
Structural and Functional
Predicate Coverage Testing

Mario Winter, Michael Averstegge

Abstract
Predicate testing, also known as (branch) condition testing, is most often filed under
structural (white box) test case design techniques. Nevertheless, contract-based
specification techniques allow for adapting classical predicate testing as a functional
(black box) design technique on the class resp. component test level, too.
In this paper we discuss various predicate testing coverage criteria known from the
literature, adapt them for functional test case design focusing on “design by contract”
specifications, and report on a tool supporting both structural and functional predicate
coverage testing for Java programs with OCL specifications for invariants and pre-
and postconditions.

Keywords
Software Testing, Test Coverage, Design by Contract, Computer Aided Software
Testing

1 Introduction
Since humans tend to err, software, being among the most complex human artefacts,
was, is, and – so far as foreseeable by us – will be deficient. Though the prevention
of errors by far would be the most effective means to achieve software quality, we
humbly have to cope with our limitations in applying any methods and techniques,
thus analytical quality assurance, aka. “testing”, is here to stay.
We firstly sketch some terminology on software quality assurance [Ve04]. Firstly, an
error is a human action that produces an incorrect result. An error may lead to a fault
(a “bug”), which is a flaw in a component or system, e.g. an incorrect statement or
data definition that can cause a component or system to fail to perform its required
function. A fault, if encountered during execution, may cause a failure of the
component or system, i.e. an observable deviation of the actual behaviour from the
expected behaviour.
Testing may or may not depend on executing the software. If it doesn’t, one conducts
static testing at specification or implementation level, e.g. reviews or static code
analysis. If it does, we talk about dynamic testing which executes the software by
stimulating it through some input, observing its actual behaviour, and comparing the
observed behaviour with the expected one (Figure 1). Frankly, software testing aims
at checking that the software does what it should do and that it doesn’t do what it
shouldn’t.
In this context, a logical test case describes a set of input values, execution
assumptions, expected results and execution effects, developed for a particular
objective or test condition, such as to exercise a particular program path or to verify
compliance with a specific requirement. A concrete test case specifies particular
values satisfying the corresponding logical test case. A test suite is a set of test
cases with the same concern.

Figure 1. Dynamic Testing

Test cases are specified using some test design technique. In functional or black box
testing, the input values and execution assumptions are derived from the
specification, while in structural or white box testing the implementation is used as
well. In both cases, the expected results and execution effects have to be derived by
the specification, since only the specification tells what the software should and
shouldn’t do.
Predicate testing, also known as (branch) condition testing, is most often filed under
structural (white box) test design techniques. It aims at determining test cases which
stimulate the logical decisions implemented in a program in particular ways (c.f.
chapter 2). Like all structural testing techniques, predicate testing depends on a
thorough understanding of the source code, thus in most cases it is bound to
specially trained testers on the unit testing level. But also in unit testing one should

Processor

Test
Object

ObservationStimulation

ProcessorProcessor

Test
Object

ObservationStimulation

conduct functional testing first, since the primary task of testing is checking that the
software does what it should do – and the “do’s” are described in the specification.
Regarding the latter, a specification technique frequently referred to as “Design by
Contract” is widely used in software development (c.f. chapter 3). In this paper we
show that contract-based specification techniques allow for adapting predicate
testing as a functional (black box) design technique on the class resp. component
test level.
The sequel of the paper is structured as follows. In chapter 2 we discuss various
structural predicate testing coverage criteria known from the literature. Chapter 3 is
devoted to a concise introduction of the “Design by Contract” specification technique.
In chapter 4 we adapt predicate testing for functional test case design based on
contracts, and in chapter 5 we report on a tool supporting both structural and
functional predicate coverage testing for Java programs with OCL specifications for
invariants and pre- and postconditions.

2 Structural Predicate Testing
In all but trivial programs the statement execution order may vary due to some
situations. Regarding structured programs, this is enabled by conditional branching
statements (e.g. if then else, case) and loops (e.g. for, while).
Conditions denote boolean functions used to control branch- and loop-statements,
i.e. functions which evaluate to either true or false. They can be simple like the
access to a boolean variable b, a comparison n > 0 or n*m = 10 for variables n and
m of type integer, or a call of an operation like fb(x, y) with two parameters x and
y of arbitrary type which computes a single value of type boolean.

Simple conditions are often used to constitute compound conditions like (a > 5) &&
(b == 3) or (fb(x, y) || (x < 0.5)) && (y*y > 10), where “&&“ resp. “||“
denote the logical and “∧“ resp. the logical or “∨“. A (simple or compound) condition
may be negated e.g. !(a > 5), where “!“ denotes the logical not “¬“. The evaluation
order (i.e. ! before && before ||) may be changed explicitly by using appropriate
parentheses. In the following, a condition controlling a branching or loop statement is
called a predicate (decision, guard).
If a predicate is incorrect, then according to [TV+94] one or more of the types of
faults depicted in the table shown in Figure 2 may exist.

Fault Type Example

Wrong boolean operator && instead of ||

Wrong relational operator < instead of <=

Parenthesis fault (a && !(b || c)) instead of (a && (!b || c))

Wrong arithmetic operator (a+b > 0) instead of (a*b > 0)

Missing or extra ! operator a && !b instead of a && b

Wrong boolean variable usage a && b instead of a && c

Figure 2. Fault types in predicates

An incorrect predicate contains either a single fault or multiple faults of the same or
different types. A test suite for a predicate C is said to detect the existence of faults in
C, if an execution of C on at least one element of this test suite produces a failure.
To detect incorrect predicates in a program, various predicate testing methods are
known. The simplest one, predicate coverage (testing), also known as branch
coverage (C1) or decision coverage, requires that each predicate is evaluated to
true and false at least once. The number of test cases required for each predicate
is two and does not depend on the complexity of this predicate.
In the sequel let n denote the number of simple conditions constituting a predicate.
Simple condition coverage requires that each simple condition of a predicate is
evaluated to true and false at least once. Here the minimum number of test cases
required for a predicate is two. Depending on the structure of the predicate
(especially if conditions are coupled via common variables, like e.g. (x == 0) ||
(y == 1) || ((x * y) > 0)), at maximum 2*n test cases may be required. Since
simple condition coverage does not subsume branch coverage, it can be slightly
strengthened to branch condition/predicate coverage, which simply combines branch
coverage and condition coverage.
Multiple condition coverage (MC) requires that each true/false-combination of all
simple conditions of a predicate are forced at least once. The number of test cases
required for each predicate is 2**n and only depends on the number of simple
conditions, but not on the structure of this predicate. Moreover, in case of coupled
conditions not all combinations may be possible to achieve.
To cope with both the exponential complexity of multiple condition coverage and the
structural properties of the predicates, the RTCA DO178B document [DO178B]
defines modified condition/decision coverage (MC/DC) as follows: “Every point of
entry and exit in the program has been invoked at least once, every condition in a
decision has taken all possible outcomes at least once, every decision in the program
has taken all possible outcomes at least once, and each condition in a decision has
been shown to independently affect the decision's outcome. A condition is shown to
independently affect a decision's outcome by varying just that condition while holding
fixed all other possible conditions.” Note that in the DO178B, decisions not only
denote predicates controlling the execution of statements, but also boolean
expressions on the right hand side of assignments or as actual parameters of
operation calls. MC/DC for each predicate demands 2n test cases, if the predicate
has taken both truth values under the truth value combinations of the conditions, else
2n+1.
Structural predicate coverage testing strategies has been shown of value in empirical
studies (c.f. e.g.[TV+94], [WGM85], or [ZHM97]). Thus our idea was to exploit their
power regarding functional testing, too. In the sequel we elaborate this idea regarding
functional testing of component interfaces specified by the “design by contract”
technique.

3 Design by Contract
According to Bertrand Meyer [Me97], for each software interface we need three kinds
of specification elements:

• The precondition (of an operation) expresses the properties that must hold
whenever the operation is called. Its clauses refer to input-parameters of the
operation und the state of the component before the operation is activated.

• The postcondition (of an operation) expresses the properties that the operation
guarantees when it returns (assuming its precondition was satisfied). Its
clauses refer to output-parameters of the operation und the state of the
component after the operation is completed, and may refer to the input
parameters and the initial state, as well.

Both pre- and postconditions describe properties of individual operations, but often
one wishes to specify some more general properties of the software component.

• To this end, the invariant (of the software component) expresses global
properties of all instances of a component, which must be preserved by all
operations. Its clauses refer only to the state of the component and must be
satisfied before and after each execution of an operation, thus the invariant
can be considered as logically conjugated (“and-ed”) to all pre- and
postconditions.

Together, pre- and postconditions of all operations of an interface together with the
general properties stated by the invariant answer the questions of “What does the
software component expect from its users?“ “What does it deliver to them?“ and
“What does it maintain all time?“ Bounded to the software components interfaces,
they resemble a contract between the software component and its clients, saying: “If
my clients promise to call me with the precondition satisfied then I, in return, promise
to deliver a final state in which the postcondition (and my invariant) is satisfied”.
As an example for design by contract we consider the well known stack interface with
operations top(), push(), and pop(). In this example the size of the stack is
bounded by an integer number of stackable objects which is settled by the only
parameter of the constructor stack(int n).

Figure 3. Contract for interface BoundedStack

interface BoundedStack

 invariant@ self.size() >= 0 AND self.size() <= self.MAXSIZE()

 public BoundedStack (Integer maxSize)
 pre@ maxSize > 0
 post@ self.MAXSIZE() = maxSize@pre AND self.size() = 0

 public void push (Object item) throws FullStackException
 pre@ self.size() < self.MAXSIZE()
 post@ self.size() = self.size()@pre+1 AND self.top() = item@pre

 public Object top () throws EmptyStackException
 pre@ self.size() > 0
 post@ return <> null

 public void pop () throws EmptyStackException
 pre@ self.size() > 0
 post@ self.size() = self.size()@pre - 1

 public Collection all ()
 pre@ true
 post@ (self.size() > 0 and return.size() = self.size()) or
 (self.size() = 0 and return = null)

Moreover, we consider an additional operation all() which returns an ordered
collection containing (references to) all stacked objects ordered from top to bottom,
thus the most recently stacked object occurs at the beginning of the returned
collection. The contract for the resulting interface BoundedStack is sketched (in a
frankly mixed Java/OCL notation) in Figure 3. Note that in OCL the equality operator
is written as “=” (which is the assignment operator of Java).
The obvious observation is that clauses in contracts are formed by conditions and the
resulting predicates maybe as complex as in the case of control flow decisions. Thus
all fault types resp. error hypotheses listed in Figure 2 are applicable for contract
specifications, too. So in the next chapter we transfer predicate testing techniques to
functional testing.

4 Functional Predicate Testing
In functional testing one focuses on the functions of classes, subsystems, or
systems. For the sake of simplicity we only consider the public operations of an
interface for which contractual specifications are given. First we deserve an overall
strategy, i.e. a global order in which the operations are tested. Characterizing the
operations due to their gross effect reveals the following test order:

1. Constructor,
2. Simple observer like getMember():value,

3. Simple modifier like setMember(value),
4. Complex observer (i.e. state preserving operations),
5. Complex modifier (i.e. state modifying operations), and
6. Destructor (if implemented).

Regarding the test input for an operation we consider its precondition, which should
hold in case of conformance (or positive) tests regarding normal use and fail in case
of robustness (or negative) tests regarding abuse. Without loss of generality, in the
sequel we concentrate on conformance tests satisfying the preconditions of the
operations under test, utilizing MC/DC as an appropriate test coverage metric.
In this case, for a simple condition S one specifies a single test case with S == true,
for a negated simple condition !S one specifies a single test case with S == false.
For a compound condition S || T each simple condition S and T must evaluate to
true and false at least once, which raises two test cases S == true, T == false
and S == false, T == true. For a compound condition S && T both simple
conditions must evaluate to true which raises the test case S == true, T ==
true.
For each test case one then specifies the expected outcome. For contract based
testing it suffices to compute expected truth values for each simple condition
constituting the postcondition of the operation under test. This is done for all test
cases specified so far. Afterwards one has to proof that all postconditions are
covered w.r.t. the MC/DC criterion, i.e. all combinations analogous to those described
for preconditions have to be covered. If not, more test cases have to be specified
manually until full coverage is reached.

If state variables (attributes, member variables) occur in a precondition, normally
some sequence of operation calls has to be activated before this precondition can be
satisfied. To this end, due to the test order mentioned above often the resulting test
cases may be staggered, i.e. test cases for complex observer operations may rely on
test cases for simple modifier.
The table in Figure 4 summarizes the MC/DC-based logical conformance test cases
for the BoundedStack interface presented in chapter 3. Each row corresponds to a
simple condition, each of the right hand columns titled A, B, … represents one test
case, i.e. a call of an operation with its precondition satisfied in the manner indicated
as follows. Each entry denotes the evaluation of the corresponding simple condition
to true (T) resp. false (F), whereas d.c. means “don’t care”.
The shaded entries indicate the operation under test, the entries for the preconditions
of the other operations (and of the invariant) denote the expected values after the
execution of the operation under test, thus aiding the operation call sequence
problem mentioned above.
For example, column A indicates that the call of the constructor sets the stack object
in a state satisfying the preconditions of operations push() and all(), but not those
of top() and pop(). Columns A, B, and C reveal that a conformance test of top()
may start with a call of the constructor with maxsize > 0, followed by a call of
push() with an arbitrary object obj, followed by a call of top() and a check that the
returned object equals obj.

interface BoundedStack A B C D E F
invariant@ self.size() >= 0 AND T T T T T T

self.size() <= self.MAXSIZE() T T T T T T
BoundedStack pre@ maxSize > 0 T
BoundedStack post@ self.MAXSIZE() = maxSize@pre AND T

self.size() = 0 T
push pre@ self.size() < self.MAXSIZE() T T
push post@ self.size() = self.size()@pre+1 AND T

self.top() = item@pre T
top pre@ self.size() > 0 F T T
top post@ return != null T
pop pre@ self.size() > 0 F T T T
pop post@ self.size() = self.size()@pre - 1 T
all pre@ true T T T T T T
all post@ (self.size() > 0 and T F

return.size() = self.size()) or T dc
(self.size() = 0 and F T

return = null) dc T

Figure 4. Contract based test case specification for interface BoundedStack

5 Tool Support
The elaboration of test cases regarding some predicate testing criterion is a time
consuming, error-prone, and tedious task. So we’ve built a tool supporting the tester
in the algorithmic parts of his work.

The resulting tool is called WeSUF (acronym from the German title “Werkzeug für
strukturelle und funktionale Bedingungs-Überdeckungs-tests von Java-Programmen
mit OCL-Spezifikationen”). It supports both functional and structural predicate
coverage testing. Figure 5 depicts the tools architecture, which is described in the
sequel.
Regarding functional predicate
coverage testing, the tool extracts and
works on predicates of contracts
formulated in OCL (Object Constraint
Language, [WK03]), which are
contained as appropriately tagged
comments in Java sources. Parsing of
OCL is based on the SableCC compiler
toolkit [GH98]. For structural predicate
coverage testing, the tool is able to
parse the Java sources in detail and
extract all contained decisions. To this
end, we rely on the Barat Java parsing
framework [BS98].
After extracting and analysing the
predicates, the tool offers several
options, among them the checking for
tautologies, some equivalence
transformations up to the normalization
of the predicates (disjunctive and
conjunctive normal form), and the
computation of (a minimal set of) truth
value combinations regarding some
selected predicate testing coverage
criterion.

Figure 5. Architecture of the WeSUF-Tool

In order aid the tester in identifying the values needed to achieve the aimed
coverage, WeSUF not simply computes a minimal set but the optimal set of logical
values. Roughly spoken, the implemented optimisation criterion leads to a minimum
of difference of the needed truth value combinations to achieve the aimed coverage
(for more details see [Av04]).
Regarding structural predicate coverage and the specification of concrete test cases,
we’ve coupled the WeSUF tool with a code instrumentation tool called DoIT (acronym
from the German title “Datenbankgestützte Dokumentation instrumentierter Testläufe
von Java-Programmen”, [We03], [WW03]). The statement, branch, and predicate
coverage achieved by executing a test suite is reported into the DoIT database,
which afterwards is analysed by WeSUF. Then all covered combinations of truth
values are highlighted and listed together with the corresponding concrete test cases,
the input values of the method containing the decision under test. With this
information at hand, the tester may be able to infer test cases for the uncovered truth
value combinations.

Furthermore, to support the specification of concrete test cases, WeSUF detects and
reports the object state before and after each condition evaluation and, as a “side-
effect”, warns on detecting side-effects.
WeSUF is able to generate XML- and HTML-based reports focusing on the decisions
structure (e.g. to guide reviews), on the truth tables regarding a particular coverage
criterion (as an aid for the tester, see [Av04]), and on the resulting coverage.

Figure 6. HTML-Report for a compound predicate

6 Related Work
In this chapter we sketch some recent related work on “contract testing”, i.e. test case
specification techniques relying on contracts.
Groß reports on a built-in contract testing method for checking the pair-wise
interactions of components in component-based software construction at integration
and deployment time [Gr02a][Gr02b]. Functional test cases are specified mainly
using state-based testing, but also “classical” structural testing techniques are
applied.

Edwards describes a framework for practical, automated black-box testing of
component-based software [Ed01]. He outlines a general strategy for automated
black-box testing of software components that includes automatic generation of
component test drivers, automatic generation of black-box test data, and automatic or
semi-automatic generation of component wrappers that serve as test oracles. Test
case generation is based on flowgraph techniques.
McGregor and Sykes construct test cases from contracts by identifying all possible
combinations of situations in which a precondition can hold and postconditions can
be achieved and adding test cases, to address what happens when a precondition is
violated [MS01]. In [CM99], Cho and McGregor take pre- and postconditions as
partial test oracles for the state-based testing of components.
None of the authors above utilize predicate coverage criteria for test case generation.

7 Conclusions
We discussed various predicate testing coverage criteria known from the literature,
demonstrated how to adapt them for functional test case design focusing on “design
by contract” specifications, and reported on a tool supporting both structural and
functional predicate coverage testing for Java programs with OCL specifications for
invariants and pre- and postconditions.
In our laboratory case studies we found that besides efficient test case specification
another benefit of our approach and the tool was due to its predicate analysis and
transformation abilities. Both tester and developer appreciated the corresponding
support of contract specification in the design phase.
Until now the tool was only used in experimental settings, so before conducting
industrial case studies we first have to evaluate (and maybe enhance) its robustness
and scalability.

8 Bibliography
[Av04] Averstegge, M.: Konzeption und Realisierung einesWerkzeugs für

strukturelle und funktionale Bedingungs- Überdeckungstests von Java-
Programmen mit OCL-Spezifikationen. Diplomarbeit, Fachbereich Informatik,
FernUniversität Hagen, November 2004.

[BS98] Bokowski, B.; Spiegel, A.: Barat – A Front-End for Java. Technical Report
B-98-09; Freie Universität Berlin, Institut für Informatik; Dezember 1998.

[CM99] Cho, I.; McGregor, J.D.: Component Specification and Testing
Interoperation of Components. Proc. IASTED’99, 3rd International Conference
on Software Engineering and Applications, Honolulu, Hawaii, 1999

[DO178B] DO-178B / ED-12 B: Software Considerations in Airborne Systems and
Equipment Certification. RTCA / EUROCAE, December 1992.

[Ed01] Edwards, S. H.: A framework for practical, automated black-box testing of
component-based software. Journal of Software Testing, Verification, and
Reliability, No.11, 2001:97–111.

[GH98] Gagnon, E.M., Hendren, L.J.: SableCC, an Object-Oriented Compiler
Framework. In: 10th International Conference on Modelling Techniques and

Tools for Computer Performance Evaluation (TOOLS-98). Sable Research
Group, School of Computer Science McGill University, Quebec, Kanada,
1998.

[Gr02a] Groß, H.-G.: Component+ Methodology, Built-In Contract Testing: Method
and Process. IESE-Report No. 030.02/E, Oct. 2002.

[Gr02b] Groß, H.-G.: Component+ Methodology, Built-In Contract Testing:
Technological Foundations. IESE-Report No. 073.02/E, Dec. 2002.

[KSW01] Kösters, G., Six, H.-W., Winter, M.: Coupling Use Cases and Class
Models as a Means for Validation and Verification of Requirements
Specifications. Requirements Engineering, Vol. 6, Nr. 1, Springer Verlag,
London, 2001; pp. 3–17.

[MS01] McGregor, J.D.; Sykes, D.A.: A Practical Guide to Testing Object-Oriented
Software. Addison Wesley, Boston, 2001.

[Me97] Meyer, B.: Object Oriented Software Construction. Prentice Hall, Upper
Saddle River, 1997

[TV+94] Tai, K.-C., Vouk, M. A., Paradkar, A. M., Lu P.: Evaluation of a predicate-
based software testing strategy. IBM Systems Journal, Vol. 33, No. 3, 1994,
pp. 445-457.

[Ve04] Van Veenendaal, E. (Ed.): Glossary of terms used in software testing.
Version 0.2, Int. Software Testing Qualification Board, 2004.

[WK03] Warmer, J., Kleppe, A.: Object Constraint Language 2.0. Pearson/Addison
Wesley, Reading, 2003.

[We03] Wefels, H.-G.: Konzeption und Realisierung eines datenbankgestützten
Testwerkzeuges zur Überdeckungsanalyse von Java-Programmen.
Diplomarbeit an der Fernuniversität Hagen, Fachbereich Informatik, März
2003.

[WGM85] Weiser, M.D.; Gannon, J.D.; McMullin P.R.: Comparison of Structural Test
Coverage Metrics. IEEE Software, Vol 2, No 2, March 1985, pp. 80-85.

[Wi01] Winter, M.: Testfallermittlung aus Komponentenschnittstellen. Imbus QS-
Tag 01, Nürnberg, 2001.

[Wi04] Winter, M: Testing in the Component Age. Proc. 1st Int. Workshop on
Software Quality (SOQUA04), LNI P-58, GI, Bonn, 2004

[WW03] Winter, M.; Wefels, H.G.: Überdeckungsmessung von Java-Programmen.
GI Softwaretechnik Trends, Band 23, Heft 4, Nov. 2003.

[ZHM97] Zhu, H.; Hall, P.A.V.; May, J.H.R.: Software Unit Test Coverage and
Adequacy. ACM Computing Surveys, Vol. 29, No. 4, December 1997.

9 Authors' biographies

Dipl.-Inform. Michael Averstegge
German Distance University of Hagen, Faculty of Electrical Engineering and
Information Engineering, Universitätsstraße 27, D-58084 Hagen, Germany.
Mailto: Michael.Averstegge@FernUni-Hagen.de.
Michael Averstegge is research assistant at the German Distance University of
Hagen (since 2005) with the research fields Software Engineering and Software
Quality Assurance. Since 1991 he worked as Developer, Projektleader, Senior-
Consultant and Manager, at last (1998) SerCon (IBM) and (2000) Pluralis (Plönzke
Holding).
Mr. Averstegge has a diploma in computer science (Dipl.-Inf.) from the German
Distance University of Hagen (2004, study simultanous to his work) and a Magister
(Master of Science) in Philosophy and German language from the University of
Münster (1991).

Prof. Dr. Mario Winter
University of Applied Sciences Cologne, College of Computer Science and
Engineering Sciences, Am Sandberg 1, D-51643 Gummersbach, Germany
mailto:winter@gm.fh-koeln.de

Mario Winter is professor in the computer science institute at the University of
Applied Sciences Cologne, lecturing and researching on software development and
project management with a special research focus on software quality. Since 1996 he
is member of the GI (currently speaker of the GI SIG "Testing, Analysis and
Verification of Software") and since 2004 he is also member of the GTB (German
Testing Board).
From 1987 to 1994 Prof. Winter lead scientific software projects in control systems
design at the University of Wuppertal and from 1983 to 1987 he was involved in
industrial software projects (CAD/CAM, systems programming).
Mr. Winter received a PhD (Dr. rer.nat.) from the German Distance University of
Hagen (FernUniversität) in 1999, having submitted a thesis on testing object oriented
software. From 1994 to 2002 he was a research assistant at the German Distance
University of Hagen with the research fields Software Engineering and Software
Quality Assurance. Dr. Winter has a diploma in computer science (Dipl.-Inf.) from the
German Distance University of Hagen (1994, study simultaneous to his work at the
University of Wuppertal) and a diploma in electrical engineering/information
technology (Dipl.-Ing.) from the University of Siegen (1983).

