
Window Query-Optimal Clustering of Spatial Objects�

Bernd-Uwe Pagel
Department of Computer Science

University of Hagen

bernd-uwe.pagel@fernuni-hagen.de

Hans-Werner Six
Department of Computer Science

University of Hagen

hw.six@fernuni-hagen.de

Mario Winter
Department of Computer Science

University of Hagen

mario.winter@fernuni-hagen.de

Abstract

During the last decade various spatial data structures have
been designed and compared against each other with respect

to their performance. Still missing is a lower bound result,

e.g. an optimal spatial data clustering, which would allow
for the absolute comparison of the performance of the

well-known data structures with the optimum. In this

paper, we address the static situation where the data is
known in beforehand. An optimal data clustering for this

setting will also provide a lower bound for the dynamic

situation where the input data is not known in advance
and the data structure is built up by iterated insertions.

Using as performance measure the expected number of data
bucket accesses needed to perform a window query, the

static clustering problem turns into a classical optimization

problem. For the special case of bucket capacity cb = 2
the optimization problem is solvable in polynomial time,

whereas for cb � 3 it is NP-hard. In experiments using

simulated annealing heuristics for the optimization the best
dynamic structures as well as the static packed R-tree

perform about 20% worse than the optimum on average.

However, we again want to emphazise that we understand
our contribution as lower bound result rather than another

speed-up variant of classical spatial data structures.

1 Introduction

During the last decade various spatial data structures
have been designed and compared against each other
with respect to their performance. Still missing is a
lower bound result, e.g. an optimal spatial data cluste-
ring, which would allow for the absolute comparison of
the performance of the well-known data structures with
the optimum. In this paper, we address the static situa-
tion where the data is known in beforehand. An optimal

�This work has been supported by the ESPRIT II Basic
Research Actions Program of the European Community under
contract No. 6881 (AMUSING).

data clustering for this setting will also provide a lower
bound for the dynamic situation where the input data
is not known in advance and the data structure is built
up by iterated insertions. Besides this motivation, in-
vestigations of the static situation are highly desirable
because this setting is rather typical for geographical
applications.

Surprisingly little work, however, has been devoted
to the static case so far. To our knowledge, only two
approaches addressing the static situation exist in the
literature.

The packed R-tree [KF93] arranges the objects accor-
ding to a space �lling curve, e.g. the Hilbert curve, in a
preprocessing step and then an R-tree is built bottom-
up, similar to the bottom-up construction of an optimal
B-tree. As a result, space utilization of the R-tree is
high, its height is small and { also because of the clu-
stering e�ect of the space �lling curve { the packed R-
tree outperforms conventional R-trees mainly for large
window queries.

In [BPS94] it is shown that the static clustering pro-
blem turns out to be a classical optimization problem, if
the expected number of data bucket accesses needed to
perform a window quer is used as performance measure
[PSTW93, KF93]. The solution of the optimization is a
set of data buckets with given bucket capacity inducing
an optimal data clustering w.r.t. the performance mea-
sure. The bucket optimization problem can be solved
for bucket capacity cb = 2 by mapping the optimiza-
tion problem onto a well-known graph matching pro-
blem. Simulations with "uniformly distributed" query
windows show that a representative of the best dynamic
structures, the LSD-tree [HSW89], is outperformed by
20% on average. Considering the general situation with
bucket capacity cb � 3 and arbitrary cost functions the
optimization problem emerges as NP-hard.

In [BPS94] the complexity of the optimization pro-
blem for cost functions based on data bucket accesses
and cb � 3 was left as an open problem. Since the com-
putational complexity prohibits an exact optimization
anyway, a suitable heuristic is highly desirable. Such a
heuristic would allow for the absolute comparison of the

performance of static and dynamic spatial data struc-
tures with the (approximated) optimum.
In this paper, we continue investigating the optimiza-

tion problem formulated in [BPS94]. We prove the NP-
hardness of the bucket optimization problem for ob-
jective functions ful�lling a certain monotony property
which holds for the cost measure based on data bucket
accesses. Next we use simulated annealing as optimiza-
tion heuristic. Our simulations show that the results
obtained by the heuristic lie within 5% of the optimum
(which ist typical for carefully tailored simulated an-
nealing). Experiments exhibit that for several data sets
including the Sequoia 2000 benchmark [SFGM93] both
the LSD-tree and the static packed R-tree perform bet-
ween 10% and 30% worse than the optimum. Finally,
we consider directory page accesses, too, and sketch �rst
results on overall optimized R-trees.
The bounds established by the optimal algorithm,

resp. the heuristic, allow for the �rst time the absolute
comparison of arbitrary static and dynamic spatial
data structures. This is in contrast to all previous
investigations which compared data structures only
(relatively) to each other. We hope that our results
contribute some general arguments to the discussion
about the merits of further spatial data structure
tuning.
The paper is organized as follows: Section 2 provides

the background information about the performance
measure and the optimization problem. Section 3 is
devoted to complexity considerations. Section 4 gives
a brief overview of the simulated annealing heuristic.
Section 5 presents experimental results. Section 6
reports on �rst results of the overall optimization where
directory accesses are also taken into account. Section
7 summarizes the results.

2 The Optimization Problem

In order to state the static optimization problem
precisely, we introduce a general framework. Let d be
the dimension of the data space, Si = [0; 1), 1 � i � d,
and S = S1 � S2 � : : :� Sd be the d-dimensional data
space in which all geometric objects are de�ned. For
sake of simplicity, we assume that each geometric object
g is a d-dimensional interval g = [g:l1; g:r1] � : : : �
[g:ld; g:rd]; g:li; g:ri 2 Si; g:li � g:ri. For a point object
g:li = g:ri, 1 � i � d, holds and the representation is
abbreviated to g = (g:l1; g:l2; : : : ; g:ld). Let us assume
that for storing a set G = fg1; : : : ; gng of n objects
the data structure DS(G) currently consumes m data
buckets B1; B2; : : : ; Bm with a capacity of cb objects
each. With each object g 2 G, a bucket is uniquely
associated. The bucket region R(Bi) � S of a bucket
Bi is the minimal d-dimensional interval enclosing all
objects in Bi. We call B = fB1; : : : ; Bmg a bucket
set and R(B) = fR(B1); : : : ; R(Bm)g the corresponding

organization of the data space.

Without loss of generality and only for simplicity
reasons, we choose d = 2 for further considerations.
This reduces bounding boxes, bucket regions, and query
windows to two-dimensional rectangles.

Reasoning about optimal data structures starts with a
cost function that allows for comparing one structure to
another. An appropriate and fair measure is desirable,
where fair means that it is independent of data structure
and implementation details. We choose the expected
number of bucket accesses needed to perform a query
as such a fair cost measure, which is appropriate too,
because in practical applications data bucket accesses
usually dominate query costs (e.g. in particular exceed
by far external accesses to the paged parts of the
corresponding directory).

Obviously, the cost measure depends on the actual
bucket set B and the query behavior of the user. Since
we are interested in expected values, we have to de�ne
the underlying probability model. To this end, we
introduce a probabilistic query model QM re
ecting
the expected query behavior of the users.
For a bucket set B and a query model QM, let

P (q meets Bi) be the probability that performing query
q forces an access of bucket Bi. Then the expected
number of bucket accesses needed to perform query q {
we call it the performance measure PM for QM { is
given by

PM(QM; B) =
mX
i=1

P (q meets Bi):

Example 1. In order to illustrate the performance
measure PM(QM; B) let us take its "instantiation"
derived from a simple query model QM1, which is
based on square windows of constant size on the
average. Furthermore, every part of the data space is
equally likely to be requested. The assumptions of this
query model re
ect a behavior which can sometimes be
observed with novice and occasional users.

More precisely, QM1 is de�ned by a constant aspect
ratio of 1:1, a constant window area cA and a uniform
window center distribution U . If we abstain from
boundary considerations in favour of readability, then
P (q meets Bi) is just the bucket region R(Bi) of bucket
Bi in
ated by a frame of width

p
cA=2. Let R(Bi):L

describe the width and R(Bi):H the height of R(Bi).
Then we get (see Fig. 1)

PM(QM1; B) =
mX
i=1

(R(Bi):L+
p
cA)

� (R(Bi):H +
p
cA)

=
mX
i=1

R(Bi):L �R(Bi):H

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

R(Bi)

S

p
cA=2

Figure 1: P (q meetsBi)

+
p
cA �

mX
i=1

(R(Bi):L +R(Bi):H)

+ cA �m:
2

In QM1, one possible user behavior is modelled.
For other kinds of user behavior and the correspon-
ding query models the interested reader is referred to
[PSTW93]. Note that the theoretical results presented
below hold for all these models without any restriction.

We are now able to de�ne the Bucket Set Problem
(BSP):

Given a set of geometric objects, a bucket capacity
cb � 2, and a query model QM, determine the bucket
set Bopt for which the performance measure PM is
minimal.

3 Computational Complexity

For a complete discussion of the complexity of the
optimization problem, we start our investigations with
a brief review of the Simple Bucket Set Problem (SBSP)
where bucket capacity 2 is assumed. The SBSP
shows strong similarities to the well-known Minimum
Weighted Matching Problem (MWMP), which is de�ned
as follows:
Given a graph G with weigthed edges, determine a

subset of edges such that

i) for each vertex v in G there exists exactly one edge
e in the subset such that e is incident to v, and

ii) the sum of the edge weights is minimal.

In the minimal subset no two edges are incident to the
same vertex. We call the two endpoints of an edge in
the subset a match. In other words, each vertex belongs
to exactly one match and the sum of the match weights
is minimal.
The similarity of SBSP and MWMP becomes intuiti-

vely clear if we regard two geometric objects sharing the
same bucket as a match while the weight of the match

is determined by the value of the cost function PM for
that bucket.

Theorem 1. The SBSP can be solved in polynomial
time.

Proof. See [BPS94] for details of the mapping of the
SBSP onto the MWMP for nonbipartite graphs. The
MWMP itself can be solved in O(n3) time (see e.g.
[Law76]).

2

We now turn to the Universal Bucket Set Problem
(UBSP) with bucket capacity cb � 3 while assuming for
the access probability P (q meets Bi) the following three
properties which hold for any query model:

C1 P (q meets Bi) � 0 holds for each bucket Bi.

C2 Let Bi be an arbitrary bucket which can accommo-
date at least one further object, then P (qmeetsBi) �
P (q meets Bi [fgg) holds for each object g (mono-
tony).

C3 P can be computed in polynomial time.

Theorem 2. The UBSP is NP-hard.

Proof. We restrict the UBSP to cb = 3 and show that
the 3-PARTITION Problem (3-PP) can be reduced to
the decision-oriented UBSP which asks for the existence
of a data space organization for a given cost.
The 3-PP is de�ned as follows. Given a set A of

3m elements, a bound S 2 IN+, and for each a 2 A
a weight w(a) 2 IN+ such that S=4 < w(a) < S=2
and

P
a2Aw(a) = mS. The question is, whether A

can be partitioned into m sets A1; A2; : : : ; Am such thatP
ai2Ai

w(ai) = S for 1 � i � m. Note that by
de�nition each Ai contains exactly three elements.
The rough idea of the transformation is simple. Set

A of the 3-PP is interpreted as a set G of geometric
objects in the decision-oriented UBSP and each set Ai

is associated with a bucket Bi. More precisely, we
introduce two bijective functions g and b such that the
geometric object g(a) 2 G corresponds to the element
a 2 A, i.e. G = fg(a1); : : : ; g(a3m)g, and the bucket
b(Ai) to the set Ai.
Certainly, the key of the transformation lies in the

construction of a suitable cost function C which must
�rst ful�ll the properties C1 to C3 and second meet
the characteristics of the 3-PP. Let card(Ai) denote the
cardinality of Ai. Then we claim that

C(b(Ai)) = jS �
X
ai2Ai

w(ai)j+ (card(Ai) + 1) � S

is such a suitable cost function.
First we prove the properties C1 to C3. Properties

C1 and C3 hold obviously. In order to show property

C2, let b(Ai) contain none, one or two object(s) and
let a 2 A � Ai. From S=4 < w(a) < S=2 we get
0 � jS �Pai2Ai

w(ai)j � S for the corresponding set
Ai. Alltogether we yield

C(b(Ai)) � S + (card(Ai) + 1) � S
= (card(Ai) + 2) � S
� C(b(Ai) [fg(a)g)

and hence the monotony of C.
We now show that C meets the characteristics of the

3-PP. It su�ces to show that it is always less costly to
put three objects together in one bucket than keeping
them separately or storing just subsets together. To
prove this, let a1, a2 and a3 be arbitrary elements of A.
Then we get:

C(b(fa1; a2; a3g) = jS �
3X
i=1

w(ai)j
| {z }

�S
2

+4S

� jS �
2X
i=1

w(ai)j
| {z }

�0

+ jS �w(a3)j| {z }
�S

2

+4S

< C(b(fa1; a2g) +C(b(fa3g):
Similarlywe yieldC(b(fa1; a2g) < C(b(fa1g)+C(b(fa2g)
and that it is always preferable to put six arbitrary ob-
jects into two bucket than to spread them over three
or more buckets. Hence, the optimal "bucket set" in a
decision-oriented UBSP-instance consists of buckets of
three objects each.
Summing up the second summands of the single

bucket costs gives us 4S as a lower bound for the optimal
cost. This bound is reached i� the sum of the �rst
summands equals 0 which occurs i� a solution for the
corresponding 3-PP-instance exists. Hence, deciding
the existence of a data space organization with cost 4S
in a decision-oriented UBSP-instance decides the 3-PP-
instance.
Since the 3-PP is NP-complete [GJ75] and the

reduction can be performed in polynomial time, the
decision-oriented UBSP is NP-complete. Hence, the
UBSP is NP-hard.

2

We conclude this section with some remarks concer-
ning the signi�cance and applicability of the complexity
results. Obviously, the NP-hardness of the UBSP is de-
termined by the properties of the cost function. A closer
characterization of the performance measure according
to some other query model, i.e. restricting the class of
(monotone) cost functions, sheds some new light on the
complexity of the modi�ed UBSP.
We remind, for example, of a well-known result

for (normalized) monotone submodular cost functions

which besides the monotony ful�ll two additional pro-
perties:

� C(;) = 0 (normalization).

� C(Bi [Bj) + C(Bi \Bj) � C(Bi) + C(Bj) for any
legal buckets Bi; Bj (submodularity).

Tightened up this way, the UBSP can be reformulated,
s.t. it can by solved by the ellipsoid method. The run-
ning time of this optimization algorithm is polynomial,
but of an unattractively high degree [GLS81].
However, common spatial cost functions are not

submodular and even if we assume the existence of
polynomial algorithms for subproblems, resp. concrete
instances, the tremendous number of objects occurring
in real applications dictates the use of appropriate
heuristics anyway.

4 Simulated Annealing Heuristics

Simulated annealing [vLA87] can be viewed as a widely
applicable approximation technique for solving combi-
natorial optimization problems. Excellent approxima-
tion results have been reported from many di�erent ap-
plication domains. Applications in the database area in-
clude query optimization problems [IW87, Swa89, IK90]
and data clustering [MBM90, HLL94]. We decided to
use simulated annealing to solve the UBSP approxima-
tely for the following reasons:

� Approximation quality and runtime can be traded
o� seamlessly.

� Lutton and Bonomi [LB86] successfully applied
simulated annealing to the MWMP which is closely
related to the BSP. Recently, Hua et.al. [HLL94]
presented an e�cient decomposition-based approach
for a class of related problems, i.e. clustering
problems which are too large to �t in main memory.

� Simulated annealing is a general algorithm, suitable
for all query models and easy to implement as well.

We continue this section with a brief introduction
of simulated annealing and then tailor the generic
simulated annealing algorithm to the special BSP
requirements.

4.1 Introducing Simulated Annealing

Simulated annealing can be regarded as the probabli-
stic counterpart of the (deterministic) neighbourhood
search. We �rst sketch the deterministic approach in
order to achieve a better understanding of the randomi-
zed algorithm.
Besides an objective function, the application of a

neighbourhood search in a con�guration space assumes
a generation mechanism, i.e. a simple prescription

PROCEDURE Simulated Annealing;

Determine start con�guration i;

Initialize temperature T > 0;

REPEAT

REPEAT

Perturb con�g. i into con�g. j;

IF �Cij � 0

OR ELSE exp(�
�Cij

T
) < random[0; 1) THEN

Update con�g. i by j

END

UNTIL for a long time the cost remains stable OR

a prede�ned number of iterations per cost level

is exceeded

('equilibrium is approached su�ciently closely');

Decrease temperature;

UNTIL stop criterium is satis�ed (system is 'frozen').

Figure 2: The general simulated annealing algorithm in
pseudocode.

how to perform a transition from one con�guration
to another by a small perturbation. Neighbourhood
searching determines a start con�guration and then
runs an iterative process that generates a sequence of
transitions as follows: A candidate is selected from
the neighbourhood of the current con�guration (all
con�gurations that can be reached in one transition)
and evaluated w.r.t. the cost function C. If the
candidate con�guration has a lower cost, the current
con�guration is replaced, otherwise another neighbour
is selected. The process terminates when no further
improvement is possible. However, this algorithm does
not prevent from ending up in a local optimum far away
from the global one, s.t. neighbourhood search is usually
executed for a large number of start con�gurations in
order to increase the chance for a successful completion.

Simulated annealing eliminates most disadvantages of
the neighbourhood search: solutions depend no longer
on the starting point and closely approach the optimum.
To this end, an acceptance probability p is introduced
which determines whether a new candidate is accepted
or not. If the candidate con�guration provides a better
cost, then p = 1, and p > 0, otherwise. In the latter
case, the value of p depends on the cost di�erence and an
additional control parameter T , called "temperature".
In general, the higher the temperature T , the greater the
probability of accepting a new candidate. During the
execution of the algorithm, the temperature is gradually
lowered, "annealed", until virtually no changes are
accepted anymore. Let i and j be two neighbouring
con�gurations and let �Cij = C(j)�C(i). Then Fig. 2
illustrates the general simulated annealing algorithm in
pseudocode.

The main advantage of the simulated annealing
algorithm compared to the neighbourhood search is,

pictorially spoken, that a small hill can be climbed
down in order to reach a big mountain nearby. Thus a
temporary deterioration of the current con�guration is
tolerated in order to avoid a local optimum. By the way,
simulated annealing is a well-founded method based on
the theory of Markov chains.

4.2 Tailoring Simulated Annealing to the BSP

In this subsection, we instantiate the generic simulated
annealing algorithm to cope with the BSP. The con�-
guration space is set up by the set of all possible bucket
sets except empty buckets or buckets violating the ca-
pacity bound. Any bucket set may serve as initial con-
�guration. Nevertheless, since an initial con�guration
with good performance decreases the overall runtime,
we start with bucket sets generated by the packed R-
tree, the LSD-tree or the R-tree, respectively.
The neigbourhood of a con�guration is implicitly

de�ned by the transition function. Roughly spoken, a
con�guration is perturbed by choosing a source bucket
Bi, a target bucket Bj which can be empty, and an
object g 2 Bi which is moved from Bi to Bj . If Bi

becomes empty, it is removed from the bucket set.
The temperature T follows the cooling schedule

Tm+1 = � � Tm for �; T0 2 [0:8; 0:95).
Unfortunately, the cardinality Nn;cb of the con�gu-

ration space grows hyperexponentially, ful�lling the re-
currence equation

Nn+1;cb =

minfn;cb�1gX
k=0

�
n

k

�
�Nn�k;cb ;

which approaches the bell numbers very closely even
for small cb and n. In order to speed up the algorithm
we have carefully restricted the con�guration space by
rejecting con�gurations whose non-optimalperformance
can be predicted and we have also re�ned the transition
function. However, going into more details is beyond
the scope of this paper.

5 Experimental Results

We have implemented an O(n4) variant of the nonbipar-
tite MWMP algorithm as well as several simulated an-
nealing heuristics and compared various optimal bucket
sets Bopt with bucket sets BpR and BLSD generated
by an packed R-tree [KF93] and an LSD-tree [HSW89],
respectively.1

The LSD-tree can be regarded as a representative of the
best dynamic spatial data structures. In [PST93] it is
shown that the LSD-tree is fully competitive to other
structures, for instance, the R-tree [Gut84] and the R�-
tree [BKSS90].

1All data structures and algorithms have been implemented in
Ei�el [Mey91] on a SUN SPARCstation 10.

R(B LSD)

data set R(B)opt

R(B)pR

Figure 3: Visual comparison of Bopt, BpR and BLSD for 75 uniformly distributed rectangles with overlapping 1:0
and cb = 2.

In all experiments, we use "uniformly distributed"
square windows with an area covering 1% of the data
space area. We start with bucket capacity cb = 2.

In order to provide a visual impression of the data
space organizations created by the optimal algorithm,
the packed R-tree and the LSD-tree, we start with a
small set of 75 "uniformly distributed" rectangles. The
overlapping factor is 1:0, i.e. the sum of all rectangles
equals the data space area. Fig. 3 depicts the original
data set and the resulting data space organizations.
Notice how smoothly the optimal bucket regions adapt
to the input rectangles. The visual impression is
re
ected by the quantitative evaluation: the result of
the optimal algorithm beats that of the packed R-tree
by nearly 15% and that of the LSD-tree by nearly 13%.

In the following experiments we use six di�erent data
sets, namely 200 points, resp. rectangles, which are dis-
tributed uniformly, follow a 2-heap distribution or are
extracted from the Sequoia 2000 regional benchmark
[SFGM93]. The synthetic rectangles are nearly quadra-

tic and cover the data space area 7.5 times. The results
are presented in Table 1. They exhibit a clear tendency,
namely the more complex the data input w.r.t. object
shape and object distribution the higher the improve-
ment gained by the optimal algorithm. Comparing the
results for points and rectangles, the LSD-tree and the
packed R-tree behave completely di�erent. While the
LSD-tree shows a certain deterioration, the packed R-
tree seems to cope much better with rectangles than
with points. Further investigations exhibit that the
packed R-tree behaves the better, the regular the distri-
bution, the more the objects overlap and the larger the
area of the query windows.

Next we address the obvious question what happens
if other window queries are performed than assumed
during optimization, e.g. if the average area of the
real windows di�ers from the expected one. Fig. 4,
for instance, shows for the real data set that even in
this case Bopt (using the 1% window as optimization
parameter) substantially beats BpR and BLSD for a

Point data Rectangular data
Window area 1%

uniform 2-heap real uniform 2-heap real

PM(QM1; Bopt) 1.4383 1.3561 1.3232 9.1035 6.0875 2.0534

PM(QM1; BpR) 1.8668 1.7802 1.8564 9.8266 6.8667 2.3276

deterioration in % 29.79 31.27 40.29 7.94 12.80 13.35

PM(QM1; BLSD) 1.6365 1.5893 1.5273 10.5546 7.3371 2.4728

deterioration in % 13.78 17.19 15.42 15.94 20.53 20.42

PM(QM1; BSA) 1.4577 1.3815 1.3868 9.2628 6.2744 2.1745

deterioration in % 1.35 1.87 4.80 1.75 3.07 5.90

Table 1: Cost comparison of BpR, BLSD, BSA and Bopt for 200 points, resp. rectangles, and cb = 2.

wide range of real window areas. Note the extreme
shape of the packed R-tree curve for points.
We also run some experiments comparing the appro-

ximation with the optimal solution in order to evaluate
the simulated annealing algorithm. It turns out that the
results of the heuristic lie within 5% of the optimum (see
the last two rows in Table 1).2

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32

window area in percent of the data space

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

pe
rf

or
m

an
ce

 in
pr

ov
em

en
t

LSD rects

LSD pts

pR rects

pR pts

Figure 4: Relative improvement of Bopt over BpR

and BLSD , respectively, for real data and variant
window areas. The 1% window is used as optimization
parameter.

We now turn to the more realistic situation with
bucket capacity cb � 3 and run the simulated annea-

2All simulated annealing results are based on Markov chains
of length n, i.e. at each temperature (stationary state) up to n

object movements are performed.

ling heuristics to produce "lower bounds". In our expe-
riments we basically reuse the six data sets of Table 1,
but we now generate 2000 objects with overlapping fac-
tor 1.0 and consider a larger part of the regional bench-
mark (also about 2000 objects). Table 2 shows the per-
formance results for bucket capacity cb = 16.

6 Taking External Directory Accesses
Into Account

Although the time penalty incured by external directory
page accesses is small compared to data bucket accesses,
it would be desirable (at least from a theoretical
viewpoint) to extend the performance measure and the
optimization e�orts to cover external directory page
accesses as well. Usually, with each directory page a
directory region is associated which is the bounding
box of all data bucket, resp. directory, regions pointed
to from the directory page. Since directory regions
again form a data space organization, such an overall
approach seems to be feasible and has indeed been
sketched in [PSTW93, KF93].

Clearly, the NP-hardness of the UBSP is carried over
to the overall problem. So we have started to extend the
simulated annealing heuristic to optimize spatial data
structures as a whole. We have decided to concentrate
on R-trees, because R-trees provide the highest freedom
for clustering data buckets from Bopt into directory
pages.
Basically, there exist two possible strategies for the

overall approach. The �rst strategy builds the directory
of the R-tree bottom-up from the optimal bucket set
Bopt by level-oriented recursive calls of the optimization
procedure. The second strategy creates the directory on
the
y, i.e. during the bucket optimization process. The

Point data Rectangular data
Window area 1%

uniform 2-heap real uniform 2-heap real

PM(QM1; BSA) 3.8196 3.4961 3.2724 4.8976 5.2187 5.0795

PM(QM1; BpR) 4.3012 3.9264 3.6182 5.4335 6.5426 5.8838

deterioration in % 12.61 12.31 10.57 10.94 25.37 15.83

PM(QM1; BLSD) 4.4168 3.8714 3.7339 5.8110 6.5307 6.4840

deterioration in % 15.64 10.74 14.10 18.65 25.14 27.65

Table 2: Cost comparisons of BpR, BLSD and BSA for 2000 points, resp. rectangles, and cb = 16.

best strategy and its e�ciency is still an open problem.
Nevertheless, using the expected value of the sum

of the directory page accesses and the data bucket
accesses as performance measure, �rst experimental
results exhibit an improvement of more than 15% over
the LSD-tree and up to 20% over the packed R-tree for
common window areas. For the LSD-tree there seems
to be a tendency that the (quantitative) observations
for the pure data bucket optimization also hold for
the overall case. For the packed R-tree, however,
the suboptimal organization of its directory becomes
obvious. This outcome was not really unexpected
because our data bucket experiments have already
indicated that the packed R-tree (relatively) performs
the better the higher the overlapping of the objects.
Since the overlapping of directory regions is usually
below the overlapping of the data bucket regions (the
overlapping of directory regions usually decreases level
by level from the lowest level to the root level), the
directory represents the less e�cient part of the packed
R-tree.

7 Summary

In this paper, we prove the NP-hardness of the bucket
optimization problem for cost functions ful�lling a
certain monotony property which holds for the cost
measure based on data bucket accesses. In order to
cope with the NP-hardness of the general case we use
simulated annealing as optimization heuristic. Our
simulations show that the results produced by the
heuristic lie within 5% of the optimum (which ist typical
for carefully tailored simulated annealing). Experiments
exhibit that for several data sets including the Sequoia
2000 benchmark [SFGM93] both a representative of the
best dynamic structures, the LSD-tree, and the static
packed R-tree perform between 10% and 30% worse
than the optimum. In general, the more complex the
object distribution the higher the performance loss.

Finally, we consider directory page accesses, too, and
sketch �rst results on overall optimized R-trees.
The bounds established by the optimal algorithm,

resp. the heuristic, allow for the �rst time the absolute
comparison of arbitrary static and dynamic spatial
data structures. This is in contrast to all previous
investigations which compared data structures only
(relatively) to each other. We hope that our results
contribute some general arguments to the discussion
about the merits of further spatial data structure
tuning.

Acknowledgments. The authors wish to thank Elisa
Kwon and James Frew for making the Sequoia 2000
benchmark available to them.

References

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider,
and B. Seeger. The R�-tree: an e�cient
and robust access method for points and
rectangles. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, Atlantic
City, 1990.

[BPS94] L. Bachmann, B.-U. Pagel, and H.-W. Six.
Optimizing spatial data structures for sta-
tic data. In Proc. Int. Workshop on Advan-
ced Research in Geographic Information Sy-
stems, pages 247{258. Springer LNCS Vol.
884, March 1994.

[GJ75] M.R. Garey and D.S. Johnson. Complexity
results for multiprocessor scheduling under
resource constraints. SIAM J. Comput.,
4:387{411, 1975.

[GLS81] M. Gr�otschel, L. Lovasz, and A. Schrijver.
The ellipsoid method and its consequences

in combinatorial optimization. Combinato-
rica, 1(2):169{197, 1981.

[Gut84] A. Guttman. R-trees: a dynamic index
structure for spatial searching. In Proc.
ACM SIGMOD Int. Conf. on Management
of Data, pages 47{57, Boston, 1984.

[HLL94] K.A. Hua, S.D. Lang, and W.K. Lee.
A decomposition-based simulated annealing
technique for data clustering. In Proc. ACM
Symposium on Principles on Database Sy-
stems, pages 117{128, Minneapolis, Minne-
sota, 1994.

[HSW89] A. Henrich, H.-W. Six, and P. Widmayer.
The LSD-tree: spatial access to multidimen-
sional point- and non-point objects. In 15th
Int. Conf. on VLDB, pages 45{53, Amster-
dam, 1989.

[IK90] Y.E. Ioannidis and Y.C. Kang. Randomized
algorithms for optimizing large join queries.
In Proc. ACM SIGMOD Int. Conf. on Ma-
nagement of Data, pages 312{321, Atlantic
CIty, NJ, 1990.

[IW87] Y.E. Ioannidis and E. Wong. Query opti-
mization by simulated annealing. In Proc.
ACM SIGMOD Int. Conf. on Management
of Data, pages 9{22, San Francisco, CA,
1987.

[KF93] I. Kamel and C. Faloutsos. On packing R-
trees. In Proc. 2nd Int. Conf. on Infor-
mation and Knowledge Management, pages
490{499, Washington D.C., 1993.

[Law76] E.L. Lawler. Combinatorial Optimization:
Networks and Matroids. Holt, Rhinehart
and Winston, 1976.

[LB86] J.-L. Lutton and E. Bonomi. Simula-
ted annealing algorithm for the minimum
weighted perfect euclidean matching pro-
blem. R.A.I.R.O. Recherche op�erationnelle,
20:177{197, 1986.

[MBM90] F.J. McErlean, D.A. Bell, and S.I. McClean.
The use of simulated annealing for clustering
data in databases. Information Systems,
15(2):233{245, 1990.

[Mey91] B. Meyer. Ei�el: The Language. Prentice
Hall, 1991.

[PST93] B.-U. Pagel, H.-W. Six, and H. Toben. The
transformation technique for spatial objects
revisited. In D. Abel and B.-C. Ooi, editors,

Proc. 3rd Int. Symposium on Large Spatial
Databases (SSD), pages 73{88, Singapore,
June 1993. LNCS No. 692, Springer.

[PSTW93] B.-U. Pagel, H.-W. Six, H. Toben, and
P. Widmayer. Towards an analysis of range
query performance in spatial data structu-
res. In Proc. ACM PODS Symposium on
Principles of Database Systems), pages 214{
221, Washington, D.C., May 1993.

[SFGM93] M. Stonebraker, J. Frew, K. Gardels, and
J. Meredith. The SEQUOIA 2000 storage
benchmark. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 2{9,
Washington, D.C., May 1993.

[Swa89] A. Swami. Optimization of large join que-
ries: Combining heuristics and combinato-
rial techniques. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages
367{376, Portland, Oregon, 1989.

[vLA87] P.J.M. van Laarhoven and E.H.L. Aarts. Si-
mulated Annealing: Theory and Applicati-
ons. Kluwer Academic Publishers, Dord-
recht, 1987.

