
1

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 1 © Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Secrets of Test Driven
Development

23. TAV München

Peter Zimmerer
Senior Principal Engineer

Siemens AG
Corporate Technology Software & Engineering 1

D-81730 Munich, Germany
peter.zimmerer@siemens.com

http://www.siemens.com/research-and-development/
http://w4.siemens.com/ct/

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 2

Contents

• Introduction

• Some basics of testing

• Secrets and limitations

• Experiences

• Summary

2

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 3

Introduction Test-driven Development (TDD)

• Kent Beck:
• Never write a single line of code unless you have a failing automated test.

• Eliminate duplication.

• 3 steps:
• Write test

• Write code

• Refactor

• Other related naming: test-first development

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 4

TDD is one core practice
of eXtreme Programming (XP)

• First code then test …

• First test then code …

Never write a line of functional code
without a broken test case.

Any program feature without an
automated test simply doesn't exist.

Kent Beck

Test-first coding is not a testing
technique.

Ward Cunningham
Remark:
From my point of view test-first is testing
because testing is not only test execution at
the end but has a lot to do with activities like
creating test requirements, test specifications,
test design, test cases, etc.

3

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 5

• Programmer testing (unit testing) – very often used
• xUnit tools (http://www.xprogramming.com/software.htm)
• E.g. JUnit (http://www.junit.org/)

• Customer testing (acceptance testing) – “partly used” (?)
• Fit, acceptance testing framework by Ward Cunningham and others

(FrameworkForIntegratedTest, http://fit.c2.com/).
• Tests are specified as HTML tables (created by Excel, Word, etc.).
• Fixtures act as the glue between the written tests and the application’s code.
• Ideal for data-centric tests where each test does the same kind of thing to different

kinds of data.
• Available in different languages (Java, C++, C#, Python, Perl, Ruby, …).

• FitNesse, a fully integrated standalone wiki and acceptance testing framework
(based on Fit) by Robert C. Martin and Micah D. Martin (http://fitnesse.org/).

• FitLibrary, a set of fixtures and runners that extend Fit
(http://fitlibrary.sourceforge.net/).

• Others see http://www.xprogramming.com/software.htm
(main focus is on web testing over HTTP).

Typical usage of TDD (1)
C

O
R

P
O

R
A

T
E

T

E
C

H
N

O
L O

 G
 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 6

Typical usage of TDD (2)

• Example:
Fit result document
(see
http://fit.c2.com/wiki.cgi?
CustomerGuide)

4

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 7

• Customer testing (acceptance testing) – “partly used” (?)
• Tests may be too low level to be effective

• Often tests are expressed in terms of user interface interaction like
‘enter text field’, ‘push button’, etc.

but not on an appropriate business process and terminology level.

• One possible solution:
Shift from lower-level to higher-level concepts (abstraction is the key)!
Building the tests using a specific high level domain-specific testing language.

• Related keyword-driven software testing frameworks which existed already
before XP and agile methods arrived:

• logicaCMG TestFrame (http://www.logicacmg.com/)

• LogiGear TestArchitect (Action Based Testing™) (http://www.logigear.com/)

• Omsphere Multiple Interface Testing Suite (MITS) (http://www.omsphere.com/)

• K. Zambelich’s table-driven method of test automation (http://www.sqa-test.com/)

Typical usage of TDD (3)
C

O
R

P
O

R
A

T
E

T

E
C

H
N

O
L O

 G
 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 8

Some basics of testing

• Finding bugs during test execution is not the optimum.

• Specification artifacts (requirements, use cases, models,
architecture, design) must be improved and completed for
testing which results in changes.

• Testing prevents bugs building the test specification (e.g. building a test
model or creating abstract non-executable test cases) is testing.

• Tests represent a set of executable specifications.

• Design for testability
• Visibility/Observability and control
• We (testers and developers) are sitting in the same boat …

• So, why should we restrict TDD only to unit and acceptance
testing with detailed implemented and executable tests?

Find bugs early during
test specification,

not late during test
execution!!!

5

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 9

TDD ≈ Preventative Testing

• Preventative Testing is built upon the observation that one of the
most effective ways of specifying something is to describe (in
detail) how you would accept (test) it if someone gave it to you.

Bill Hetzel, <1990

• Use testing to influence and control requirements, architecture,
design, implementation, deployment, and maintenance:

testware development leads software development.

• That means that the idea of TDD is
• nothing actually new
• nothing new brought to us by XP or agile methods and the hype around it
• rather a quite old idea …

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 10

TDD – Example

• Automated Teller Machine (ATM) requirement:

A valid user must be able to withdraw up to $200
or the maximum amount in the account.

• The first 2 test cases
TC1: Withdraw $200 from an account with $165 in it. Result ???

TC2: Withdraw $168.46 from an account with $200 in it. Result ???

already help us to discover two ambiguities in the requirements:

Some people will interpret it to mean that the ATM user
can withdraw the lesser of the two values ($165),
while other people will interpret it to mean they
can withdraw the greater of the two values ($200).

Ref.: R. Craig, S.P. Jaskiel
Systematic Software Testing

Does the bank want
the ATM to dispense
coins to the users???

6

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 11

TDD secret 1 – My view of TDD

• TDD = Test-first design ⊕ test-first implementation
• Including early creation of abstract non-executable test cases as well as

detailed implemented and executable test cases.

• TDD is possible and strictly recommended on every test level,
not only for unit and acceptance testing (preventative testing)!

• Emphasizes the importance and benefits of early testing activities.
• Building the test specification is testing.
• Tests represent a set of executable specifications.
• Proactive design for testability.

• These things are NOT actually new and are already well known for
a long time.

• What‘s new is that these things are more and more really used in
projects today. From my point of view that‘s the real big benefit of
the TDD-hype brought to us by XP and agile methods.

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 12

TDD secret 2 – Test-first implementation

• Not always 100% possible in real life

• Usage might be costly and time-consuming dependent on what test
environment (e.g. by creating mock objects) is needed.

• Legacy code with low testability.
• GUI testing (e.g. Java Swing, capture/replay tools)
• Web applications (using ASP.NET, JSP, servlets):

Tests could be created to check the HTML output of the code, but that
doesn’t really test that the HTML code itself is properly displayed within the
browser.

• Distributed objects (e.g. EJB) deployed on application servers
• Code running on different types of machines and interacting with a

complex environment: e.g. communication servers, middleware servers,
database servers, content management systems, web interfaces, etc.

• Event-based reactive systems
• Embedded systems

7

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 13

TDD strategy for GUI testing

• The more code you can make testable the more reliable the
system will be.

• Divide the code into appropriate components that can be built,
tested, and deployed separately.

• Build most of the functionality (business logic, services)
outside the context of the user interface code using TDD.

• Let the user interface code be just a very thin layer on top of
rigorously tested code. I.e. build as much functionality as
possible outside the GUI.

• Again, this “good“ basic architecture style of
a clear separation between business logic and
user interface is NOT new and is already well
known for a long time: e.g. 3-tier architecture. PersistencePersistence

Business LogicBusiness Logic

PresentationPresentation

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 14

TDD secret 3 – Innovation and invention (1)

• Not always 100% possible in real life

• Is it an enemy of innovation and invention?

• Example:
Invention of the car
by Carl Benz and Gottlieb Daimler
in 1886.

Only 70 years later:

Invention of the crash test
by Mercedes-Benz in the fifties.
Systematic crash tests
since 1959.

8

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 15

TDD secret 3 – Innovation and invention (2)

• Not always 100% possible in real life
• Example Software technologies (e.g. object-orientation (OO), web

technologies, aspect-oriented programming (AOP), grid computing):
When looking back in history we can see that first there was the idea,
vision and invention of these new software technologies and later people
thought about needed strategies, methods, and tools for testing them.

• Example Architectural and design patterns:
These patterns claim to contain innovative approved best practices.
Here again the patterns have been invented first (or some have been
reinvented based on already known knowledge) and later people started to
think about how to test a specific design pattern, i.e. also design patterns
have not been developed in a core TDD manner.

• Example Testing tools:
What’s about all the innovative testing tools we get from the commercial
testing tool industry? Do you think these tools are usually developed in a
TDD manner? I don’t think that …

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 16

TDD secret 4 – Non-functional requirements

• Not always 100% possible in real life

• Non-functional requirements: performance, usability, etc.

• Example: Security (Ref. James Whittaker)

Intended
Behavior

Actual
Behavior

Traditional
Bugs

Most Security
Bugs

9

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 17

TDD secret 5 – Cost efficiency and predictability

• Think about cost efficiency again …

• What about continuously changing early requirements and
architectural prototypes rework in testing?

• Find the right balance in your project …

• Not enough in real life

• Test cases created using a test-first approach or generated from
(always incomplete) requirements/design are never enough.

• You cannot predict everything
use techniques like exploratory testing as well.

• Decisions made during implementation won't be well-tested by
tests created only from the design.

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 18

Experiences

• TDD increases visibility and importance of testing.

• TDD needs changes in development:
process, people (including management!), tooling.

• TDD results in a closer cooperation of testers and developers.

• Question from the developers:
How do I test private member functions?

From a technical point there are different answers dependent on the
used programming language (e.g. friends in C++, reflection in Java).

“In core TDD this question is NOT allowed, i.e. it does not make sense,
because in TDD we first have the designed and implemented test
and then do some implementation for this test.
I.e. the details of the implementation do not matter so much …“

10

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 19

TDD – Changes (Ref. IBM Rational Unified Process)

• Traditional

• Test-first design

But, why does the
test execution happen
so late …?

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 20

Definition iteration n

Design

Coding

Unit test

Integration test

System test preparation

System test execution

Test-driven development is often used in the context of
an iterative/incremental, agile development process
but TDD is not restricted to it.

Example for a test workflow visualizing TDD

Smoke testing

Iteration n

Pre-built delivery

11

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 21

Summary

• TDD = Test-first design ⊕ test-first implementation

• TDD is possible and strictly recommended on every test level,
not only for unit and acceptance testing (preventative testing):
Let testing drive your development and maintenance at all!

• TDD needs changes in development: process, people, tooling.

• TDD results in a closer cooperation of testers and developers.

• TDD is neither 100% possible nor sufficient in real-world projects.

• TDD does not completely replace conventional “afterwards“
software testing: so, do test-first as well as test-second.

• The right project specific balance is the key for cost efficiency.

• If not already done then start with TDD tomorrow!!!

⊕
C

O
R

P
O

R
A

T
E

T

E
C

H
N

O
L O

 G
 Y

© Siemens AG, CT SE 1, Peter Zimmerer
November 17, 2005

Software &
Engineering
Development
Techniques

23.TAV - Secrets of Test Driven Development Slide 22

The end

Experience is a hard teacher because she
gives the test first, the lesson afterwards.

Vernon Sanders Law (*1930)
Baseball pitcher at Pittsburgh Pirates

Only by doing and experiencing it
you will get the feeling what’s
really behind TDD …

Every test should result
in a lesson learned.
Doing TDD you will
get the lessons early …

I wish you much success for your
own experiences in the world of

test-first & test-second.

