...
...

Student

date of regis-
tration
...

Registration

1

*

*

1

1

*

1

* 1

 Registration

4 Round-Trip Prototyping for the Validation of Requirements Specifications

er
tion
ts,

o
as

f
in

to
an
t

s
a

ion

ene.
a
.

to
a

d
er
homogeneous decomposition of a user interface into its
main building blocks. A scene may later be implemented as
a window or sub-window, a deck of cards, or a similar user
interface feature. However, these implementation details
are beyond the focus of requirements engineering. We
come back to these details in section 4 where we discuss
the semi-automatic construction of prototypes.

A scene is modelled by a UIA class stereotyped «scene»
and complements a use case or an «interaction» of an
activity graph. In the first case, the scene is called thestart
sceneof the use case. A scene can be characterized as
multiple (there may exist multiple instances of the scene)
and/or modal (all other scenes are locked until the
according task is completed).

An n-ary association relationship stereotyped «mutually
exclusive» denotes that each associated scene is modal with
respect to only the associated scenes rather than to all
scenes. At any time, at most one of the associated scenes is
visible and available to the user.

An aggregation relationship stereotyped «dependsOn»
between two scenesS and T denotes that sceneS only
exists or is visible if sceneT exists or is visible. For
example, in many cases there exists a «dependsOn»
relationship between the start scene of a use case and the
scenes of the interactions in the according activity graph.

A scene may comprise class views. Aclass view is
modelled by a UIA class stereotyped «class view». It is an
abstract presentation of instances and associations of a
domain class involved in the according user activity (i.e.
contained in the class scope). A scene with no class view
reflects no domain object information and often serves only
as navigation aid. A class view abstracts from actual user
interface details. In cases where the description of a class
view does not sufficiently characterize the situation, e.g. if
domain specific renderings are required, graphical drafts
may additionally be attached.

Example:The left side of Fig. 4 shows the use caseWritten
Exam Registration and a part of its activity graph. The right
side depicts three scenes, one of them containing a class
view, and a «dependsOn» relationship.

3.2. UIA dynamics: User Operations

To model the dynamic dialogue behaviour of the us
interface, i.e. the navigation between scenes, the selec
or manipulation of presented (displayed) domain objec
we adapt the notion of a user operation from FLUID to the
UML-based SCORES+ modelling environment.

In SCORES+, a scene provides two different kinds ofuser
operations:

• A user can (explicitly) navigate from one scene t
another. The according user operation is stereotyped
«navigation».

• A «manipulation» denotes selection or editing o
instances of domain classes which are presented
some class view of the scene. If a «manipulation» has
triggered the root operation of the interaction related
the scene, an implicit navigation may happen. Such
implicit navigation is triggered by the system and no
by the user.

A «navigation» can be marked ascreationor deletion. In
case of acreation, the target scene must be marked a
multiple. Here the user’s explicit change of focus creates
new instance of the target scene together with a navigat
to that instance.

A «navigation» marked asdeletion deletes the source
scene when the user changes the focus to the target sc
Note that creation concerns the target scene of
«navigation», whereasdeletionrelates to the source scene
A scene in a set of «mutually exclusive» associated scenes
is implicitly deleted, when the user changes the focus
another scene in the set. A scene which is part of
«dependsOn» association is also implicitly deleted, if the
aggregating scene is deleted.

“Semanticless” user operations like window moving an
re-sizing or scrolling are not considered. Like the oth

Fig. 4.Use caseWritten Exam Registration with partial activity
graph, Scenes and a class view

«refine»

«dependsOn»

Select
Lecture

Lectures

Lecture
Shortform

Written Exam
Registration

Written
Exam
Registration

Stereotype Description Visualization

«scene»

A class stereotyped
«scene» represents a main
building block of the user
interface.

«class view»

A class stereotyped
«class view» is an
abstract presentation of
instances and relations of
a domain class.

«manipulation»

An operation stereotyped
«manipulation» denotes
selection or editing of
presented instances of
domain classes.

Table 1.UIA elements as stereotypes

Scene

Class view

Manipulation

A. Homrighausen, H.-W. Six, M. Winter 5

d
ts.
er,

pt
e

deal
hat
too
ss
s.

el.
ike
d
n

h

in

le.
re
es),
ne
of

ss
on
lass
as
or
le

is
UIA elements, user operations abstract from concrete user
interface details. For example, the particular interaction
technique invoking a user operation, e.g. menu item
selection or drag and drop, is not specified. Likewise, low
level interactions like mouse button presses or basic text
editing operations are not considered.

The UIA elements can be modelled as elements of a class
diagram or as object flow states [29] in an activity graph. A
«navigation» is simply visualized by a derived association
between the according scenes. Tab. 1 comprises the
visualizations of UIA elements together with their short
descriptions.

Example:The right part of Fig. 5 depicts the UIA elements
for the use caseWritten Exam Registration and for the
according activity graph. The upper right scene is the start
scene of the use case. Via a «dependsOn» relationship it
aggregates the (sub-)sceneLectures which provides the
«manipulation» SelectLecture(). The sceneLectures also
contains the class viewLectureShortform which presents a
shorthand form of all lectures enrolled by the student. The
scene Exam Registration contains the class view
SiteShortform which represents short form information of
all offered examination sites including room information.
The sceneExam Registration is attached to both of the two
interactionsSelect Site 1st Exam andSelect Site 2nd Exam
in the activity graph. The two «manipulation» user
operationsSelect1stSite() and Select2ndSite() trigger the
according root operations.

4 Prototyping

The coupling of SCORES elements and UIA elements
(SCORES+ elements for short) aims at an integrate
specification of functional and user interface requiremen
For a semi-automatic generation of prototypes, howev
the expressive power of SCORES+ elements is still not
sufficient. To this end, we introduce the additional conce
of a domain object variable forming the basis for th
construction of meaningful prototypes.

4.1 Domain Object Variables

Class scopes and scenes of use cases or interactions
with domain classes and not with concrete instances of t
classes. The expressive power of such an approach is
weak to specify the semantics on the level of precisene
needed for a (semi-automatic) construction of prototype
Here, the specification must come down to the object lev
For example, it must be possible to express that objects l
“the currently edited registration” or “the currently selecte
site” can manipulated, and corresponding applicatio
functionalities can be invoked.

To this end, we introduce domain object variables whic
are associated with class views. Adomain object variable
(DOV) is a UIA class that references a single doma
object (stereotype «singleDOV») or a collection of domain
objects (stereotype «collectionDOV») presented in the
class view associated with the domain object variab
While a domain object variable references one or mo
instances of exactly one domain class (and its subclass
a domain class may be referenced by more than o
domain object variable. Tab. 2 describes the two kinds
DOVs.

A domain object variable can be associated with cla
views of more than one scene. This models the situati
where the same domain object(s) is (are) presented in c
views of different scenes. (To handle such situations w
the main reason to introduce domain object variables.) F
a class view of a multiple scene, the domain object variab
can be specified aslocal. Then to every new instance of the
scene, a new “instance“ of the domain object variable
attached to the new class view.

For a more precise specification of a «manipulation» user

Fig. 5.Use caseWritten Exam Registration with activity graph
and UIA elements (actors suppressed)

Select Site
2nd Exam

Select Site
 1st Exam

«refine»

«dependsOn»

Select
Lecture

Written
Exam
Registration

Lectures

Lecture
Shortform

Site
Shortform

Exam
Registration

SelectLecture

Select1stSite

Select2ndSite

Written Exam
Registration

Register

«dependsOn»

Stereotype Description Visualization

«singleDOV»
Class stereotyped «single-
DOV» references one
instance of a domain class

«collection-
DOV»

Class stereotyped «collec-
tionDOV» references sev-
eral instances of a domain
class

Table 2.Proposed stereotypes for domain object variables

DomainObject
Variable

Single

DomainObject
Variable

Collection

6 Round-Trip Prototyping for the Validation of Requirements Specifications

e
n
I-

ier
ble
th
t"

rts
the
ets.

ts

d

he
.

ted.
all
are

is
in

eir

d

e
re

n
o

e

ith
ur
a

ets
et
o a
es
nd
ed
operation, DOVs can be used as parameter types.
According to the UML, each (DOV) parameter of a
«manipulation» can be characterized asin, out, or inout,
denoting read, creation, and update of the DOV.
Additionally, DOVs can be associated with each other
using the «content related» association (aggregation),
denoting that domain objects referenced by the part DOV
are also referenced by the aggregate DOV. For example, the
(DOV) parameters of most selection operations are content
related.

Example: Fig. 6 shows the scene WrittenExam
Registration and its dependent sceneLectures from Fig. 5,
the latter complemented by the DOVsAll Lectures and
Selected Lecture. The «collectionDOV» All Lectures
contains references to all lectures available to the student.
The «singleDOV» Selected Lecture references the lecture
which is currently selected by the student.Selected Lecture
is «content related» to All Lectures because the selected
lecture has to be among all lectures. With the
«manipulation» SelectLecture() the user selects one of the
lectures referenced byAll Lectures and the selected lecture
is then referenced bySelected Lecture. Accordingly, the
parameter types of the «manipulation» SelectLecture() are
All Lectures and Selected Lecture.

4.2. Prototype Generation
The generation of prototypes from the SCORES+ SRS and
the DOVs takes place in two steps. The first step
automatically transforms the SRS and the DOVs into the
more detailed user interface design (UID) model. The UID
model specifies, for example, abstract widget types and
how a navigation is invoked (e.g. via menu choice or push
button). The second step automatically generates an
executable prototype for a target platform from the UID
model.

The UID model specifies static structure and dialog
behaviour of the user interface tier in the setting of a multi-
tier architecture in a platform-independent style. It
provides three fundamental modelling elements. AUI-Spec
is a hierarchical composition of abstract widgets like
canvas, button, text field, label, and so on. Each UI-Spec is

attached to aUI-Client which specifies the dialog
behaviour of a functionally cohesive part (normally a us
case) of the user interface. UI-Clients are ofte
hierarchically arranged, so we can talk about a "U
Superclient" and a "UI-Subclient". Objectholder
accommodate domain objects from the business logic t
of the application. To make the domain objects accessi
from the UI-Clients, objectholders are associated wi
them. An objectholder associated with a "UI-Superclien
is also accessible from each of its "UI-Subclients".

The first step of the prototype generation process sta
with assembling a UI-Spec for each scene. To this end
class views of the scene become (sets of) abstract widg
The widget types like e.g.TextField or NumericField are
derived from the attribute types of the domain objec
presented in the class views (e.g.String or Integer) and the
types of the DOVs involved («singleDOV» and
«collectionDOV»). Each user operation is also mappe
onto an abstract widget, e.g.menu or push button. Note
that the execution of a user operation belongs to t
responsibilities of the UI-Client the UI-Spec is attached to

For each start scene of a use case, a UI-Client is genera
The UI-Specs of the start scene and the UI-Specs of
scenes related to the activity graph of the use case
attached to the UI-Client. If a sceneT «dependsOn» a
sceneS, the UI-Spec forT is embedded into the UI-Spec
for S, except the UI-Specs forS and T are attached to
different UI-Clients.

For the user operations of a scene, pseudo code
generated and collected in a command table contained
the client. In case of a «navigation» the pseudo code
generation process takes also the «dependsOn» and
«mutually exclusive» associations into account. If two
scenes belonging to different use cases (resp. to th
activity graphs) are «dependsOn» associated, the
corresponding UI-Clients are hierarchically relate
accordingly.

Finally, for each DOV an objectholder is generated. Th
UI-Clients the objectholder is to be associated with a
determined as follows. LetS be the set of all scenes
containing class views the DOV is associated with. The
the objectholder will be associated with all UI-Clients t
which UI-Specs of scenes ofS are attached.

Usually, the automatically generated UID model will b
"polished" manually to refine layout and navigation.

The second step of the generation process starts w
choosing a target implementation platform. So far, o
generation tool supports VisualWorks MVC [35] and Jav
Swing. A support for HTML-based platforms is currently
under work. The generator substitutes (the abstract widg
of) the UI-Specs by the concrete widgets of the targ
platform (if necessary, an abstract widget is mapped ont
couple of concrete widgets). The tool also generat
executable code from (the pseudo code of) the comma
tables of the UI-Clients. The objectholders are transform

Selected

Fig. 6.UIA scene class with domain object variables

All Lectures

«content related»

«dependsOn»

Written
Exam
Registration

Lectures

Lecture
Shortform

SelectLecture

Register

Lecture

A. Homrighausen, H.-W. Six, M. Winter 7

be

l
e

e

of

e
ilt
s.

and
ted
ns
e.
gh
he
he
he
ng
y,
to
d in

er
into executable code, too.

Finally, domain object are generated from the domain class
model and fed into the prototype [31].

For each supported platform we have developed a
specialized framework that simplifies the code generation
process. Such a framework comprises objectholder classes,
(abstract) UI-Client classes, and some complex widgets not
provided by the platform. The generated prototype is
executable on a real device like a desktop computer
running SUN CDE or MS Windows, a PDA supporting
HDML [36], or a WAP/WML [37] compatible handy
(simulator).

Fig. 7 shows the three activities of the semi-automatic
generation of prototypes, the artifacts and the stakeholders
involved. An important aspect of the generation process is
the traceability from each element of the prototype via the
UID model back to the SRS.

Example:The window in the back of Fig. 8 shows the UI-
Spec editor depicting the hierarchical composition of the
UI-Spec WrittenExamRegistrationSpec. Because of the
«dependsOn» association between the start scene
WrittenExamRegistration and the sceneLectures, the UI-
spec of the latter is embedded into the UI-Spec
WrittenExamRegistrationSpec. The abstract widgets
Lecture (label) andLecture list (combo box) are derived
from the «manipulation»SelectLecture(), the two DOVs
All lecture and Selected lecture, and from the class view
Lecture shortform.

The window on top shows a screen shot of the UID model
editor. The displayed diagram represents the part of the
WEBADMIN UID model which belongs to theWritten Exam
Registration use case. The UID model has automatically
been generated from the SCORES+ model shown in Fig. 5
and Fig. 6. The UI-ClientWrittenExamRegistrationClient
has been generated from the start sceneWritten Exam
Registration. The ExamRegistrationSpec has been
assembled from the sceneExam Registration and is a

subcanvas of the UI-SpecWrittenExamRegistrationSpec.
In the prototype to be generated such a subcanvas will
presented within its containing canvas.

After having chosen the WIMP platform, our too
transforms the UID model into an executable prototyp
which is fully integrated into the VisualWorks

environment and can be manipulated with th
VisualWorks IDE [15]. The prototype is invoked by
instantiating the main UI-client class in the VisualWorks

environment.

The left part of Fig. 9 depicts a screen shot of a window
the WIMP-style prototype. In the right part of Fig. 9, a
screen shot of the prototype for a WAP/WML compatibl
handy simulator is shown. The handy prototype was bu
up by a hand crafted simulation of the generation proces

4.3. Validation and “Round-Trip“ Prototyping

Before a validation session starts, analysts, testers,
domain experts select the part of the SRS to be valida
and a particular target platform. Based on these decisio
our prototyping tool generates the executable prototyp
The validation session comprises a series of walks throu
business scenarios conducted with the help of t
prototype. The validation proceeds analogously to t
document based process described in [21]. During t
validation, the prototype can be modified by an assisti
developer according to the actual findings. Typicall
further navigation relations between scenes or attributes
class views are added. The changes can be accomplishe
the prototype, the UID model, or the SRS. In the two latt

Fig. 7.Prototype construction process

Analyst, Tester,

Stakeholder Activities Artefacts

Selection and

Use Case
Model

Validation
Data

UIA
Elements

Developer

Class
Model

Prototype

UID
Manual

Interaction
Style

Adaption

Description

Generation

Generation
Analyst, Tester,
Domain Expert

Plattform
Description

Fig. 8.UID editor with generated UID elements

8 Round-Trip Prototyping for the Validation of Requirements Specifications

ed
ion

he
rk
c

c

to

re
e

d to

d to
cases, an incremental re-generation of the prototype takes
place.

If the prototype is modified, the prototyping tool
automatically feeds the modifications back into the UID
model. The UID model updates are than mapped back to
the SCORES+ SRS. For example, a change of a dialogue
box triggers a change of the corresponding class view and
domain class, and a change of a window from modal to
non-modal triggers a change of the according scene. A
modification of the navigation structure is mainly reflected
by a change of the use case model. The round-trip
prototyping brings the prototype and the SRS in sync and
the prototype may be discarded when the validation
process is finished. Fig. 10 shows the stakeholders,
activities and artifacts of the round-trip prototyping
process.

Example:Suppose that the validation reveals the following
missing requirements:Foreign students are allowed to

write the examinations in an embassy; handicapp
students are allowed to stay at home under the supervis
of an official person. To incorporate (and validate) these
requirements, the prototype is manually extended with t
VisualWorks canvas tool (Fig. 11). The canvas under wo
is the VisualWorks presentation of the UI-Spe
WrittenExamRegistrationSpec. An abstract navigation
widgetSpecial Case is added together with a new UI-Spe
SpecialCaseRegistrationSpec.

Our prototyping tool feeds these modifications back in
the UID model as follows. First, the modified and new
widgets and UI classes of the executable prototype a
transformed back into UI-Specs of the UID model. In cas
of the new UI-SpecSpecialCaseRegistrationSpec, the rule-
based consistency checker detects that it is not connecte
some UI-Client. A new UI-Client is then automatically
created, named analogously, and the UI-Spec is attache
this UI-Client.Fig. 9. Screen shots of a windows- and a handy prototype

Fig. 10.Round-Trip prototyping process

of Business
Scenarios

Walkthroughs

Class
Model

Business
Scenarios

Use Case
Model

Validation
Protocols

Developer, Analyst

Prototype

Wrap Up

Validation
Data

UIA
Elements

UID

UID
(Reverse)

Engineering

User,
Domain Expert,

Tester

Stakeholder Activities Artifacts

Fig. 11.Manipulating the WIMP user interface prototype
with the VisualWorks CanvasTool

A. Homrighausen, H.-W. Six, M. Winter 9

and

ll
to

s
he

e
The
ce

e
/

e
as

tion
the
m

nce
In a second step, the modifications of the UID model are
automatically mapped back to the SCORES+ SRS. The
mapping includes the generation of a new scene
SpecialCaseRegistration, which is target of a new
«navigation» starting from the scene Lectures. Fig. 13
depicts the updated UIA elements.

A consistency check of the SCORES+ SRS now reveals a
scene that is not connected to a use case or an action (in an
activity graph). In our example, a new use caseSpecial
Case Registration is now manually added which«extend»
the use caseWritten Exam Registration. The «extend»
association implies the manual creation of the «macro

action» Special Case Student in the according activity
diagram. Fig. 14 shows the updated use case diagram
the modified activity graph of use caseWritten Exam
Registration.

5 Experiences

We have applied the SCORES+ specification and validation
techniques to a couple of projects ranging from sma
database applications over CASE tool components up
some main components of a “virtual university“. Thi
section mainly summarizes our experiences with t
prototype-based validation of the SRS for WEBADMIN.

The SRS for WEBADMIN comprises 4 actors, 37 main us
cases, 24 domain classes, and 28 main scenes.
presentation prototype for a window-based user interfa
architecture includes 13 windows with full navigation
capabilities and some added application functionality lik
object creation and manipulation. Some simple WAP
WML-based prototypes were built, too. The effort for th
construction of the prototypes and the validation data w
less than one person-week.

The prototypes were used and adapted in several valida
sessions conducted for particular user groups. Most of
participating stakeholders were experts of the proble
domain and used to window-based applications, and he

Fig. 12.UID editor with the updated UID model

Fig. 13.Updated UIA elements

Lectures

Lecture
Shortform

Special Case
Registration

Select Lecture /«create&navigate»

Fig. 14.Updated use case diagram and activity graph for use caseWritten Exam Registration

Student

«extend»

Exam Registration

:Student
Select Site
2nd Exam

Special CaseSelect Site
1st Exam

Select
Lecture

Special Case Student Student

«refine»Written Exam
Registration

Special Case
Registration

Cancel
Registration

Identification

10 Round-Trip Prototyping for the Validation of Requirements Specifications

le

out
pe
on.

ing
d
t

g
ys

y
ile
RS
as

t
er

se a
he
s
ot
ed
e
ich

of
].
en
ng
s.

e
ch
nd

he
t to

e
n
nd
e
an
e

ser
te
of

ms
e,
k“
they did not encounter problems to identify the main tasks
in the prototype. All stakeholders felt much more inclined
in the prototype based validation process compared to a
rather document centred one. In accordance to a study
conducted by Cerpa and Verner [9], the analysts and
especially the developers felt much more “safe“ during all
development stages compared to former projects without
prototype based validations.

Due to the prototype-based validation, we found omissions
in the SRS which would presumably not have been found
when using the original SCORESvalidation approach. For
example, the initial SRS defined that a supervisor of a
written examination belongs to the staff of the
FernUniversität. This is in contrast to reality where
supervisors of written examinations which, for example,
take place in foreign countries, can be staff members of
German embassies. During a validation session, some user
asked for a “free form entry“ for supervisors which was
then added to the prototype. It was easy to feed the new
requirement via the UID model back into the SRS. It was
materialized as a new interaction of the use caseSpecify
Supervisor and a new domain class ForeignSupervisor.
This class and the original domain classUniversityStaff
became subclasses of a new classStaff.

In the initial SRS the actorCoordinator modelled the
person that coordinates the rooms, supervisors, and the
colours of the cover sheets of all written examinations to be
conducted at a particular date. When we presented the
prototype to some users from a particular faculty, they
immediately asked, why the coordinator could not select
the examinations for a particular semester. The reason was
that in their faculty the coordinator is responsible to
schedule all examinations of a semester, while in all other
faculties the scheduling belongs to the responsibility of a
member of the examination commission. By the way, even
the inspections of the data dictionary had not detected this
misconception.

Our experiences with prototypes for interaction techniques
like WAP/WML browsers can be sketched as follows. In
the requirements elicitation activities, stakeholders often
came up with a bunch of needs concerning WAP/WML-
based services. Fortunately, walking through some use
cases with a WAP/WML browser prototype (as shown in
the lower part of Fig. 9) helped a lot in separating real
needed services from wishful thinking. We recommend an
early prototyping of some of the WAP/WML-based
services, which should be accomplished before negotiating
the interaction styles for the whole bunch of use cases.

For the rest of the section we report on some pitfalls of the
prototype-based validation of SRS. On the one hand, even
for highly sophisticated window environments, only
“rough“ prototypes should be constructed. This helps the
users to focus on the functional requirements and prevents
them from an early discussion about detailed layout and
usability features. It also reduces the risks that users invent

unrealistic expectations. On the other hand, for simp
interaction styles like e.g. WAP/WML, every prototype
bears the danger of too early in-depth discussions ab
layout and usability, because at first glance the prototy
appears to the user as the interface of the final applicati

We share the common experience that users, when play
around with a prototype, usually demand for more an
more functionality [14]. This is often due to the fact tha
the tangibility and modifiability of the prototype let them
easily imagine increased functionality without considerin
the additional costs. In general “users do seem to alwa
ask for more“ [30]. The most important functionalities ma
be added to the prototype and validated at once, wh
others are either discarded or first incorporated in the S
and validated later. In any case, each new functionality h
to be negotiated.

6 Related Work

As mentioned in the introduction, Ravid and Berry aim a
reconciling the difference between the prototype and oth
SRS documents [30]. Based on a case study, they propo
generic approach to taylor the process of prototyping. T
main idea is to identify the kinds of requirement
information the prototype should, respectively should n
address before it is constructed. This information is call
“intent-information“ and should help answering th
question “When the prototype and the SRS disagree, wh
do one believe?“.

Schneider proposes a strategy to extract crucial pieces
knowledge from a prototype and from its developer [33
The strategy is based on monitoring the explanations giv
by the developer, analysing their structure, and feedi
results back to support and to focus the explanation
During this process, the prototype turns into th
centrepiece of a hyperstructured information base whi
can be used to convey concepts, implementation tricks a
experiences.

Both approaches are different from our attempt and t
problem tackled by them seems to disappear or at leas
heavily be reduced by our “round-trip“ facility
synchronizing the prototype and the SRS.

Kovacievic [22] and Nunes [27] present extensions of th
UML for task and user interface modelling. Conalle
proposes UML extensions and a process to model a
develop HTML-based web applications [10]. Thes
approaches neither focus on prototyping nor aim at
integration of the functional and the user interfac
requirements.

Elkoutbi et al. suggest a process that generates a u
interface prototype from scenarios via an intermedia
state-based specification of the system [12]. Scenarios
use cases are modelled as UML collaboration diagra
enriched with user interface information. For exampl
messages are labelled with an optional “widget mar

A. Homrighausen, H.-W. Six, M. Winter 11

ll:
n
.
-

ls,
y,

nt
e.
f
6,

-
n.

-
n.

-
a,

d-
m

s.

-
nt

ts.
,

.
t-

,

r
9,

?

-
5,

l-
e
n

e

indicating the widget-type the resulting user interface
should provide. A drawback of their approach is the
tedious manual task of specifying all scenarios on the level
of widget interactions. The requirements engineer is forced
to have a concrete user interface in mind from the
beginning. Another disadvantage is the missing support of
user interaction techniques other than menus and windows.
The approach also lacks the mapping of validation results
from the (modified) prototype back to the requirements
specification.

Many software tools for the generation of user interfaces
are known [26]. Some of them, e.g. Lauesen’s EFDD
approach [23] or Balzert’s Janus system [3], use only the
structural (data) model. Others, e.g. Johnson’s ADEPT [18]
or the approach of Bomsdorf and Szwillus [5], are based
only on a functional (task) model. A few approaches, e.g.
Forbrig’s and Schlungbaum’s TADEUS [13] or the Genova
system by Arisholm et al. [1], are based on functional and
structural models. All these approaches focus on the
generation of full fledged user interfaces as a starting point
for a complete application generation. They are not
concerned with the validation and none of them allows for
a round-trip prototyping.

Formal specification based prototyping approaches like e.g.
the CAPS project by Luqi [24] mainly focus on the (semi-)
automatic generation of functional prototypes. Presentation
prototypes are either neglected or must be created
manually.

7 Conclusion

We have proposed SCORES+, a requirements specification
method that covers functional and user interface
requirements in an integrated and UML-compliant way. A
SCORES+ SRS also forms the basis for the semi-automatic
construction of prototypes running on different target
platforms. In addition, the generation technique allows for
"round-trip" prototyping.

At the moment, we are applying our approach to several
problem domains for collecting more experiences and for
further validation of the method. We are also developing a
framework that conveniently supports web-based
environments as implementation platform for prototypes.
Main future work concerns the seamless transition of
SCORES+ SRS into a software architecture and the
generation of test cases for user interface and acceptance
tests.

Acknowledgments
The authors like to acknowledge the comments of the
anonymous referees which led to a considerable
improvement of the paper. We also thank Johannes
Akinlaja, who implemented the SCORES+ editor on top of
the Together/J [34] UML modelling tool.

References

1. E. Arisholm, H. Benestad, J. Skandsen, H. Fredha
Incorporating Rapid User Interface Prototyping i
Object-Oriented Analysis and Design with Genova
Proc. 8. Nordic Workshop on Programming Environ
ment Research, Ronneby, Sweden, August 1998

2. D. Bäumer, W. Bischofberger, H. Lichter, H. Züllig-
hoven: User Interface Prototyping — Concepts, Too
and Experience. Proc. ICSE-18, Berlin, German
March 25 - 29 1996, pp. 532-541

3. H. Balzert et al.. The Janus Application Developme
Environment: Generating More than the User Interfac
In: J. Vanderdonckt (ed.): Computer-Aided Design o
User Interfaces, Namur University Press, Namur, 199
pp. 183-205

4. Boehm B., Verifying and Validating Software Require
ments and Design Specifications. IEEE Software, Ja
1984, pp. 75-88

5. B. Bomsdorf, G. Szwillus: Coherent Modelling & Pro
totyping to Support Task-Based User Interface Desig
CHI’98 Workshop "From Task to Dialogue: Task
Based User Interface Design", Los Angeles, Californi
1998

6. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Mo
eling Language Users Guide. Addison-Wesley/ac
Press, Reading, MA, 1999

7. J. Brunsmann, A. Homrighausen, H.-W. Six, J. Vos
Assignments in a Virtual University — The WebAssign
System. Proc. 19th World Conf. on Open Learning and
Distance Education, Vienna, Austria, 1999

8. J. M. Carroll (Ed.):Scenario-Based Design — Envi
sioning Work and Technology in System Developme.
J. Wiley & Sons, New York, 1995

9. N. Cerpa, J. Verner: Prototyping: some new Resul
Information and Software Technology, Vol 38, Elsevire
1996, pp. 743-755

10. Jim Conallen: Building web applications with UML
Addison-Wesley object technologiey series, 2nd prin
ing, February 2000

11. A. Davis: Software Prototyping. in: M. Yovits, M.
Zelkowitz (Eds.): Advances in Computers, Vol. 40
Academic Press, San Diego, 1995, pp. 39-63

12. M. Elkoutbi, I. Khriss, R.K. Keller: Generating Use
Interface Prototypes from Scenarios. Proc. RE 9
IEEE Computer Society Press, 1999, pp. 150-158

13. P. Forbrig, C. Stary et al.: From Task to Dialog: How
Many and What Kind of Models do Developers Need
Proc. CHI’98 Workshops, April 1998

14. V. S. Gordon, J.M. Bieman: Rapid Prototyping: Les
sons Learned. IEEE Software, Vol. 15, Nr. 1, Jan. 199
pp. 85-95

15. A. Homrighausen, J. Voss: Tool support for the mode
based development of interactive applications - Th
FLUID approach. Proc. 4th Eurographics Workshop o
Design, Specification and Verification of Interactiv
Systems, Granada, 1997

12 Round-Trip Prototyping for the Validation of Requirements Specifications

s a

er-
e

e

ce
p.

-
t

-
n.

nd
E

ra-

9
a-

a-

os
ft-
16. IEEE Guide to Software Requirements Specifications
IEEE Standard 830, IEEE, New York, 1993

17. I. Jacobson, G. Booch, J. Rumbaugh: The Unified Soft-
ware Development Process. Addison-Wesley/acm
Press, Reading, MA, 1999

18. P. Johnson, H. Johnson, S. Wilson: Rapid Prototyping
of User Interfaces Driven by Task Models. Chapter 9 in
[8].

19. G. Kösters, B.-U. Pagel, T. de Ridder, M. Winter: Ani-
mated Requirements Walkthroughs based on Business
Scenarios. Proc. 5th euroSTAR, Edinburgh, 1997

20. G. Kösters, H.-W. Six, J. Voss: Combined Analysis of
User Interface and Domain Requirements. Proc. 2nd
IEEE Int. Conf. on Requirements Engineering, Colo-
rado Springs, 1996

21. G. Kösters, H.-W. Six, M. Winter: Coupling Use Cases
and Class Models as a Means for Validation and Verifi-
cation of Requirements Specifications. Requirements
Engineering, Vol. 6, Nr. 1, Springer, London, January
2001, pp. 3-17

22. Srdjan Kovacevic: UML and User Interface Modeling.
In: Jean Bezivin, Pierre-Alain Muller (eds.):
<<UML>>’98 The Unified Modeling Language, Lec-
ture Notes in Computer Science 1618, 1998, pp.253-
266

23. S. Lauesen, M. B. Harning, C. Grønning: Screen
Design for Task Efficiency and System Understanding.
In: S. Howard and Y.K. Leung (eds.): OZCHI 94 Pro-
ceedings, 1994, pp. 271-276

24. Luqi, et al.: CAPS as Requirements Engineering Tool.
Proc. RE and Analysis Workshop, SEI, CMU, Pitts-
burgh, 1991 (http://wwwcaps.cs.nps.navy.mil)

25. N.A.M. Maiden, S. Minocha , K. Manning, M. Ryan:
CREWS-SAVRE: Scenarios for Acquiring and Validat-
ing Requirements. Proc. ICRE98, IEEE Press, 1998

26. B. Myers, S. E. Hudson, and R. Pausch: Past, Present,
and Future of User Interface Software Tools. ACM
Transactions on Computer-Human Interaction, Vol. 7,

No. 1, March 2000, pp. 3-28
27. Nuno Jardim Nunes, Joao Falcao e Cunha: Toward

UML Profile for Interaction Design: The Wisdom
Approach. Proc. <<UML>>2000 The Unified Model-
ing Language, York, UK, Oct. 2000

28. B. Nuseibeh, S. Easterbrook: Requirements Engine
ing: A Roadmap. ICSE-18, The Future of Softwar
Engineering, Limerick, Ireland, 2000, pp. 35-46

29. Object Managment Group: Unified Modeling Languag
Specification. Version 1.3, OMG, June 1999

30. A. Ravid, D. M. Berry: A Method for Extracting and
Stating Software Requirements that a User Interfa
Prototype Contains. Requirements Eng 5 (2000) 4, p
225-241

31. J. Rogotzki: Generating Domain-Data from GeoOOA
Models. Diploma thesis, Dept. of CS, FernUniversitä
Hagen, 1997 (in German)

32. M. B. Rosson, J. M. Carroll: Narrowing the Specifica
tion-Implementation Gap in Scenario Based Desig
Chapter 10 in [8].

33. K. Schneider: Prototypes as assets, not toys: why a
how to extract knowledge from prototypes. Proc. ICS
18, 1996, pp. 522 - 531

34. TogetherJ ControlCenter V.5.02, TogetherSoft Corpo
tion, 2001

35. VisualWorks Release 5i.1, Cincom Systems Inc., 199
36. W3C: Handheld Device Markup Language Specific

tion. May 1997
http://www.w3.org/pub/WWW/TR/NOTE-Submission-
HDML-spec.html

37. WAP-Forum: Wireless Markup Language Specific
tion. WAP-191, June 2000,
http://www.wapforum.org

38. Weidenhaupt K, Pohl K, Jarke M, Haumer P. Scenari
in System Development: Current Practice. IEEE So
ware, March/April 1998, pp 34-45

	1 Introduction
	2 Functional Requirements
	2.1. Actors, Use Cases, and Activity Graphs
	2.2. Domain Class Model
	Fig. 1. Use case diagram and activity graph for use case Written Exam Registration
	Fig. 2. Textual descriptions of use case Written Exam Registration
	Fig. 3. WebAdmin Domain class diagram

	3 User Interface Requirements
	3.1. UIA static structure: Scenes and Class Views
	Fig. 4. Use case Written Exam Registration with partial activity graph, Scenes and a class view

	3.2. UIA dynamics: User Operations
	Table 1. UIA elements as stereotypes
	Fig. 5. Use case Written Exam Registration with activity graph and UIA elements (actors suppressed)

	4 Prototyping
	4.1 Domain Object Variables
	Table 2. Proposed stereotypes for domain object variables
	Fig. 6. UIA scene class with domain object variables

	4.2. Prototype Generation
	Fig. 7. Prototype construction process
	Fig. 8. UID editor with generated UID elements
	Fig. 9. Screen shots of a windows- and a handy prototype

	4.3. Validation and “Round-Trip“ Prototyping
	Fig. 10. Round-Trip prototyping process
	Fig. 11. Manipulating the WIMP user interface prototype with the VisualWorks CanvasTool
	Fig. 12. UID editor with the updated UID model
	Fig. 13. Updated UIA elements
	Fig. 14. Updated use case diagram and activity graph for use case Written Exam Registration

	5 Experiences
	6 Related Work
	7 Conclusion
	References
	1. E. Arisholm, H. Benestad, J. Skandsen, H. Fredhall: Incorporating Rapid User Interface Prototy...
	2. D. Bäumer, W. Bischofberger, H. Lichter, H. Züllighoven: User Interface Prototyping — Concepts...
	3. H. Balzert et al.. The Janus Application Development Environment: Generating More than the Use...
	4. Boehm B., Verifying and Validating Software Requirements and Design Specifications. IEEE Softw...
	5. B. Bomsdorf, G. Szwillus: Coherent Modelling & Prototyping to Support Task-Based User Interfac...
	6. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language Users Guide. Addison-Wesley/...
	7. J. Brunsmann, A. Homrighausen, H.-W. Six, J. Voss. Assignments in a Virtual University — The W...
	8. J. M. Carroll (Ed.): Scenario-Based Design — Envisioning Work and Technology in System Develop...
	9. N. Cerpa, J. Verner: Prototyping: some new Results. Information and Software Technology, Vol 3...
	10. Jim Conallen: Building web applications with UML. Addison-Wesley object technologiey series, ...
	11. A. Davis: Software Prototyping. in: M. Yovits, M. Zelkowitz (Eds.): Advances in Computers, Vo...
	12. M. Elkoutbi, I. Khriss, R.K. Keller: Generating User Interface Prototypes from Scenarios. Pro...
	13. P. Forbrig, C. Stary et al.: From Task to Dialog: How Many and What Kind of Models do Develop...
	14. V. S. Gordon, J.M. Bieman: Rapid Prototyping: Lessons Learned. IEEE Software, Vol. 15, Nr. 1,...
	15. A. Homrighausen, J. Voss: Tool support for the model- based development of interactive applic...
	16. IEEE Guide to Software Requirements Specifications IEEE Standard 830, IEEE, New York, 1993
	17. I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process. Addison-Wesley/...
	18. P. Johnson, H. Johnson, S. Wilson: Rapid Prototyping of User Interfaces Driven by Task Models...
	19. G. Kösters, B.-U. Pagel, T. de Ridder, M. Winter: Animated Requirements Walkthroughs based on...
	20. G. Kösters, H.-W. Six, J. Voss: Combined Analysis of User Interface and Domain Requirements. ...
	21. G. Kösters, H.-W. Six, M. Winter: Coupling Use Cases and Class Models as a Means for Validati...
	22. Srdjan Kovacevic: UML and User Interface Modeling. In: Jean Bezivin, Pierre-Alain Muller (eds...
	23. S. Lauesen, M. B. Harning, C. Grønning: Screen Design for Task Efficiency and System Understa...
	24. Luqi, et al.: CAPS as Requirements Engineering Tool. Proc. RE and Analysis Workshop, SEI, CMU...
	25. N.A.M. Maiden, S. Minocha , K. Manning, M. Ryan: CREWS-SAVRE: Scenarios for Acquiring and Val...
	26. B. Myers, S. E. Hudson, and R. Pausch: Past, Present, and Future of User Interface Software T...
	27. Nuno Jardim Nunes, Joao Falcao e Cunha: Towards a UML Profile for Interaction Design: The Wis...
	28. B. Nuseibeh, S. Easterbrook: Requirements Engineering: A Roadmap. ICSE-18, The Future of Soft...
	29. Object Managment Group: Unified Modeling Language Specification. Version 1.3, OMG, June 1999
	30. A. Ravid, D. M. Berry: A Method for Extracting and Stating Software Requirements that a User ...
	31. J. Rogotzki: Generating Domain-Data from GeoOOA- Models. Diploma thesis, Dept. of CS, FernUni...
	32. M. B. Rosson, J. M. Carroll: Narrowing the Specification-Implementation Gap in Scenario Based...
	33. K. Schneider: Prototypes as assets, not toys: why and how to extract knowledge from prototype...
	34. TogetherJ ControlCenter V.5.02, TogetherSoft Corporation, 2001
	35. VisualWorks Release 5i.1, Cincom Systems Inc., 1999
	36. W3C: Handheld Device Markup Language Specification. May 1997 http://www.w3.org/pub/WWW/TR/NOT...
	37. WAP-Forum: Wireless Markup Language Specification. WAP-191, June 2000, http://www.wapforum.org
	38. Weidenhaupt K, Pohl K, Jarke M, Haumer P. Scenarios in System Development: Current Practice. ...

	Round-Trip Prototyping based on Integrated Functional and User Interface Requirements Specifications

