
TAV 23 München “Special Track”:

Neuere Entwicklungen im Testbereich der SIEMENS AG - CT SE 1

An Industrial Perspective on Model Based
Testing
Andreas Ulrich
The presentation gives an overview of the current
practice in software development projects in industry
and discusses the problems that formal and model-
based testing techniques face when they are attempted
in an industrial setting. One of the main observations is
that software is developed in evolutionary steps. Soft-
ware is seldom developed from scratch and is never a
one-time solution. Instead it evolves in increments and
product versions. As a consequence of the iterative
development, automated test execution must be sup-
ported to deal with the validation of daily builds and
small releases. In this context, the selection of the right
set of regression test cases and the definition of suit-
able test stop criteria become essential. Both issues are
typically answered by experience taking into account
the number and distribution of bugs discovered in
earlier iterations and releases and later test phases, but
are rarely addressed in formal, model-based testing
approaches.
Moreover, model-based techniques face further chal-
lenges if they are applied in the different development
phases of requirement analysis, design and modelling,
coding and system integration, and testing. First of all,
requirements of a software product are typically in-
complete, late, changing over development time, and
even outdated. It is therefore very unlikely that a com-
plete specification of the system can be made available
for model-based testing. Graphical modelling lan-
guages, e.g. UML, if used, turn out to be frequently
unproductive because of the complexity of related
tools and scalability issues. Users get easily distracted
from their original modelling task because they spend
much time on getting the graphical layout of their
model right. Another aspect relates to the configuration
management of specifications using a graphical lan-
guage. Comparing differences between two graphical
models is not an easy task that complicates any tooling.
In the coding phase one is faced with the fact that most
parts of the software product are reused from previous
versions or come in from third-party components. For
this reason, system integration and validation becomes
the cornerstone of a successful product quality assur-
ance. Due to the use of model-based design ap-
proaches, e.g. MDA, an increasing percentage of the
production code is generated from a model automati-
cally. This aspect has an influence on model-based
testing approaches. It might be not desirable to derive
tests from the same design model, for example, be-
cause they would simply test the correctness of the
code generator. Instead, testing techniques should be

applied that focuses on the integration of the generated
code in its environment.
Last but not least, testing must not concentrate on
functional aspects only. Usability aspects, performance
and integration aspects must be considered as well. It
is hard to see that any single formal test method can be
used to handle all these different requirements to-
gether. Consequently, formal test methods should
focus on a particular requirement domain, in which
they can have their largest impact. In the end, the best
gauge for any new method is the degree of productiv-
ity it helps to boost.

Secrets of Test Driven Development
Peter Zimmerer
Test-driven development (TDD) is a new approach for
software construction in which developers write auto-
mated unit tests before writing the code. These auto-
mated tests are always rerun after any codes changes.
Proponents assert that TDD delivers software that is
easier to maintain and of higher quality than using
traditional development approaches.
Based on experiences gained from real-world projects
employing TDD, Peter Zimmerer shares his view of
TDD’s advantages and disadvantages and how the
TDD concept can be extended to all levels of testing.
Learn how to use TDD practices that support preven-
tive testing throughout development and result in new
ways of cooperation between developers and testers.
Take away practical approaches and hints for introduc-
ing and practicing test-driven development in your
organization.

Integration Testing - Looking for a Solution to
Testing Concurrent Components and Systems
Andrej Pietschker
In integration testing we often face the problem of
determining the verdict of a test run without having
sufficient insight into the system. This problem is even
more apparent in concurrent or embedded software
because the traditional approach of using a debugger
has limitations. Many developers create log statements
to trace the program flow during development. This
technology can be extended for use in integration test-
ing.
However due to the large amount of data and the pos-
sibly complex behaviour of systems comprehending
these traces can very difficult. We propose to use an
automated approach to analysing system properties in
traces. In this presentation we will motivate, and intro-
duce two approaches to passive testing.

