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Abstract
In this paper, we discuss how to transform UML state machines with OCL expressions into cause-effect

graphs. This transformation is necessary to keep test models consistent and understandable. We substantiate
all explanations by an example model, which is part of a model for a freight elevator control.
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1 Introduction

The primary goal of testing is to detect as many faults of a system under test (SUT) as possible. For that, the
behaviour of the SUT is compared to a behaviour specification. In model-based testing, such specifications are
models (e.g. instances of the UML [7]). For automatic test generation, models can be used for the generation
of test oracles, test sequences in order to satisfy a specified coverage criterion, and concrete test input data.

The quality of test suites is usually measured with coverage criteria. They can be applied at the model-layer
or at the layer of the SUT. Both measured values can differ considerably. The completeness of the model
influences the relation between the measured coverage at both layers. Since the model is created manually, the
clearness of the model is important for its consistency. The clearness of models significantly depends on the used
modeling language. The use of several different modeling languages usually decreases the model’s clearness.

A cause-effect graph [2, 4] is “a graphical representation of inputs or stimuli (causes) with their associated
outputs (effects), which can be used to design test cases” (BS 7925-1.British Computer Society Specialist Interest
Group in Software Testing (BCS SIGIST)). Furthermore, cause-effect graphs contain directed arcs that represent
logical relationships between causes and effects. Each arc can be influenced by boolean operators. Such graphs
can be used to design test cases, which can directly be derived from the graph [4], or to visualize and measure
the completeness and the clearness of a test model for the tester.

Two widely-adopted modeling languages are the Unified Modeling Language (UML [7]) and the Object
Constraint Language (OCL [6]). UML state machines with OCL expressions are often used as test models,
which describe all execution paths of the SUT [3, 11]. This combination of graphical and textual notation
causes a high model complexity because, e.g., OCL expressions and the state machine both influence the
behaviour. Consequently, there is a higher probability for an erroneous test model. An explicit description of
the interdependencies between OCL and UML can reduce this probability. Cause-effect graphs are one way
to describe these interdependencies. After introducing the running example and cause-effect graphs, we will
describe a way to transform combined UML state machines with OCL expressions into cause-effect graphs.

2 Example

In this section, we introduce an example of a freight elevator. Figure 1(a) shows an UML state machine with
OCL expressions that describes a part of a corresponding elevator model. As presented in [11], one algorithm
to generate test cases from such models comprises the following steps: classify OCL expression in order to find
changeable variables; select guard conditions that must be satisfied in order to satisfy certain coverage criteria;
and find preceding postconditions for each guard in the state machine that influence the satisfaction of this
guard condition to build a path for a test case.

This algorithm enables the tester to create test cases that satisfy all guard conditions of the state machine.
However, the quality of testing is measured with coverage criteria [10], some of which are only satisfied if a
guard condition is violated (e.g. Decision Coverage [1]). As presented in [12], one way to solve this is to
add corresponding OCL expressions to the test model that describe the violated guard conditions according to
certain coverage criteria. For instance, Figure 1(b) shows one transition of Figure 1(a), which contains a guard
condition that references parameters of the triggering event. To satisfy Decision Coverage, at least one of the
additional expressions shown in Figure 1(c) also has to be satisfied.
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(a) Complete state machine. (b) Guard conditions. (c) Additional expressions.

Figure 1: Model of a freight elevator control.

There are some tools that generate executable test cases from UML state machines and OCL expressions [3,
11]. However, the used test models still need to be validated. There is no reference specification for that
model to compare with and the tester himself has to validate the test model. For that task, the tester has to
understand the test model. A test model can be understood if its presentation is plausible. As stated above,
the use of several modeling languages in one model makes the model hard to understand.

In our approach, the used modeling languages are UML and OCL. For making the corresponding models
understandable, they should be transformed into instances of a different modeling language that provides a better
understanding. In this paper, we propose cause-effect graphs to express the causes and the corresponding effects
of UML models with OCL expressions and to ease the calculation of preceding preconditions.

3 Cause-Effect Graphs

Cause-effect graphs are directed graphs with causes and effects represented as nodes and connections between
them represented as arcs. Each node is labeled with a unique number or letter referencing a certain condition.
Arcs can be negated and connected to other arcs with boolean operators. Cause-effect graphs are often used
because they are easy to understand and intuitive to use.

Figure 2(a) shows a cause-effect graph with two causes A and B and one effect C. The arcs in this graph
mean that A or B has to be satisfied in order to satisfy C. The vee means a disjunction of both arcs. There
are more possible connectors derived from boolean expressions like AND, NOT, or REQUIRES. For instance,
Figure 2(b) shows several connected causes and effects: the nodes labeled D and E are effects of the nodes A,
B, and C. D and E are also causes for the nodes F and G. The wedge means a conjunction and the tilde means
a negated connection: e.g., the node G is satisfied if D is satisfied and E is not satisfied.

In this paper, we apply cause-effect graphs to depict UML state machines with OCL expressions. We
demonstrate it with our example of a freight elevator. For instance, Figure 2(c) shows such a graph for the
guard condition attached to the transition shown in Figure 1(b): The node A stands for b <> currentF loor,
B stands for b > basement, and C for r > minRank. The node D is an intermediate node that is an effect of
B and C but that is also a cause for E and F. The nodes E and F represent the positive respective negative
result of the evaluation of the guard condition.

4 Transform UML-OCL-Models to Cause-Effect Graphs

In this section, we show how to transform UML state machines with OCL expressions to cause-effect graphs.
For instance, Figure 2(c) shows a cause-effect graph for a single guard condition. Our approach, however, is not
restricted to transforming single OCL expressions to cause-effect graphs. Instead, we want to transform several
OCL expressions that influence each other. For that, we need a way to connect OCL expressions contained in
the state machine.
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Figure 2: Cause-effect graphs.



One solution is the classification of variables contained in OCL expressions [11]. This classification identifies
active and passive variables: the value of active variables can change in OCL expressions; passive variables,
however, cannot change their value. The use of this classification allows to relate different OCL expressions of the
state machine: for instance, a postcondition contains an active variable referencing the same system attribute
a as a passive variable in a succeeding guard condition; by influencing the value of a, this postcondition also
influences the satisfaction of the succeeding guard condition. In our example, the postcondition of the effect
addToWeight(w) influences the guard condition actualWeight > minWeight (cf. Figure 1(a)). Consequently,
the value of the input parameter w is a cause for the satisfaction of the guard condition, which is the effect.

4.1 Combining Cause-Effect Graphs
In the following, we show how to combine cause-effect graphs that describe somehow related OCL expressions
In our running example, we consider two expressions: the guard condition actualWeight > minWeight and
the postcondition of addToWeight(w), which is actualWeight = actualWeight@pre + w. All variables of
the guard condition and all variables but the first of the postcondition are passive. The left hand use of
actualWeight in the postcondition is active. According to the transformation presented in [11], we can connect
both expressions to the new expression actualWeight@pre + w > minWeight. This expression has to be
satisfied in the postcondition in order to satisfy the following guard condition. How do the corresponding
cause-effect graphs look like? Figure 3(a) shows the cause-effect graph for the guard condition: the node A
represents the guard condition actualWeight > minWeight, the nodes B and C in Figures 3(a)-3(d) stand for
the positive respectively negative evaluation of this guard condition. Figure 3(b) shows a cause-effect graph
for the transformed expression: node D stands for the expression actualWeight@pre + w > minWeight when
the event insertWeight(w) occurs. A similar OCL expression can be created for the postcondition of the effect
substractFromWeight(w). For this case, the transformed expression is: actualWeight@pre − w > minWeight.
The corresponding cause-effect graph is shown in Figure 3(c). Both presented transformed expressions represent
possible causes for the satisfaction of the considered guard condition. Consequently, we can combine both causes
in one cause-effect graph: Figure 3(d) shows the combined graph (all letters mean the same as in the previous
figures). The pseudo codes in Figure 4 and Figure 5 sketch the creation of cause-effect graphs from UML state
machines with OCL expressions and the subsequent combination of existing cause-effect graphs.
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Figure 3: Cause-effect graphs for OCL expressions.

createCauseEffectGraphs(model) {

Graphs = Set();

classify all OCL expressions contained in model;

foreach guard g from model {

add a cause-effect graph for all input parameters in g to Graphs;

foreach active variable v in g {

find a preceding postcondition p that influences the value of v;

transform g with p to a new expression e;

repeat evaluation of e for remaining active variables;

add a cause-effect graph for e to Graphs;

}}

return Graphs;

}

Figure 4: Pseudo code definition for the creation of cause-effect graphs.

5 Conclusion and Discussion

In this section, we conclude and discuss the presented approach. In the last sections, we dealt with the trans-
formation of UML state machines with OCL expressions into cause-effect graphs. This approach is motivated
by the following facts: UML state machines with OCL expressions are often used as test models. There are so-
lutions to automatically create test cases from such models [3, 11]. However, the mix of two modeling languages



combineCauseEffectGraphs(allGraphs) {

foreach pair of graphs g1, g2 from allGraphs {

if(the set of effects in g1 and g2 are overlapping){

combine both graphs by adding all causes and elements to one graph and unite the equal ones;

}}

return allGraphs;

}

Figure 5: Pseudo code definition for the combination of matching cause-effect graphs.

makes it hard for the tester to understand the test model. Therefore, we need a way to present the implications
of the current model. Cause-effect graphs are often used to model test cases because they just confront causes
and effects and are easy to understand. Consequently, we used cause-effect graphs to display the test models.

According to this, the presented approach is reasonable. However, there are open issues left to discuss.
For instance, the completeness of the transformation of OCL expressions depends on the power of the logical
comparison of OCL expressions. We presented a way to compare OCL expressions depending on a classification
of active and passive variables. The inclusion of operations on sets seems to be manageable but needs further
investigation. The used state machines are flat state machines. We believe that constructs like history or
substates bear no general limitation to our approach but this also needs further investigation. We omitted
details of the presented process. For instance, first, all expressions are transformed into disjunctive normal
form. Since this form contains just disjunctions and conjunctions, these transformed expressions are easier to
compare than the original ones. We believe that there is more potential for improvements.

6 Related Work

Cause-effect graphs were developed by Elmendorf [2]. Test case derivation from cause-effect graphs is described
in [4] and [8]: The algorithm in [4] guaranteed condition coverage. The approach presented in [8] combines
cause-effect graphs with a test strategy called boolean operator (BOR) which derives test cases that satisfy
decision-based coverage criteria like MC/DC. By contrast, we propose the use of cause-effect graphs to make
the UML-OCL-models easier to understand. This approach is not focused on test case generation from cause-
effect graphs: The test cases are derived from the UML-OCL-model. The corresponding generation process
supports several coverage criteria and is not limited to decision-based coverage criteria.

An informal specification of the combination of state machines and OCL is already found in [7]. Using this
semantics, UML state machines and OCL are combined in [9]. Here, the focus lies on test oracles not on test
case generation. In [9] and [5], initializing transitions are calculated that need to be performed in order to reach
states that represent different test scenarios. Both approaches do not consider OCL conditions for automatic
calculation of the start conditions. The Leirios Test Generator [3] also uses UML state machines and OCL
expressions to derive test cases. However, the corresponding algorithm only supports a subset of OCL (cf. [11]).
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