
Structural and Functional 
Predicate Coverage Testing 

Mario Winter, Michael Averstegge 

Abstract 
Predicate testing, also known as (branch) condition testing, is most often filed under 
structural (white box) test case design techniques. Nevertheless, contract-based 
specification techniques allow for adapting classical predicate testing as a functional 
(black box) design technique on the class resp. component test level, too. 
In this paper we discuss various predicate testing coverage criteria known from the 
literature, adapt them for functional test case design focusing on “design by contract” 
specifications, and report on a tool supporting both structural and functional predicate 
coverage testing for Java programs with OCL specifications for invariants and pre- 
and postconditions. 
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1 Introduction 
Since humans tend to err, software, being among the most complex human artefacts, 
was, is, and – so far as foreseeable by us – will be deficient. Though the prevention 
of errors by far would be the most effective means to achieve software quality, we 
humbly have to cope with our limitations in applying any methods and techniques, 
thus analytical quality assurance, aka. “testing”, is here to stay. 
We firstly sketch some terminology on software quality assurance [Ve04]. Firstly, an 
error is a human action that produces an incorrect result. An error may lead to a fault 
(a “bug”), which is a flaw in a component or system, e.g. an incorrect statement or 
data definition that can cause a component or system to fail to perform its required 
function. A fault, if encountered during execution, may cause a failure of the 
component or system, i.e. an observable deviation of the actual behaviour from the 
expected behaviour.  
Testing may or may not depend on executing the software. If it doesn’t, one conducts 
static testing at specification or implementation level, e.g. reviews or static code 
analysis. If it does, we talk about dynamic testing which executes the software by 
stimulating it through some input, observing its actual behaviour, and comparing the 
observed behaviour with the expected one (Figure 1). Frankly, software testing aims 
at checking that the software does what it should do and that it doesn’t do what it 
shouldn’t. 
In this context, a logical test case describes a set of input values, execution 
assumptions, expected results and execution effects, developed for a particular 
objective or test condition, such as to exercise a particular program path or to verify 
compliance with a specific requirement. A concrete test case specifies particular 
values satisfying the corresponding logical test case. A test suite is a set of test 
cases with the same concern. 

Figure 1. Dynamic Testing 

Test cases are specified using some test design technique. In functional or black box 
testing, the input values and execution assumptions are derived from the 
specification, while in structural or white box testing the implementation is used as 
well. In both cases, the expected results and execution effects have to be derived by 
the specification, since only the specification tells what the software should and 
shouldn’t do. 
Predicate testing, also known as (branch) condition testing, is most often filed under 
structural (white box) test design techniques. It aims at determining test cases which 
stimulate the logical decisions implemented in a program in particular ways (c.f. 
chapter 2). Like all structural testing techniques, predicate testing depends on a 
thorough understanding of the source code, thus in most cases it is bound to 
specially trained testers on the unit testing level. But also in unit testing one should 
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conduct functional testing first, since the primary task of testing is checking that the 
software does what it should do – and the “do’s” are described in the specification. 
Regarding the latter, a specification technique frequently referred to as “Design by 
Contract” is widely used in software development (c.f. chapter 3). In this paper we 
show that contract-based specification techniques allow for adapting predicate 
testing as a functional (black box) design technique on the class resp. component 
test level.  
The sequel of the paper is structured as follows. In chapter 2 we discuss various 
structural predicate testing coverage criteria known from the literature. Chapter 3 is 
devoted to a concise introduction of the “Design by Contract” specification technique. 
In chapter 4 we adapt predicate testing for functional test case design based on 
contracts, and in chapter 5 we report on a tool supporting both structural and 
functional predicate coverage testing for Java programs with OCL specifications for 
invariants and pre- and postconditions. 

2 Structural Predicate Testing 
In all but trivial programs the statement execution order may vary due to some 
situations. Regarding structured programs, this is enabled by conditional branching 
statements (e.g. if then else, case) and loops (e.g. for, while).  
Conditions denote boolean functions used to control branch- and loop-statements, 
i.e. functions which evaluate to either true or false. They can be simple like the 
access to a boolean variable b, a comparison n > 0 or n*m = 10 for variables n and 
m of type integer, or a call of an operation like fb(x, y) with two parameters x and 
y of arbitrary type which computes a single value of type boolean.  

Simple conditions are often used to constitute compound conditions like (a > 5) && 
(b == 3) or (fb(x, y) || (x < 0.5)) && (y*y > 10), where “&&“ resp. “||“ 
denote the logical and “∧“ resp. the logical or “∨“. A (simple or compound) condition 
may be negated e.g. !(a > 5), where “!“ denotes the logical not “¬“. The evaluation 
order (i.e. ! before && before ||) may be changed explicitly by using appropriate 
parentheses. In the following, a condition controlling a branching or loop statement is 
called a predicate (decision, guard). 
If a predicate is incorrect, then according to [TV+94] one or more of the types of 
faults depicted in the table shown in Figure 2 may exist. 

Fault Type Example 

Wrong boolean operator  && instead of || 

Wrong relational operator  < instead of <= 

Parenthesis fault  (a && !(b || c)) instead of (a && (!b || c)) 

Wrong arithmetic operator (a+b > 0) instead of (a*b > 0) 

Missing or extra ! operator a && !b instead of a && b 

Wrong boolean variable usage  a && b instead of a && c 

Figure 2. Fault types in predicates 



An incorrect predicate contains either a single fault or multiple faults of the same or 
different types. A test suite for a predicate C is said to detect the existence of faults in 
C, if an execution of C on at least one element of this test suite produces a failure. 
To detect incorrect predicates in a program, various predicate testing methods are 
known. The simplest one, predicate coverage (testing), also known as branch 
coverage (C1) or decision coverage, requires that each predicate is evaluated to 
true and false at least once. The number of test cases required for each predicate 
is two and does not depend on the complexity of this predicate. 
In the sequel let n denote the number of simple conditions constituting a predicate. 
Simple condition coverage requires that each simple condition of a predicate is 
evaluated to true and false at least once. Here the minimum number of test cases 
required for a predicate is two. Depending on the structure of the predicate 
(especially if conditions are coupled via common variables, like e.g. (x == 0) ||  
(y == 1) || ((x * y) > 0)), at maximum 2*n test cases may be required. Since 
simple condition coverage does not subsume branch coverage, it can be slightly 
strengthened to branch condition/predicate coverage, which simply combines branch 
coverage and condition coverage. 
Multiple condition coverage (MC) requires that each true/false-combination of all 
simple conditions of a predicate are forced at least once. The number of test cases 
required for each predicate is 2**n and only depends on the number of simple 
conditions, but not on the structure of this predicate. Moreover, in case of coupled 
conditions not all combinations may be possible to achieve. 
To cope with both the exponential complexity of multiple condition coverage and the 
structural properties of the predicates, the RTCA DO178B document [DO178B] 
defines modified condition/decision coverage (MC/DC) as follows: “Every point of 
entry and exit in the program has been invoked at least once, every condition in a 
decision has taken all possible outcomes at least once, every decision in the program 
has taken all possible outcomes at least once, and each condition in a decision has 
been shown to independently affect the decision's outcome. A condition is shown to 
independently affect a decision's outcome by varying just that condition while holding 
fixed all other possible conditions.” Note that in the DO178B, decisions not only 
denote predicates controlling the execution of statements, but also boolean 
expressions on the right hand side of assignments or as actual parameters of 
operation calls. MC/DC for each predicate demands 2n test cases, if the predicate 
has taken both truth values under the truth value combinations of the conditions, else 
2n+1. 
Structural predicate coverage testing strategies has been shown of value in empirical 
studies (c.f. e.g.[TV+94], [WGM85], or [ZHM97]). Thus our idea was to exploit their 
power regarding functional testing, too. In the sequel we elaborate this idea regarding 
functional testing of component interfaces specified by the “design by contract” 
technique. 

3 Design by Contract 
According to Bertrand Meyer [Me97], for each software interface we need three kinds 
of specification elements: 



• The precondition (of an operation) expresses the properties that must hold 
whenever the operation is called. Its clauses refer to input-parameters of the 
operation und the state of the component before the operation is activated. 

• The postcondition (of an operation) expresses the properties that the operation 
guarantees when it returns (assuming its precondition was satisfied). Its 
clauses refer to output-parameters of the operation und the state of the 
component after the operation is completed, and may refer to the input 
parameters and the initial state, as well. 

Both pre- and postconditions describe properties of individual operations, but often 
one wishes to specify some more general properties of the software component. 

• To this end, the invariant (of the software component) expresses global 
properties of all instances of a component, which must be preserved by all 
operations. Its clauses refer only to the state of the component and must be 
satisfied before and after each execution of an operation, thus the invariant 
can be considered as logically conjugated (“and-ed”) to all pre- and 
postconditions.  

Together, pre- and postconditions of all operations of an interface together with the 
general properties stated by the invariant answer the questions of “What does the 
software component expect from its users?“ “What does it deliver to them?“ and 
“What does it maintain all time?“ Bounded to the software components interfaces, 
they resemble a contract between the software component and its clients, saying: “If 
my clients promise to call me with the precondition satisfied then I, in return, promise 
to deliver a final state in which the postcondition (and my invariant) is satisfied”. 
As an example for design by contract we consider the well known stack interface with 
operations top(), push(), and pop(). In this example the size of the stack is 
bounded by an integer number of stackable objects which is settled by the only 
parameter of the constructor stack(int n).  

Figure 3. Contract for interface BoundedStack 

interface BoundedStack  
 
 invariant@ self.size() >= 0 AND self.size() <= self.MAXSIZE()  
 
 public BoundedStack (Integer maxSize) 
  pre@  maxSize > 0 
  post@ self.MAXSIZE() = maxSize@pre AND self.size() = 0 
  
 public void push (Object item) throws FullStackException 
  pre@ self.size() < self.MAXSIZE() 
  post@ self.size() = self.size()@pre+1 AND self.top() = item@pre 
  
 public Object top () throws EmptyStackException 
  pre@ self.size() > 0 
  post@ return <> null 
  
 public void pop () throws EmptyStackException 
  pre@ self.size() > 0 
  post@ self.size() = self.size()@pre - 1 
  
 public Collection all ()  
  pre@ true 
  post@ (self.size() > 0 and return.size() = self.size()) or 
   (self.size() = 0 and return = null) 
  



Moreover, we consider an additional operation all() which returns an ordered 
collection containing (references to) all stacked objects ordered from top to bottom, 
thus the most recently stacked object occurs at the beginning of the returned 
collection. The contract for the resulting interface BoundedStack is sketched (in a 
frankly mixed Java/OCL notation) in Figure 3. Note that in OCL the equality operator 
is written as “=” (which is the assignment operator of Java). 
The obvious observation is that clauses in contracts are formed by conditions and the 
resulting predicates maybe as complex as in the case of control flow decisions. Thus 
all fault types resp. error hypotheses listed in Figure 2 are applicable for contract 
specifications, too. So in the next chapter we transfer predicate testing techniques to 
functional testing. 

4 Functional Predicate Testing 
In functional testing one focuses on the functions of classes, subsystems, or 
systems. For the sake of simplicity we only consider the public operations of an 
interface for which contractual specifications are given. First we deserve an overall 
strategy, i.e. a global order in which the operations are tested. Characterizing the 
operations due to their gross effect reveals the following test order: 

1. Constructor,  
2. Simple observer like getMember():value, 

3. Simple modifier like setMember(value), 
4. Complex observer (i.e. state preserving operations),  
5. Complex modifier (i.e. state modifying operations), and 
6. Destructor (if implemented). 

Regarding the test input for an operation we consider its precondition, which should 
hold in case of conformance (or positive) tests regarding normal use and fail in case 
of robustness (or negative) tests regarding abuse. Without loss of generality, in the 
sequel we concentrate on conformance tests satisfying the preconditions of the 
operations under test, utilizing MC/DC as an appropriate test coverage metric. 
In this case, for a simple condition S one specifies a single test case with S == true, 
for a negated simple condition !S one specifies a single test case with S == false. 
For a compound condition S || T each simple condition S and T must evaluate to 
true and false at least once, which raises two test cases S == true, T == false 
and S == false, T == true. For a compound condition S && T both simple 
conditions must evaluate to true which raises the test case S == true, T == 
true. 
For each test case one then specifies the expected outcome. For contract based 
testing it suffices to compute expected truth values for each simple condition 
constituting the postcondition of the operation under test. This is done for all test 
cases specified so far. Afterwards one has to proof that all postconditions are 
covered w.r.t. the MC/DC criterion, i.e. all combinations analogous to those described 
for preconditions have to be covered. If not, more test cases have to be specified 
manually until full coverage is reached. 



If state variables (attributes, member variables) occur in a precondition, normally 
some sequence of operation calls has to be activated before this precondition can be 
satisfied. To this end, due to the test order mentioned above often the resulting test 
cases may be staggered, i.e. test cases for complex observer operations may rely on 
test cases for simple modifier. 
The table in Figure 4 summarizes the MC/DC-based logical conformance test cases 
for the BoundedStack interface presented in chapter 3. Each row corresponds to a 
simple condition, each of the right hand columns titled A, B, … represents one test 
case, i.e. a call of an operation with its precondition satisfied in the manner indicated 
as follows. Each entry denotes the evaluation of the corresponding simple condition 
to true (T) resp. false (F), whereas d.c. means “don’t care”.  
The shaded entries indicate the operation under test, the entries for the preconditions 
of the other operations (and of the invariant) denote the expected values after the 
execution of the operation under test, thus aiding the operation call sequence 
problem mentioned above.  
For example, column A indicates that the call of the constructor sets the stack object 
in a state satisfying the preconditions of operations push() and all(), but not those 
of top() and pop(). Columns A, B, and C reveal that a conformance test of top() 
may start with a call of the constructor with maxsize > 0, followed by a call of 
push() with an arbitrary object obj, followed by a call of top() and a check that the 
returned object equals obj. 
 
interface BoundedStack A B C D E F 
invariant@ self.size() >= 0 AND T T T T T T 

self.size() <= self.MAXSIZE() T T T T T T 
BoundedStack pre@  maxSize > 0 T      
BoundedStack post@ self.MAXSIZE() = maxSize@pre AND T      

self.size() = 0 T      
push pre@ self.size() < self.MAXSIZE() T T     
push post@ self.size() = self.size()@pre+1 AND  T     

self.top() = item@pre  T     
top pre@ self.size() > 0 F T T    
top post@ return != null   T    
pop pre@ self.size() > 0 F T T T   
pop post@ self.size() = self.size()@pre - 1    T   
all pre@ true T T T T T T 
all post@ (self.size() > 0 and     T F 

return.size() = self.size()) or     T dc 
(self.size() = 0 and     F T 

return = null)     dc T 

Figure 4. Contract based test case specification for interface BoundedStack 

5 Tool Support 
The elaboration of test cases regarding some predicate testing criterion is a time 
consuming, error-prone, and tedious task. So we’ve built a tool supporting the tester 
in the algorithmic parts of his work. 



The resulting tool is called WeSUF (acronym from the German title “Werkzeug für 
strukturelle und funktionale Bedingungs-Überdeckungs-tests von Java-Programmen 
mit OCL-Spezifikationen”). It supports both functional and structural predicate 
coverage testing. Figure 5 depicts the tools architecture, which is described in the 
sequel. 
Regarding functional predicate 
coverage testing, the tool extracts and 
works on predicates of contracts 
formulated in OCL (Object Constraint 
Language, [WK03]), which are 
contained as appropriately tagged 
comments in Java sources. Parsing of 
OCL is based on the SableCC compiler 
toolkit [GH98]. For structural predicate 
coverage testing, the tool is able to 
parse the Java sources in detail and 
extract all contained decisions. To this 
end, we rely on the Barat Java parsing 
framework [BS98]. 
After extracting and analysing the 
predicates, the tool offers several 
options, among them the checking for 
tautologies, some equivalence 
transformations up to the normalization 
of the predicates (disjunctive and 
conjunctive normal form), and the 
computation of (a minimal set of) truth 
value combinations regarding some 
selected predicate testing coverage 
criterion. 
 

Figure 5. Architecture of the WeSUF-Tool 

In order aid the tester in identifying the values needed to achieve the aimed 
coverage, WeSUF not simply computes a minimal set but the optimal set of logical 
values. Roughly spoken, the implemented optimisation criterion leads to a minimum 
of difference of the needed truth value combinations to achieve the aimed coverage 
(for more details see [Av04]). 
Regarding structural predicate coverage and the specification of concrete test cases, 
we’ve coupled the WeSUF tool with a code instrumentation tool called DoIT (acronym 
from the German title “Datenbankgestützte Dokumentation instrumentierter Testläufe 
von Java-Programmen”, [We03], [WW03]). The statement, branch, and predicate 
coverage achieved by executing a test suite is reported into the DoIT database, 
which afterwards is analysed by WeSUF. Then all covered combinations of truth 
values are highlighted and listed together with the corresponding concrete test cases, 
the input values of the method containing the decision under test. With this 
information at hand, the tester may be able to infer test cases for the uncovered truth 
value combinations.  

 



Furthermore, to support the specification of concrete test cases, WeSUF detects and 
reports the object state before and after each condition evaluation and, as a “side-
effect”, warns on detecting side-effects. 
WeSUF is able to generate XML- and HTML-based reports focusing on the decisions 
structure (e.g. to guide reviews), on the truth tables regarding a particular coverage 
criterion (as an aid for the tester, see [Av04]), and on the resulting coverage. 
 
 
 

Figure 6. HTML-Report for a compound predicate 

6 Related Work 
In this chapter we sketch some recent related work on “contract testing”, i.e. test case 
specification techniques relying on contracts. 
Groß reports on a built-in contract testing method for checking the pair-wise 
interactions of components in component-based software construction at integration 
and deployment time [Gr02a][Gr02b]. Functional test cases are specified mainly 
using state-based testing, but also “classical” structural testing techniques are 
applied. 



Edwards describes a framework for practical, automated black-box testing of 
component-based software [Ed01]. He outlines a general strategy for automated 
black-box testing of software components that includes automatic generation of 
component test drivers, automatic generation of black-box test data, and automatic or 
semi-automatic generation of component wrappers that serve as test oracles. Test 
case generation is based on flowgraph techniques.  
McGregor and Sykes construct test cases from contracts by identifying all possible 
combinations of situations in which a precondition can hold and postconditions can 
be achieved and adding test cases, to address what happens when a precondition is 
violated [MS01]. In [CM99], Cho and McGregor take pre- and postconditions as 
partial test oracles for the state-based testing of components. 
None of the authors above utilize predicate coverage criteria for test case generation. 

7 Conclusions 
We discussed various predicate testing coverage criteria known from the literature, 
demonstrated how to adapt them for functional test case design focusing on “design 
by contract” specifications, and reported on a tool supporting both structural and 
functional predicate coverage testing for Java programs with OCL specifications for 
invariants and pre- and postconditions. 
In our laboratory case studies we found that besides efficient test case specification 
another benefit of our approach and the tool was due to its predicate analysis and 
transformation abilities. Both tester and developer appreciated the corresponding 
support of contract specification in the design phase. 
Until now the tool was only used in experimental settings, so before conducting 
industrial case studies we first have to evaluate (and maybe enhance) its robustness 
and scalability. 
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