Testing Against Requirements Using UML
Environment Models

Denis Hatebur, Maritta Heisel

{denis.hatebur, maritta.heisel}@uni-due.de

Thomas Santen and Dirk Seifert
{santen, seifert}@cs.tu-berlin.de,

dirk.seifert@loria.fr

Universitat Duisburg-Essen
Fakultét Ingenieurwissenschaften, Fachgebiet Software Engineering

Technische Universitat Berlin
Fakultat Elektrotechnik und Informatik, Fachgebiet Softwaretechnik

LORIA — Université Nancy 2, France
ITESYS Institut fir technische Systeme GmbH, Dortmund

June 5, 2008

Our Test Approach |

Problem

@ model-based software development: set up models of
software systems to be constructed

@ models should not be used for code generation as well as
for testing

Our Approach
@ test against requirements, not against specification

@ explicitly model the environment in which the software will
operate

@ use UML state machines with tool support
@ consider reactive/embedded systems

Denis Hatebur Testing Against Requirements Using UML Environment Models 2

Our Test Approach |l

On-the-fly testing
@ generating and executing test cases are intertwined
+ no state explosion
— can start if implementation is available

Batch testing
@ test cases are generated and stored for later execution
+ early test preparation possible
— all possible behavior variants must be computed

Denis Hatebur Testing Against Requirements Using UML Environment Models 3

Terminology (Jackson) |

Machine thing we are going to build; may consist
of software and hardware

Environment part of the world where the machine will
be integrated

System consists of machine and its environment;
consists of domains

Requirements optative statements; describe how the en-
vironment should behave when the ma-
chine is in action

Specification implementable requirements; describe
the machine at its external interfaces; are
basis for its construction

Denis Hatebur Testing Against Requirements Using UML Environment Models 4

Terminology (Jackson)

Domain knowledge indicative statements; consist of facts and
assumptions:
Facts describe what holds in the environment,
no matter how we build the machine
Assumptions describe things that cannot always be
guaranteed, but which are needed to ful-
fill the requirements, e.g., rules for user
behavior

Domain knowledge is needed to derive specifications from
requirements: SAD= R, D=FAA

Denis Hatebur Testing Against Requirements Using UML Environment Models 5]

Running Example: SunBlindControl

X Sun Blind Environment —g [x

The sunblind can manually
be lowered or pulled up.

The sunblind is automati-
cally lowered on sunshine for
more than one minute.

The sunblind should not be
destroyed by heavy wind.

The environment consists
of user, sunblind, sun and
wind.

Denis Hatebur Testing Against Requirements Using UML Environment Models 6

Transforming a Requirement into a Specification |

R1 The sunblind is not destroyed by wind.

F1 Heavy wind for more than 30 sec is destructive.
A1 Heavy wind for less than 30 sec is not destructive.
F2 If the sunblind is up, it cannot be destroyed by wind.

R1’" The sunblind is up if there is heavy wind for more than
30 sec.

F1AnATAF2ART = R1

Denis Hatebur Testing Against Requirements Using UML Environment Models 7

Transforming a Requirement into a Specification Il

F3 It takes less than 30 sec to pull up the sunblind.
R1" If there is heavy wind and the sunblind is not up, it is pulled
up.

F3AR1" = RY’

F4 There is heavy wind if and only if the wind sensor generates
more than 75 pulses per sec.

F5 Turning the motor left pulls up the sunblind.

S1 If the wind sensor generates more than 75 pulses per sec
and the last signals to the motor have not been turn left,
followed by motor left blocked and stop motor, then the turn
left signal is sent to the motor.

FANF5AS1T = R1"
FINF2AF3AF4ANF5NATAST = R1

Denis Hatebur Testing Against Requirements Using UML Environment Models 8

Testing Against Requirements vs. Specifications

Testing against the specification
@ Does the machine generate the turn left signal?

@ If the specification was not correctly derived from the
requirements, the SUT passes the test nevertheless.

Testing against the requirements

@ Does the sunblind enter a state where it would be
destroyed?

@ Detects errors made in transforming requirements into
specifications.

@ Checks if customer needs are satisfied (acceptance test).

Denis Hatebur Testing Against Requirements Using UML Environment Models 9

Testing with Environment Models

@ the environment is modeled using UML state machines

@ this model explicitly contains the facts and assumptions
about the environment

@ the environment model consists of the input event generator
and adapters:

e the input event generator produces abstract events
o adapters transform abstract events such as pull up sun blind
into concrete ones, such as turn motor left.

@ the requirements are expressed as state machines that
check whether a requirement is violated

Denis Hatebur Testing Against Requirements Using UML Environment Models 10

“On the Fly” - Test System Architecture

State Machine Executor

Violation
e e Requirements
A} A
Violation AS 1AO
5 4 -—"l1-"-"—"—="—""—--——_—— == = = = = == _|
Environment Model | b |6a 4
2 co| System
1 Input — AS - —| Under
. —_— = g
ok Event - Adapters cs| Test
Generator AO 3a
6b

CO: Concrete Observation ~ AS: Abstract Stimulus
AO: Abstract Observation tick: Request for new Abstract Stimulus
CS: Concrete Stimulus Violation: Test Result

Denis Hatebur Testing Against Requirements Using UML Environment Models 11

“On the Fly” - Test System Architecture: Sun Blind

State Machine Executor
Violation)
e e B Requirements ';::’l‘zrsgﬂfglri‘ga
y 1 — stopSunBlind, ...
heavyWind, noHeavyWind, — i
Violation destructivewind, pulledUp, ... AS |AQ turnMotorRight,
D l— — —|— — = = — — — — — - - _ A---—+ turnl\'\/llotorLeft,
sto otor, ...
Environment Mo%?l | 3 6a 4/ P
2 | |co System
1 Input - AS - —| Under
- - =, - T
ok Event </ Adapters cs est
Generator AO 3
6b windPulse,
motorLeftBlocked,

CO: Concrete Observation ~ AS: Abstract Stimulus

AO: Abstract Observation tick: Request for new Abstract Stimulus
CS: Concrete Stimulus Violation: Test Result

Denis Hatebur Testing Against Requirements Using UML Environment Models 12

Pattern for Requirements and Environment Model

Environment and Requirements State Machine
T

R1 DR

,,

Denis Hatebur Testing Against Requirements Using UML Environment Models 13

Input Event Generator: Wind Example

/ Wind_I nput \

{ 0.80km/h
0.2/

heavyWind(), timer .start(30)

0.3/ 0.7/
noHeavyWind() D
) //,,+>80km/h
/ heavyWind(), HeavyWind -7

timer .start(30)

timer .timeout()/
destructiveWind()

- /

Assumption A1 is modeled explicitly.
Probabilities are given for the different transitions.

Denis Hatebur Testing Against Requirements Using UML Environment Models 14

Adapter: Abstract to Concrete Stimuli

<<interface>> id <<interface>>
abstr_wind_event S \<<pI'OVI e>> <<UW>/ 77| concr_wind_event
noHeavyWind () Wind_Adapter windPulse ()

heavyWind ()
destructivewind ()

timer: Timer
pulse_time: Integer

/ Wind_Adapter

\

timer .timeout () / windPulse (),
timer.ms _start (pulse_time)

destructivewind () / pulse_time := 60

-

WaitForWindSig

C b
‘-

/pulse_time :=100, timer.ms_start (pulse_time)

heavyWind () / pulse_time:= 60

noHeavyWind () / pulse_time:= 100

%

The adapter transforms the abstract stimuli into concrete ones.

Denis Hatebur

Testing Against Requirements Using UML Environment Models

15

Adapter: Concrete to Abstract Observations

<<interface>> . <<interface>>
<< des>>
abstr_motor_event \\<<uses>> provides ,””| concr_motor_event
stopSunBlind () v | Motor_ 7 stopMotor ()
pullUpSunBlind () Adapter - turnMotorRight ()
lowerSunBlind () turnMotorLeft ()

/ Motor_Adapter \

stopMotor () /
stopSunBlind () ‘
_| WaitForMotorSig
turnMotorLeft () / turnMotorRight () /
\pullUpSunBlind 0 lowerSunBlind () /

The adapter transforms concrete observations into abstract ones.

Denis Hatebur Testing Against Requirements Using UML Environment Models 16

Pattern for Modeling Requirements

Ri
Pre i
eventR j/
checkR
FulfilledR ;
Post |
checkR i/
satisfactionR

DesiredStateR

checkR i/
inconclusiveR;

checkR i/
violationR ;

The postcondition of the
requirement is checked
when all preconditions
are fulfilled.

“When [eventR;] happens, [controlled domain] should be in

[desiredStateR;]”.

Denis Hatebur Testing Against Requirements Using UML Environment Models 17

Requirement: Example R1

R1

Pregy } Posty

checkR1 () /
satisfactionR1 ()

lower SunBli

d ()

pullUpSun
Blind()

stopSunBlind (), pullUpSunBlind()
lower SunBlind ()

Fulfilled ;
destructivewind () /

checkR1 () \ower Sun

Blind ()

checkR1 () /
violationR1 ()

checkR1 () /
inconclusiveR1

checkR1 () /
violationR1 ()

If there is destructive wind, it must be checked if the sunblind is
up. If yes, the requirement is satisfied. Otherwise, it is violated.
The Fail state corresponds to a state where the sunblind would
be destroyed.

Denis Hatebur Testing Against Requirements Using UML Environment Models 18

Test Architecture for Generated Batch-Tests

Violation SUT oy
9 -- -+ Requirements Model Uncer
Test
Violation
e s et B AS JAO cs |co CcS Cco
Environment Model ' 3 |8a da ‘5 B ye
2 Cco CS
—_— AS gao 6b C A Test
pu Test Case Allowed Execution [™
Event — |e_| Adapters G . Result
senerator Traces Unit
Generator AO CS CS l—— co D
8b 3a 5
t | !
tick 1

The test case generator simulates the SUT in its environment
and stores the resulting test cases.
The test execution unit executes the test cases on the SUT.

Denis Hatebur Testing Against Requirements Using UML Environment Models 19

Tool Support: TEAGER |

TeeDTTest Caze ca
Main Help
[~ Logging

Server's canection established, =

38%
[~ Specification : test/ statemachines/SBC-SQS/SBC-batch.spec Test Suite:
Input sent. ived AL INCL @ PASS

this. adjFinsPas this ulledUp this.timeout1 this timeo... | fins. rotateFinsWithPositiveDs mator stopSunBling this tmo. -
s neawina T e s oHeaWING 15| motor SToRSunBIIte s, rotateFins Wi hFos tiveDearee. thi o

s aclFinsPos this onSurshine thi i i ths...| s rotateFns Wit s (m0:2000 motor stopsu

this. onSunshine this.onsunshine this. nosunshine this.noHeawWi... | this Ima:2000 motor. stapSunBlind mator, mat.

T iU CioseEu A - e o ORI ol | miotar 16 & el st i cicr ciovsunein

this sunlinclsLowaren this noHeawWine his.noSurShine this .| this {mo:2000 mator stopSunlind motor s

i tanuallyCIogES BN T ONSuTSTIe 15 e Mind his . Mot stopSUTBING rotor lower suneling motor stopsurein L
s sunBlnelsLowered t e this reaut thi | motor stopsutBiing s rotateFns Wi Deqree. this m

s aclJFinsNeg this manallyCloseSunlind s imeourd his.n-. | motor stopSunBlind motar- s (2600 ot

this. adjFinsNeg this.timeout1 thi ullediUp this. manu...| motor. stopSunBlind mator. loweringSunBlind mator. stopSunBlin.

i i i i e this ACUFITS.. | TGt0r StopsunBiing s rotateFns Wit hFosiiveD is o

o roaHUETh s e o - LB overSe i Sl | it B s i o o s stosunein

s acFinsNeg t1is.noSuUnShine this sunBlndlsLowered this acl.. | motor stopsunBling motor. ifotor stopsungin L
i acFNsPos This TMEOWZ i manuallyCIoSESUTBING This .| s, fotate nsWitEBSitveDe ree. mefor. StopsutBlinc rotor. o

s manualVCIos=SunBING ths oHEaWAInG this adFishieg t .| motor,stopsutBing motor, fins rotetenswitn

this.adiFinsPos thi: ulledUp this timeout1 this.timeo... | fins rotateFinsWithPositiveDe gree_ mator. stopSunBling fins rota.

iz tmS0uEL i Bl hi. a0 Fnshie 1.1, | F0tor StoBSurBING otor IowerinasunBiing this o 2000 ot

s im0t thls noHewWind this noSunshine this raanaIVD.| (s {mo:2 000 matar stapSunBlind motor loweringsunBiind! this.

s noHeawind this raniallyCloseSunBlind this manuallyClos...| motor stopsumBling mator: 5.1 2000 fins

s acl[FinsNeg itls.noSunShine this noSurshine this rAMAEIEL.| motor stopsunBline motar,

;
25| SBC!
navi At oisaute | seecrated| [Pl T eondusie 0 Fassed 18 Ganerate| munests| sionTests|

atch 0025 1c

Save Selected Test Cases.,

1 Options | 2 Specification | 3 Internal Structure | 4 Test Contral | 5 Execution Log |_§ Execute SM
swt.cs.tu-berlin.de/~seifert/teager.html

Denis Hatebur Testing Against Requirements Using UML Environment Models 20

Tool Support: TEAGER Il

TEAGER

@ research prototype
@ clarifies UML state machine semantics

@ executes imported UML state machines (for model
validation and on-the-fly testing)

@ generates test cases according to imported UML state
machines (for batch testing)

@ probabilistic trigger selection
e computes a complete behavioral model for a given search
depth to determine the expected behavior of the SUT

@ executes generated test cases

@ LOCs: some 18k

Denis Hatebur Testing Against Requirements Using UML Environment Models 21

Summary

Approach
@ based on Jackson’s terminology
@ uniform architecture for testing of reactive/embedded
systems
@ requirements are modeled explicitly with state machines
using patterns
@ facts and assumptions are modeled in the input-event
generator or in the adapter state machines
@ once these models have been set up manually (but
systematically), the tests are performed automatically, using
the tool TEAGER
Benefits
@ environment models allow testing against requirements
@ modeling patterns make approach systematic
@ on-the-fly as well as batch testing is supported
@ tool-support makes environment-based testing practical

Denis Hatebur Testing Against Requirements Using UML Environment Models 22

