
Towards a Reliable Statistical Oracle and its Applications

Johannes Mayer

Abteilung Angewandte Informationsverarbeitung

Universität Ulm

mayer@mathematik.uni-ulm.de

Abstract

It is shown how—based on the idea of the Heuristic Oracle—a Statistical Oracle can

be implemented based on statistical tests. Whereas the decision of a Heuristic Oracle may

be wrong, it will be demonstrated how this can be avoided with the Statistical Oracle, using

techniques from the field of randomized algorithms. As with all types of oracles, the Statistical

Oracle is not universially applicable. If explicit formulae for the mean, variance, or distribution

of characteristics computable from the test output are available, it is possible to apply the

Statistical Oracle.

Especially in the field of image processing, where inputs can be very complex and are thus

difficult to generate, random testing is very useful. It is shown, how the Statistical Oracle has

been used to test implementations of image processing operations, namely dilation, erosion,

and distance transform.

1 Introduction

What is the major problem in testing applications for image processing? Non-trivial images, i. e.
the test inputs, are not easy to produce. Furthermore, it takes time to figure out the expected
result. Therefore, this is a very ressource consuming task.

How to overcome these problems? Random testing [DN84, Fr98, Fr99, HT90], i. e. testing
with randomly generated inputs, can easily be applied to generate a large number test cases,
i. e. complex images. Whereas the random generation of test inputs is simple, the corresponding
expected results are usually not obvious. This is the well-known test oracle problem. A test
oracle is responsible for the decision, whether a test case passes or not. If no expected results are
provided, which can be compared to the actual results, more complex oracles are needed.

The present paper shows how random testing can be used to test applications from image
processing. Therefore, it presents a model from stochastic geometry and a solution of the test oracle
problem in case that explicit formulae for the mean, the distribution, and so on, of characteristics
computable from the test results are available. A Statistical Oracle based on a statistical hypothesis
test is described, being a special case of the Heuristic Oracle [Ho99] resp. Parametric Oracle [Bi99].

The following section contains a brief review of some related work on oracles and random
testing. Thereafter, the Statistical Oracle is described in general. Then, the necessary statistical
methods are presented to implement the components of the Statistical Oracle. Finally, the appli-
cation of this oracle to test the implementation of an image processing operator, namely dilation,
is described, followed by a conclusion and perspectives.

2 Related Work

Random testing, i. e. testing with randomly generated inputs, is a well-known and efficient method
[Ag78, DN84, Fr98, Fr99, HT90, Ha94, Sc79]. It requires test oracles to ensure the adequate
evaluation of test results.

1



Under Test (IUT)
Statistical
Analyzer

Comparator

Test Case Actual

Distributional Parameters

ResultsInputs

Characteristics

Random
Test Input
Generator

Implementation

Pass/No Pass

Figure 1: Statistical Oracle for random testing

Most oracles, such as Solved Example Oracle, Simulation Oracle, Gold Standard Oracle, Re-
versing Oracle, Generated Implementation Oracle, and Different But Equivalent Oracle (all de-
scribed in [Bi99]) check the actual output for correctness.

The oracles so far exactly compared the expected outputs with the actual. However, this is not
always feasible. Therefore, oracles exist that only verify some properties of the actual output of
the test. The Heuristic Oracle [Ho99] resp. the Parametric Oracle [Bi99] extracts some parameters
from the actual outputs and compares them with the expected values. Hoffman [Ho99] as well
as Binder [Bi99] mention the use of statistical parameters such as the mean and the variance.
However, they do not detail how the comparison is to be performed—which is essential in this
case. The present papers contains an application of the Statistical Oracle [MG04]—a special case
of the Parametric Oracle resp. the Heuristic Oracle—giving also necessary implementation details
especially for the comparison and an application.

3 Statistical Oracle

The Statistical Oracle [MG04] verifies some statistical characteristics of the actual test results—
and can therefore be applied in random testing, provided that the mean, variance, distribution,
and so on, of characteristics computable from the test results are known. It makes sense in case
the inputs are complex and the exact output cannot be verfied with moderate effort. It is a
special case of the Heuristic Oracle [Ho99] resp. the Parametric Oracle [Bi99]. Here statistical
characteristics are employed and compared using statistical methods, i. e. statistical tests.

Figure 1 shows the principal structure of the Statistical Oracle which can only be used in
random testing. It consists of the Statistical Analyzer and the Comparator.

• The Statistical Analyzer computes various characteristics from the test output that may be
modeled as random variables. These characteristics are then sent to the Comparator.

• The Comparator computes the empirical sample mean and the empirical sample variance of
its inputs.

• The Comparator receives the distributional parameters from the Random Test Input Gen-
erator. Therefore, the Random Test Input Generator must be prepared to deliver the distri-
butional parameters to the Comparator. Furthermore, expected values and properties of the
characteristics are computed by the Comparator (based on the distributional parameters of
the random test input).

The decision of a Statistical Oracle is not always correct—in contrast to usual oracles. However,
the error probabilities can be adjusted as will be shown.

An important consequence of the Statistical Oracle is that is cannot decide whether a single
test case passes or not. It can only make this decision for a couple of test cases. If a failure occurs,
no single test case can be identified that detected the bug—it is the couple of test cases as a whole.

2



The Statistical Oracle does not check the actual output but only some characteristics of it for
the given type of inputs. Therefore, as explained in [Bi99, Ho99], it does not suffice to perform all
tests with a Statistical resp. Parametric resp. Heuristic Oracle, since these tests only focus on the
observed characteristics. Therefore, other test cases and oracles are also necessary.

4 On the Implementation of the Statistical Analyzer and

the Comparator

The Comparator collects the outputs of the Statistical Analyzer for n test cases and computes the
sample mean and the sample variance. Thereafter, it decides based upon statistical tests. The
Comparator allows for generalization. In the following, some statistical basics are explained that
are necessary for the implementation of the Comparator. More details on the necessary statistics
are provided e. g. by [CB02].

Let X1, . . . , Xn denote the random variables that model the inputs of the Comparator for a
single characteristic, where Xi belongs to the i th test case. Since the individual test runs are
completely independent of each other, the random variables Xi are independent and identically
distributed, say with mean µ and variance σ2. Both, µ and σ2, are unknown, since they depend
on the IUT which is to be tested.

The sample mean of these random variables X1, . . . , Xn is

Xn :=
1

n

n
∑

i=1

Xi.

According to the central limit theorem, it holds that

Xn − µ

σ/
√

n

d−→ N (0, 1)

for n → ∞. Thus, for practical purposes, Xn can be regarded as approximately normally dis-
tributed with mean µ and variance σ2/n if n ≥ 30 (a common rule of thumb). The greater n gets,
the less likely deviations from µ become (which is also known as the weak law of large numbers).

Additionally, the sample variance

S2

n :=
1

n − 1

n
∑

i=1

(Xi − Xn)2

of the random variables X1, . . . , Xn, that approaches σ2 as n goes to infinity, will also be necessary
for the statistical tests.

So far, only random variables have been considered. In case of a concrete test run, xi, xn, and
s2

n denote the respective realizations of these random variables.
In the following µ0, denotes the mean that the random variables Xi are expected to have. (The

input generator is required to deliver the distributional properties to the Comparator. Based on
them, µ0 can be computed by the Comparator.) The following approach is used to decide whether
the actual mean µ equals µ0 or not.

A statistical hypothesis test is to be employed to check, whether the mean is equal to the
expected value. However, it is not that simple. It seems to be obvious to use the t-test. However,
the null hypothesis of this test states that the mean is equal to the expected value. This hypothesis
thus states that the IUT is correct in that respect. So, a Type I error is in this case that the test
does not pass whereas the IUT is correct (regarding this aspect). This is not the error whose error
probability should be controlled. It would be preferable if the probability that the IUT passes
whereas it is buggy, could be chosen arbitrarily. It is however not possible to simply exchange the
null hypothesis and the alternative hypothesis.

3



⊕ =

A B A ⊕ B

Figure 2: Illustration of the Minkowski Addition

Using an intersection-union test [CB02] that combines two one sided t-tests, this problem can
be overcome. Let ∆ > 0 be chosen arbitrarily to define an environment around the mean, the null
hypothesis can be stated as

µ /∈ [µ0 − ∆, µ0 + ∆].

The maximum probability α ∈ (0, 1

2
) for a Type I error, i. e. that the IUT passes though the IUT

is not correct, can be chosen arbitrarily.
Then, if

xn − (µ0 − ∆)

sn/
√

n
≥ tn−1,α and

xn − (µ0 + ∆)

sn/
√

n
≤ −tn−1,α

hold, the null hypothesis is rejected and thus the implementation passes. tn−1,α denotes the
(1 − α)-quantile of the t-distribution with n − 1 degrees of freedom.

The probability of a Type II error (i. e. that a correct IUT—regarding the considered aspect—
does not pass) can, given a fixed value for α, be decreased by increasing the sample size n. For
given ∆ and σ, as well as α = 1/4, say, n can be determined (numerically) such that β ≤ 1/4.
Then, oracle, IUT, and random input generator are the implementation of a BPP algorithm, i. e.
the answer is correct with probability at least 3/4 in each case. Repetition of the test process and
majority votum for the result allows to achieve arbitrarily small error probabilities in each case.

5 Testing Image Processing Applications

Now that the foundations have been laid through the Statistical Oracle, this section describes how
to apply random testing using the Statistical Oracle to test implementations of dilation. First this
operator is introduced. Thereafter, testing will be adressed.

5.1 Preliminaries

A more detailed introduction to the following preliminaries can be found e. g. in [So03].
Let A and B be subsets of R

2. Ǎ denotes the reflection of A at the origin. The Minkowski

addition A ⊕ B is defined as

A ⊕ B := {x + y : x ∈ A, y ∈ B}.

The set B is in this case called the structuring element. Figure 2 illustrates the Minkowski addition.
δB(A) denotes the dilation of A with the structuring element B and is defined as

δB(A) := A ⊕ B̌.

Obviously, dilation and Minkowski addition are equivalent if the structuring element is symmetric
(with respect to the origin).

A binary image can also be seen as the digital version of a set where the value of a pixel
indicates whether this pixel belongs to the set (value 1) or not (value 0). Therefore, dilation can
easily be interpreted as a transform mapping a binary image onto another binary image (given a
structuring element).

4



Figure 3: Possible realizations of the Boolean model

5.2 Testing an Implementation of Dilation for Binary Images

Now, it will be described how to apply random testing with the Statistical Oracle to test an
implementation of dilation for binary images.

Random Test Input Generator Very important in random testing is the random input. This
is simple for numbers, more complex for strings. But what about images? How to randomly
generate images and at the same time have the possibility to implement an oracle for these input
images?

Here models from stochastic geometry can be used, specifically the Boolean model (cf. e. g.
[Mo97]). Figure 3 shows two possible realizations of the Boolean model. The Boolean model is
simply the union

⋃

i(Bi + Xi) of i. i. d. random grains Bi (such as discs with random radius or
squares with random rotation) each translated into another point Xi of the underlying Poisson
process. A detailed introduction to the Boolean model is given in e. g. [Mo97]. See e. g. [MSS04]
for the simulation of the Boolean model.

Considered Characteristics It is necessary to decide which characteristics of the output, i. e.
the dilated image, can be used by the Statistical Oracle. If the image is a realization of the Boolean
model, it can be represented by the set

⋃

i

(Bi + Xi).

Let B be the structuring element used in the dilation. Then, the result of the dilation is the set

δB

(

⋃

i

(Bi + Xi)

)

=

(

⋃

i

Bi + Xi

)

⊕ B̌

=
⋃

i

((Bi + Xi) ⊕ B̌) =
⋃

i

(Bi ⊕ B̌) + Xi,

using some properties of Minkowski addition. Thus, the result is the Boolean model with grains
Bi ⊕ B̌. For example, if Bi is a disc with random radius Ri and B is a disc with radius r, Bi ⊕ B̌
is simply a disc with random radius Ri + r. Similar properties hold if Bi and B are both squares
or rectangles (without rotation). The first important fact is, thus, that dilation transforms a
realization of the Boolean model into a realization of the Boolean model (with different grains).

The Boolean model has been studied for a long time. As a result, explicit formulae for specific
area AA, boundary length LA, and Euler number χA are known (see e. g. [Mo97]):

AA = 1 − exp(−λA)

5



LA = λL exp(−λA)

χA = λ

(

1 − λL
2

4π

)

exp(−λA)

where λ is the intensity of the Poisson process {X1, X2, . . .}. A and L are the mean area and
boundary length of the so-called primary grain B1.

Using e. g. methods from [OM00], the specific area, boundary length, and Euler number of the
underlying random set—the Boolean model—can be estimated from a binary image without bias.

Putting the Pieces together Random testing of dilation of binary images can be done as
follows (Figure 1 gives an overview):

1. The Random Test Input Generator generates realizations of the Boolean model. These
realizations are sets. Thereafter, these sets are transformed into binary images. These are the
test case inputs delivered to the IUT (together with a structuring element B). Furthermore,
the Random Test Input Generator passes the intensity λ of the Poisson process as well as A
and L of the dilated primary grain B1 ⊕ B to the Comparator.

2. The IUT computes the resulting image and passes it to the Statistical Analyzer.

3. The Statistical Analyzer computes the estimators for AA, LA and χA. Each such estimator
can be modeled as a random variable Xi (c. f. Section 4). Then AA, LA and χA are the
expected means, respectively, of these random variables (i. e. µ0)—due to the unbiasedness
of the estimators. It passes each realization xi to the Comparator—for each of these random
variables.

4. The Comparator accumulates the realizations xi of each such random variable Xi for n
outputs and computes the realization xi of the sample mean. Finally, it decides using a
statistical test as described in Section 4 whether the IUT passes or not.

5. Finally, the whole process is repeated to achieve arbitrarily small error probabilities.

One has to be careful to choose only unbiased estimators. Otherwise AA and so on would not be
the expected means of the estimator.

As mentioned in Section 4, the sample size n has to be at least 30 to guarantee approximate
normal distribution of the mean and it should be chosen much bigger to reduce the probability of
a Type II error, i. e. a false alarm.

6 Conclusion and Perspectives

The present paper dealt with random testing of image processing applications, specifically imple-
mentations of dilation. Therefore, the Statistical Oracle has been applied with a statistical test
in conjunction with samples from the Boolean model as random input. It has been shown that in
this case, the output is also a sample from the Boolean model (with other parameters). Choos-
ing specific area, boundary length, and Euler number as parameters computed by the Statistical
Analyser has proven beneficial. Theoretical formulae are known for these characteristics for the
Boolean model. The presented combination fits perfectly for the purpose. Through repetition,
the error probabilites can be made arbitrarily small. Thus, reliability can be controlled. Notice,
however, that the presented test only checks some characteristics of the output and only uses a
subset of all possible inputs. Therefore, the reliability is only with respect to this class of inputs
and with respect to the specific area, boundary length, and Euler number of the output. For
other images, the implementation may behave completely different—at least in theory. And the
output may be wrong despite area and so on are correct, which is not very likely. To increase
the types of inputs, the test should be executed with different settings of the parameters of the

6



Boolean model (different intensity of the Poisson process and different grains). Furthermore, at
least special inputs (such as inputs with all pixels set to 0 or 1) should be tested in addition.

Erosion, another image transform, can be expressed in terms of dilation and complement.
Therefore, this test could also be used for erosion. Furthermore, the implementation of dilation is
usually based on distance transform and threshold. For this reason, it should also be possible to
adapt this test for distance transform.

Acknowledgment

The author is grateful to Ralph Guderlei and Evgueni Spodarev for cooperation and fruitful
discussions.

References

[Ag78] Agrawal, V. D.: When to Use Random Testing. IEEE Transactions on Computers 27,
1978; pp. 1054–1055.

[Bi99] Binder, R. V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 1999.

[CB02] Casella, G.; Berger, R. L.: Statistical Inference. Wadsworth Group, Duxbury, CA, USA,
2002.

[DN84] Duran, J. W.; Ntafos, S. C.: An Evaluation of Random Testing. IEEE Transactions on
Software Engineering 10, 1984; pp. 438–444.

[Fr98] Frankl, P. G. et al.: Evaluating Testing Methods by Delivered Reliability. IEEE Transac-
tions on Software Engineering 24, 1998; pp. 586–601.

[Fr99] Frankl, P. G. et al.: Correction to: Evaluating Testing Methods by Delivered Reliability.
IEEE Transactions on Software Engineering 25, 1999; p. 286.

[HT90] Hamlet, R. G.; Taylor, R.: Partition Testing Does Not Inspire Confidence. IEEE Transac-
tions on Software Engineering 16, 1990; pp. 1402–1411.

[Ha94] Hamlet, R. G.: Random testing. In (Marciniac, J. J. Ed.): Encyclopaedia of Software
Engineering. John Wiley & Sons, 1994.

[Ho99] Hoffman, D.: Heuristic Test Oracles. Software Testing & Quality Engineering 1, 1999;
pp. 29–32.

[MG04] Mayer, J.; Guderlei, R.: Test Oracles Using Statistical Methods. In: Proceedings of the
First International Workshop on Software Quality, Lecture Notes in Informatics P-58, Köllen
Druck+Verlag GmbH, 2004; pp. 179–189.

[MSS04] Mayer, J.; Schmidt, V.; Schweiggert, F.: A Unified Simulation Framework for Spatial
Stochastic Models. Simulation Modelling Practice and Theory 12, 2004; pp. 307–326.

[Mo97] Molchanov, I.: Statistics of the Boolean Model for Practioners and Mathematicians. John
Wiley & Sons, Chichester, 1997.

[OM00] Ohser, J.; Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. John
Wiley & Sons, Chichester, 2000.

[Sc79] Schneck, P.B.: Comment on “When to Use Random Testing”. IEEE Transactions on
Computers 28, 1979; pp. 580–581.

[So03] Soille, P.: Morphological Image Analysis: Principles and Applications. Second Edition,
Springer-Verlag, New York, 2003.

7


