Model-based Testing in Agile Software Development

David Faragé (farago®@kit.edu)

Karlsruhe Institute of Technology, Institute for Theoretical Computer Science

Abstract. With rising ubiquity of software, its quality is becoming more and more important, but harder
to achieve. Model-based testing (MBT) and agile development (AD) are the two major approaches to
solve this dilemma. We analyze their operational conditions and investigate how MBT can improve AD
and vice versa. We conclude that strongly integrating both is the most fruitful combination. The two
key requirements on MBT for AD are flexibility and rapid delivery. They can be met by underspecifying
the models that MBT uses. But for current MBT techniques, underspecification has an adverse effect on
efficiency, coverage and reproducibility. We believe all three aspects will be improved by a new method
called lazy on-the-fly MBT, which we currently research.

1 Introduction

High quality of software is becoming more and more
important, but difficult to achieve. Model-based test-
ing (MBT) and agile development (AD) are the two
main approaches to overcome these difficulties. Since
both have shortcomings, we investigate whether they
can benefit from one another.

In Section 2] we shortly introduce AD and describe
its demands on testing. They motivate using MBT,
which is introduced in Section Bl Section] shows that
both MBT and AD can profit from one another. Since
the two key requirements on MBT for AD are not yet
efficiently handled by current MBT tools, Section
describes our currently researched method called lazy
on-the-fly MBT, and how it can fulfill them better.
The paper closes with a summary.

2 Testing in Agile Development

This section will shortly describe the main techniques
of AD, with focus on the support by and demands on
testing. We will derive two key requirements on MBT
for AD. But before going into detail about the aspects
of testing in AD, we give the big picture on how AD
aims at better software development by quoting AD’s
values, stated in the Manifesto for Agile Software De-
velopment (cf. [T4]):

1. Individuals and interactions over processes and

tools
2. Working software over comprehensive documenta-
tion
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan
Especially relevant for testing are: Firstly, being
flexible, as result from value and particularly
Secondly, avoiding a big design up front (BDUF)
by rapidly delivering working software, as result from
value
AD achieves rapid delivery by short (a few weeks)

development iterations (called sprints in the agile
method Scrum): In each sprint, the team implements
a feature, formulated as a user story, which is a light-
weight requirement - a few sentences in natural lan-
guage. A user story is broken down into tasks, each

completable within 1 or 2 person days. The team de-
fines criteria when tasks and user stories are done.

To assure value 2] inspite flexibly responding to
change, AD practices continuous integration (CI), i.e.,
controlling the quality continuously. Hence many tests
should be automated for regression testing, which is
one reason why testing plays such an important role
in AD. AD focuses on unit tests and acceptance tests
(cf. [9]). But since the developed software is often not
sufficiently modular, integration and system tests also
become necessary. When uncertainty demands that
the next test steps depend on the results of the previ-
ous tests, software is also tested manually to guaran-
tee rapid delivery of working software. AD favors ez-
ploratory testing for this, which is a sophisticated, me-
thodic approach to ad hoc testing ([10]). Since man-
ual testing is slow, it should not be used for regression
tests.

So AD has strong demands on testing. I have expe-
rienced an exemplary trial of fulfilling them at WIBU-
SYSTEMS AG, an SME developing DRM products.
Its software department applies some agile techniques:
focusing on rapid delivery, being open to changes,
coordinating in daily standups, using a light-weight
approach for specifications and rather concretizing
them by communication with the product owner, i.e.,
the product manager. In this context, a BDUF for
an automated, complete system test that checks all
requirements was inapplicable. Many of the previ-
ous demands on testing were met by switching to
semi-automated testing: Smaller, independent mod-
ules of automatic tests (scripted or in Java) were de-
veloped and then often called manually, performing
semi-automated exploratory testing. This on-the-fly
testing has proven to be very powerful and flexible:
Adoption to changes in the requirements and main-
tenance of the small and decoupled test modules be-
comes easier. Hence early testing is possible. Addi-
tionally, the tester can react on-the-fly to dynamic in-
formation, e.g., suspicious signals. Analyzing the test
log and locating errors is easier than in a large, fully
automated test.

Since these semi-automated tests were also used for
integration and system regression testing, some as-
pects can be improved: The effort for producing test

protocols (e.g., for ISO 9001), test coverage, time for
test execution and reproducibility of errors. Combin-
ing the test modules into a fully automatic regression
test is costly and destroys many of the achieved ben-
efits from above. So when using traditional testing
techniques, the concept of semi-automation is one of
the most fruitful. Hence the next section will consider
MBT as solution, which WIBU-SYSTEMS AG also
starts using to some extent.

3 Model-based Testing

3.1 Introduction

MBT originates from black box conformance testing,
but it can automate all kind of tests: unit, integration,
system and acceptance tests. For unit tests, MBT’s
models must be sufficiently refined to give details
at source code level. For acceptance testing, require-
ments must be integrated into the model.

MBT checks the conformance between a specifi-
cation and the system under test (SUT). The spec-
ifications are mostly written in a process algebraic
language which defines a model as a Labelled Tran-
sition System (LTS) of some kind ([3]). The specifi-
cations (plus some adapters to glue the MBT engine
to the SUT) are used to derive tests via formal meth-
ods: Using algorithms from model checking, paths are
traversed in the model defined by the specifications,
and counterexamples to a considered requirement p
(usually formulated as temporal logic formula) are re-
turned. These yield test sequences: The inputs on the
paths are used to drive the SUT, the outputs as or-
acles, i.e., to observe and evaluate whether the SUT
behaves correctly. That way, MBT automatically gen-
erates superior black-box conformance tests compared
to traditional, laborious testing techniques.

MBT methods can be formalized and compared us-
ing the input output conformance theory (ioco), a tool-
independent foundation for conformance testing: LTSs
with labels describing input, output, quiescence (aka
suspension) or an internal action are used (cf. [I5]).
Then the ioco relation determines which SUTs con-
form to the specification (where out(z after o) means
all possible outputs of x after executing o):

SUT s ioco model m :< V suspension traces o of m :

out(s after o) C out(m after o).

This notion can be used in the test generation algo-
rithm to derive a test suite from the specification to
check the SUT for ioco.

3.2 Off-the-fly Model-based Testing

Off-the-fly MBT, used for instance by the tool TGV,
first generates all tests using model checking and then
executes them classically. The strict separation of test
generation and test execution has several deficiencies:
The high costs for intermediate representation, dy-
namic adaptations to the test generation are not possi-
ble, and non-deterministic SUTs cannot be processed
effectively.

3.3 On-the-fly Model-based Testing

On-the-fly MBT, applied for instance by TorX, UP-
PAAL TRON and also Spec Explorer, uses the othere
extreme of generating and executing tests strictly si-
multaneously by traversing the model and the SUT
in lockstep. This eliminates all above deficiencies, but
guidance and test selection is weakened. Section [5] will
consider a solution.

4 Model-based Testing with Agile De-
velopment

Some previous work on MBT with AD are: [I6]
scarcely considers using AD to improve MBT and
also MBT in AD, but suggests MBT outside the AD
team, i.e., not strongly integrated. [12] aims to adapt
MBT for AD and also shortly motivates using MBT
within the AD team, but does not investigate in de-
tail how to modify AD for fruitful integration, e.g.,
adjusting specifications and CI. It rather focuses on a
case study, which empirically shows that abstraction
is very important in MBT for AD. [2] gives a high-level
overview on combining agile and formal methods, but
only briefly considers testing. [11] uses a strict do-
main and a limited property language (weaker than
the usual temporal logics). It uses very restricted mod-
els that are lists of exemplary paths. I do not know
of any paper that differentiatedly investigates the re-
quirements on MBT for AD, vice versa, and on both
integrated strongly. Subsection[£.1] describes specifica-
tions for AD and for MBT. Subsection [.2)investigates
using AD for MBT, Subsection [£:3] MBT for AD. The
section ends with a conclusion.

4.1 Specifications

This subsection looks closer at the specification types
used in MBT and AD, and how they can be unified
since multiple unrelated specifications are unnecessary
costly, redundant (i.e., contradicting the DRY princi-
ple, [8]), and make strong integration of MBT and
AD difficult. The arguments are similar to those of
agile modeling (cf. [1]), which does not consider test-
ing, though.

In AD, most specifications are very light-weight
and mainly used to describe customer requirements.
Often user stories are used (cf. Figure [1)), which are
too abstract to be understood on their own. They are
great for communication, though, e.g. between cus-
tomers and developers, which yields more detailed
customer requirements. These can be put in the form
of an acceptance test suite (e.g., with the framework
FitNesse). This test suite is usually a list of indepen-
dent, exemplary method calls and expected return val-
ues. Such an enumeration is an inefficient notation and
usually leads to a bad coverage.

In MBT, specifications must be sufficiently detailed
for deriving a test suite that is revealing. They are be-
havioral descriptions in UML statecharts or something

similar, e.g., Labelled Transition Systems or Symbolic
Transition Systems (STSs) as depicted in Figure
These are very powerful, as they have precise seman-
tics, variables, conditions in first order logic, and can
describe the behavior of the SUT and requirements on
several levels of abstraction (cf. Figure. Abstraction
is achieved via underspecification by:

— allowing many non-deterministic choices for the
SUT, using non-determinism in the specification
or defining a real superset of outputs in a state,
e.g., by defining abstracted oracles via relaxed
conditions

— ignoring certain situations (e.g., hazards) by defin-
ing a real subset of inputs in a state

The level of abstraction can also be influenced by the
mapping from abstract test sequences (paths of the
model) to concrete test sequences (execution traces
for the SUT).

Figure|[l| gives simple exemplary specifications for a
login web service, which is from the domain of service-
oriented architecture (SOA). Such services can eas-
ily be tested via MBT and are frequently used in
AD (and sometimes called Agile Applications), since
their design concept supports AD: Services are simpler
than monolithic systems and loosely coupled, assisting
rapid delivery, fault tolerance and scalability.

login

input-login user:String,

As a registered user, password:String. [truel)

I can log in, so | can
call secure web services.

output:login returnCode:Int,
session:String.
[retumCode=1] {}

session:String. [true] {}

-

input:login user:String,
password:String.[true]
{savedUser:=user,

savedPassword:=password,

output:login returnCodexnt, refinement by oracle
session:String
[returnCode=0] {} and collapsed states

outputlogin returnCodeint,
session:String.

[savedUser="registeredNanfe’ && inputiogin user:String,

& password:String. [true]{}

a) r a d* &&
returnCode=1]
(savedSesslon::session)
successful output:login returnCode:Int,
\ input:<secureWebService>) session:String.

[returnCode=11¢}

outputlogin returnCoddynt,
session:String.
[returnCode=0] {}

refinement by oracle,
and additional input

Fig. 1. Exemplary user story and STSs

The powerful specifications of MBT have the flex-
ibility to be used for several purposes in AD (for
business-facing as well as technology-facing, cf. [5]).
They can particularly well replace the more precise
models sometimes used in AD, e.g., UML statecharts
and use cases (cf. [4]). Those are used when technical
details need to be considered early; e.g., when com-
plex business or product logic, business processes or
more generally complex architectures need to be anal-
ysed, described or implemented. So prefering such a
powerful specification over those used in AD leads to
a unification with the following benefits:

— cost and redundancy are reduced

— AD can be applied to the refinement process of the
models, i.e., when defining more detailed models
by reducing the level of abstraction

outputlogin returnCodeint|

— strong integration of MBT and AD is enabled,
which is considered in the following sections.

4.2 AD for MBT

AD is so successful because, amongst others, it fixes
time and cost, but can handle the scope and changing
requirements flexibly. This is also important for MBT
to avoid rigidness and a BDUF. In detail, many agile
methods can be applied fruitfully to the processes and
artifacts (models and adapters) used in MBT:
— pair programming, e.g., to increase the design
quality of the models,
— starting with very abstract models, to support
flexibility and efficient communication,
— iteratively refining aspects of the model within
sprints, for rapid delivery.
Therefore, MBT profits from AD, but underspecifica-
tion is necessary (especially in the first iterations). If
we do not modify AD itself, though, i.e., do not in-
tegrate MBT and AD strongly with one another, we
have some discrepancies, e.g., the specification lan-
guages and the definition of done does not match and
CI (against a reference implementation, if need be) is
not effective. Furthermore, the benefits described in
the next section do not take effect.

4.3 MBT for AD

MBT is the solution to many problems of testing.
Some also occur in agile development: deceptive and
insufficient coverage, low flexibility and high mainte-
nance. Additionally, AD requires rapid delivery and
continous integration with regression tests. Hence
MBT can profitably be applied to AD: Efficient tests
can be generated and executed automatically with an
appropriate coverage. The test suite can be changed
flexibly by modifying the conscise models. This is es-
pecially important for acceptance test driven develop-
ment (ATDD, see [7]), where automated acceptance
tests are part of the definition of done.

Furthermore, advanced coverage criteria not only
produce better tests, but also better measurements for
quality management, e.g. for ISO 9001. For instance,
andrena object’s agile quality management ISIS (see
[13]) is state of the art and considers many relevant as-
pects: Test coverage is only one of 10 metrics and mea-
sured using EclEmma. But that only allows limited
coverage criteria, namely basic blocks, lines, bytecode
instructions, methods and types (cf. [6]). Since auto-
mated tests are a central quality criterion, especially
in AD, and since [I7] shows that more sophisticated
coverage criteria (e.g. MC/DC) are more meaningful,
MBT in AD can also improve agile quality manage-
ment.

But if MBT itself is not modified, we get again the
problem of discrepancy (cf. previous subsection), and
possibly a BDUF or a model that is too rigid for AD.

4.4 Conclusion

The last subsections have shown that MBT can profit
from AD and vice versa, but without mutual adap-
tions, i.e., strong integration, both MBT and AD re-
strict each other. For the integration, abstract models
are necessary, though, which current MBT tools can-
not efficiently handle. Hence we will consider a new
method in the next section.

5 Lazy On-the-fly Model-based Test-
ing

5.1 Introduction

Using on-the-fly MBT solves several deficiencies (cf.
Subsection , but backtracking in the model can no
longer be used since the SUT usually cannot undo al-
ready executed test steps. Hence guidance and there-
fore test selection is weakened.

Our project MOCHAE aims at tackling this prob-
lem by designing a new method, lazy on-the-fly MBT,
that fulfills ioco and can harness the advantages of
both extremes, on-the-fly and off-the-fly MBT. It ex-
ecutes subpaths of the model lazily, i.e., only when
there is a reason to, e.g., when a test goal, a cer-
tain depth, an inquiry to the tester, or some non-
deterministic choice of the SUT is reached (a so-
called inducing states). Hence the method can back-
track within the model’s subgraphs bound by induc-
ing states. While backtracking, the method can har-
ness dynamic information from already executed tests,
e.g., non-deterministic coverage criteria. As result, we
expect strong guidance to reduce the state space and
to produce fewer and more revealing tests with higher
coverage. These main advantages over existing tech-
nology can also help improve reproducibility and effi-
ciency of testing, especially for non-deterministic sys-
tems and abstract specifications.

5.2 Lazy On-the-fly MBT with AD

Underspecification supports AD, as it empowers flex-
ibility and fast modelling for rapid delivery. As de-
scribed in the previous subsection, one main advan-
tage of lazy on-the-fly MBT is its guidance on sub-
path scale which uses dynamic information. It effi-
ciently finds short and revealing tests with better cov-
erage criteria and reproducibility - also for underspeci-
fied systems. This is particularly important for regres-
sion testing in CI. These coverage criteria can also
improve measurements for quality management. Fur-
thermore, the method can react to uncertainty, i.e.,
information not available prior to test execution (e.g.,
non-determinism) by adaptively taking into account
dynamic results. Hence lazy on-the-fly MBT can be
considered automated exploratory testing. The ex-
perience made at WIBU-SYSTEMS AG shows how
important and powerful dynamic information is (cf.
semi-automated exploratory testing in Section .

! funded by Deutsche Forschungsgemeinschaft (DFG)

Future work within MOCHA include modifying
ioco for finer-grained refinements and identifying ef-
ficient heuristics for subpath selection as well as cov-
erage criteria that incorporate dynamic information,
e.g., non-deterministic choices.

6 Summary

We investigated how MBT and AD can be combined:
MBT for AD improves flexibility, maintenance and
coverage. AD for MBT avoids rigid models and a
BDUF. By unifying the specifications and strongly in-
tegrating MBT and AD, we get the highest profits:

— reduced cost and redundancy

— effective CI and sensible definition of done that

checks if the model is conform to the code

— both MBT and AD can unfold their full potential.
For this to work, we need abstract models. These can
be processed more effectively with our new lazy on-
the-fly MBT.

7 Acknowledgements

I would like to thank Peter H. Schmitt, chair of
our Logic and Formal Methods Group, Alexander
Schmitt, head of software development at WIBU-
SYSTEMS AG, and Leif Frenzel from andrena objects
AG.

References

1. Scott Ambler. Agile Modeling: Effective Practices for eX-
treme Programming and the Unified Process. John Wiley &
Sons, Inc., New York, NY, USA, 2002.

2. Sue Black, Paul P. Boca, Jonathan P. Bowen, Jason Gorman,
and Mike Hinchey. Formal versus agile: Survival of the fittest.
Computer, 42:37-45, 2009.

3. Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner. Model-based Testing of
Reactive Systems, volume 3472 of LNCS. Springer Verlag,
2005.

4. Alistair Cockburn. Writing Effective Use Cases. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

5. Lisa Crispin and Janet Gregory. Agile Testing: A Practical
Guide for Testers and Agile Teams. Addison-Wesley Profes-
sional, 2009.

6. EclEmma: Using the Coverage View. http://www.eclemma.org
/userdoc/coverageview.html/. (April 2010).

7. Elisabeth Hendrickson. Driving development with tests: ATDD
and TDD. STARWest 2008, 2008.

8. Andrew Hunt, David Thomas, and Ward Cunningham.
The Pragmatic Programmer. From Journeyman to Master.
Addison-Wesley Longman, Amsterdam, 1999.

9. J.B.Rainsberger. Integration tests are a scam. Agile2009, 2009.

10. Cem Kaner, Hung Q. Nguyen, and Jack L. Falk. Testing Com-
puter Software. John Wiley & Sons, Inc., New York, NY, USA,
1993.

11. Mika Katara and Antti Kervinen. Making model-based test-
ing more agile: A use case driven approach. In Eyal Bin, Avi
Ziv, and Shmuel Ur, editors, Haifa Verification Conference,
volume 4383 of Lecture Notes in Computer Science. Springer,
2006.

12. Olli-Pekka Puolitaival. Adapting model-based testing to agile
context. ESPOO0O2008, 2008.

13. Nicole Rauch, Eberhard Kuhn, and Holger Friedrich. Index-
based process and software quality control in agile development
projects. CompArch2008, 2008.

14. James Shore and Shane Warden. The art of agile development.
O’Reilly, 2007.

15. Jan Tretmans. Model based testing with labelled transition
systems. Formal Methods and Testing, pages 1-38, 2008.

16. Mark Utting and Bruno Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann, 1 edition, 2007.

17. Yuen-Tak Yu and Man Fai Lau. A comparison of MC/DC,
MUMCUT and several other coverage criteria for logical deci-
sions. Journal of Systems and Software, 79(5):577-590, 2006.

	Model-based Testing in Agile Software Development
	
eserved@d = *@let@token David Faragó (farago@kit.edu)

