
Towards Model-based Acceptance Testing for Scrum

Renate Löffler, Baris Güldali, Silke Geisen
Software Quality Lab (s-lab)

Universität Paderborn
Warburger Str. 100, Paderborn, Deutschland

[rloeffler|bguldali|sgeisen]@s-lab.upb.de

Abstract

In agile processes like Scrum, strong customer involve-
ment demands for techniques to facilitate the require-
ments analysis and acceptance testing. Additionally,
test automation is crucial, as incremental development
and continuous integration require high efforts for test-
ing. To cope with these challenges, we propose a model-
based technique for documenting customer’s require-
ments in forms of test models. These can be used by
the developers as requirements specification and by the
testers for acceptance testing. The modeling languages
we use are light-weight and easy-to-learn. From the
test models, we generate test scripts for FitNesse or Se-
lenium which are well-established test automation tools
in agile community.

Keywords

Agility, Scrum, Acceptance Testing, Test Automation,
Model-based Testing

1 Motivation

Over the last years, agile methods have become more
popular. Several methods like Scrum, Feature Driven
Development (FDD) [3], and Extreme Programming
(XP), have been developed with the aim to be able
to deliver software faster and to ensure that the soft-
ware meets the customer’s changing needs [2]. They all
value the agile manifesto [1] and share some common
principles: Improved customer satisfaction, adopting
to changing requirements, frequently delivering work-
ing software, and close collaboration of business people
and developers [2].

At the moment, Scrum [10] is the most used method;
about 50 percent of business companies are using the
method itself or a hybrid of Scrum and XP [14]. The
main focus in Scrum is on the implementation rather
than on a detailed analysis or proper documentation.
The communication of requirements and the definition
of new desired features, which are added to the existing
product backlog, occur during the iterative cycles which
are called sprints [10]. This leads to poor requirements
specifications, i.e. requirements are incomplete and in-

consistent, which causes problems if software has to be
contractually accepted by the customer. Thus, it is a
challenge to establish better requirements specification
techniques that overcome the addressed difficulties.

Another challenge in Scrum is the continuous inte-
gration of new functionalities implemented during the
sprints. Thereby, integration testing has to be con-
ducted in order to check the correct interaction of the
new functions with the old ones. Additionally, regres-
sion testing has to be conducted for checking whether
the integration of new functions has corrupted the old
functions. Depending on the number of sprints and the
functions to be integrated, the testing efforts can ex-
plode. Thus, there is an urgent need for automating
testing activities, e.g. test case generation, test execu-
tion and evaluation of test results.

In this paper, we propose a model-based technique
for coping with the challenges addressed above. First,
we want to improve the communication and the doc-
umentation of customer requirements by using simple
UML [8] models. These models are created together
with the customer and they describe the system func-
tions on an abstract level. The modeling languages we
use are so intelligible that we believe that the customer
will be able to learn and edit them easily. Afterwards,
these initial models are refined during the sprint plan-
ning with technical details and test data. Then, these
are used by the developers as a specification of required
functions.

Secondly, we want to automate the testing activities
by generating test scripts from the models. The refined
models contain enough information for generating test
scripts for FitNesse [7] or Selenium [11], which are well-
known and widely used acceptance test tools in the agile
context.

With our testing approach we follow the following
ideas of Utting and Legeard [6, 13]: (1) model-based
testing must be embedded into agile processes and ex-
isting tool chains; (2) there is a need for dedicated do-
main specific modeling languages for making behavioral
modeling easier and user-friendly; (3) model-based test-
ing must be linked to the requirements analysis.

The idea of using models in agile development is not
new. Scott Ambler introduced Agile Modeling, which is
a collection of best practices and principles. He states
that agile modeling needs simple but multiple models
one of which fulfills a concrete purpose.

Our paper is structured as follows: next section gives
a brief overview on the activities and artifacts in Scrum.
Section 3 explains our model-based testing approach
for acceptance testing in detail and gives an example
how test scripts can be automatically generated from
models. After addressing some related work in section
4, we give in section 5 an outlook for further research
in this area.

2 Scrum

Scrum was invented by Jeff Sutherland, Ken Schwaber
and Mike Beedle and is an empirical agile project man-
agement framework [10]. Scrum implies roles, artifacts
and activities which are mainly meetings. Figure 1
shows the overall process of Scrum based on [4]. The
elements in boxes (IOD, etc.) will be introduced in sec-
tion 3.

The main artifact in Scrum is the product backlog,
which is a prioritized feature list. This list is specified
by the product owner, who creates, controls and man-
ages the backlog. Originally, Scrum defines no special
requirement engineering techniques for the creation of
the product backlog but it is suggested to use so-called
user stories[4].

Product Backlog
IOD

IODIOD

IOD

Sprint Planning 1 Sprint Planning 2Selected Product
Backlog

IOD

SD
Sprint BacklogReview

SD

Fixture

SprintNew Functionalities

Figure 1: The Scrum process extended with model ar-
tifacts

After creating the product backlog, the main Scrum
flow starts. The product owner and the Scrum team
meet for the planning of the first iteration, called sprint.
The first features are chosen from the product backlog,
and the team splits the features in smaller tasks which
results in the sprint backlog. At the end of each sprint,

new functionalities are delivered and presented in the
review meeting to the product owner.

During the sprint many testing activities have to be
conducted: (1) new functionalities have to be tested
for correctness (unit testing); (2) the correctness of
old functionalities has to be re-tested, if changes are
done (regression testing); (3) the integrated system of
new and old functionalities have to be tested (integra-
tion testing). If these activities are conducted on the
end-user interface (e.g. graphical user interface) and if
they test the software against the user requirements, we
speak of acceptance testing. Before the sprint has been
finished, testers have to assure that the new function-
alities integrated into the software work correctly.

In order to efficiently conduct the testing activities
listed above, test automation is needed. Next section
will explain how we want to automate test case gener-
ation and test execution by using abstract models.

3 Model-based Acceptance Testing

We extend the Scrum process with a model-based
testing approach, where models are used for captur-
ing customer requirements and for acceptance testing.
Thereby we want to reach a two-step improvement
for Scrum: First, we want to systemize test design by
capturing customer requirements in forms of models,
which subsequently are used for test case generation.
Secondly, we want to automate test execution by using
a suitable test tool, e.g. FitNesse or Selenium.

For the first point, we add new model artifacts to
the Scrum process as shown in Figure 1. As model-
ing notations, we use Interaction Overview Diagrams
(IOD) and Sequence Diagrams (SD) defined in UML
2 [8] where the required functionalities are specified as
user stories. These notations are light-weight and easy-
to-learn for the customer or the product owner to cre-
ate the user stories. In addition to IOD and SD, we
define a Fixture [7] which is a domain-specific language
for specifying the interface between the user and the
software system.

Secondly, we refine the sprint activities by using the
new model artifacts as shown in Figure 2. Here, we have
two roles in the Scrum team: developer and tester. The
developer gets the IODs and SDs as a specification of
the required functionalities. He extends the SDs with an
Interface Specification (IS) and implements the required
functionalities. Tester extends the SDs with Test Data
(TD). All model artifacts are used for automatic test
case generation resulting in test scripts which can be
automatically executed on the system under test (SUT).

In the following, we want to give more details on the
two steps of our approach and illustrate them by using
a small online store example.

S i
M d l

Developer
Tester Sprint

Models

SDIOD knowsSD

IS TD

IOD

implements
generategenerate

execute
SUTTest cases

execute

Figure 2: MBT activities embedded into the Scrum
sprint

3.1 Creating Models
First, the product owner creates user stories, which are
specified with IODs (Figure 1). In Figure 3.a, the IOD
for a user story describing how to buy a book in an on-
line store is shown. Every activity is given a name that
describes the activity in the user story. The product
owner thus describes the backlog items on a high level,
while still specifying the order of activities and their
dependencies.

In the first Sprint Planning, the product owner and
the team choose which backlog items they want to real-
ize in the first sprint. Here, the IODs give a good hint
on the complexity of the user stories. If the IODs are
too big to be realized in one sprint, they can simply
choose a subset of paths from the starting to the end-
ing node, leaving out additional branches. In our exam-
ple, they could choose the path OpenAmazonBookLink,
BuyItem, Login, Confirmation for the first sprint and
OpenAmazon, SearchBook, NavigateToBook for follow-
ing sprints.

The second Sprint Planning is used to refine the se-
lected Product Backlog Items. In our approach, this
means the team refines the activities in the IOD by
adding SDs to them. In Figure 3.b, the SD for BuyItem
is shown. It describes what interaction happens when
conducting this activity, that is the user selects the
quantity and clicks on the button to add the item to
the shopping cart. The browser then shows the shop-
ping cart.

Before starting to design the SDs, the team should
first decide on a Fixture which defines a unified domain-
specific language to specify the interactions. Since our
example is about an online store, we use a Fixture for
web-based interaction defined by Selenium [11], which
defines keywords (e.g. select, clickAndWait) to express

actions on a web page. These keywords should be then
consistently used as message names for the SD.

The result of the second Sprint Planning is the Sprint
Backlog, which are the selected IODs, the designed SDs
and the chosen Fixture.

3.2 Implementation and Testing
After having documented functional requirements as
models, the Sprint can start where the Scrum team im-
plements the Sprint Backlog. Developers and testers
can work in parallel. While the developers meet tech-
nical decisions like choosing libraries or specifying the
interface (IS), testers can focus on the selection of test
data (TD). The IODs and SDs are used as test models
by the testers for generating test scripts.

The IS comprises all information that is specific to
the implementation, e.g. a specific field name or button
name. In our example shown in Figure 3.c, the solid
boxes belong to IS which specify the name of the select
field as quantity and the name of the submit button as
submit.add-to-cart.

The TD contains the test input and some verifica-
tion steps as shown as dashed boxes in Figure 3.c. For
selecting test inputs well-known techniques can be used
(e.g. equivalence classes, boundary analysis). In the
example, the TD for the quantity contains the values 1,
2, 3, 10. The expected results are specified also using
the Fixture language. The verification step in Figure
3.c checks whether the quantity given by the user does
appear correctly in the shopping cart.

For automating test execution, we have developed
a prototype test case generator as a plugin for Fu-
jaba4Eclipse [12]. Test scripts are generated from the
test models – also edited with Fujaba4Eclipse – which
comprise IOD, SD, IS and TD. In our approach, we use
a test table representation of test scripts, which can then
be automatically executed by test tools like FitNesse or
Selenium.

Figure 4 shows an exemplary test table for scenario
<OpenAmazon, SearchBook, BuyItem>. The genera-
tion works as follows: First, the algorithm finds paths
in the IOD according to a coverage criterion (activity,
edge, or basic path coverage). Second, for every SD
along a path, the algorithm creates a test table. This
is done according to the Fixture definition from Sprint
Planning 2, where it is defined how the rows are built
for every keyword.

For the Fixture keyword select, the according mes-
sage is generated to the following row:| select | quan-
tity | 2 |. The first column is the message name con-
forming to the used Fixture, the second the IS anno-
tation, and the third a value from the TD table. The
methods on the system lifelines (show(ShoppingCart)
on Browser) specify the expected behavior of the sys-

OpenAmazon

SearchBook

BuyItem

Login

NavigateToBook

Confirmation

OpenAmazonBookLink

c.

b.

u1:User b1:Browser

show(ShoppingCart)

select(quantity,value)

clickAndWait(addToCart)

u1:User b1:Browser

show(ShoppingCart)

select(quantity,value)

clickAndWait(addToCart)

quantity

submit.add-to-cart

${value}

value

1
2
5
10

verifyTextPresent | quantity: ${value}
verifyText | link=Sherlock Holmes | Sherlock Holmes

a.

Figure 3: a. Interaction Overview Diagram describing a user story. b. Every activity is later linked to a Sequence
Diagram. c. Sequence Diagram with annotations.

Figure 4: Exemplary test table for Selenium

tem which is enhanced by the tester with some verifi-
cation steps. Here, the algorithm generated two rows,
one of which is | verifyTextPresent | quantity: 2 |. In
our example, we check that the quantity given by the
user is correctly displayed in the shopping cart. We use
facilities of Selenium to parameterize test tables thus
iterating test execution for each entry in TD.

When the test tables are generated, the team can au-
tomatically run the tests. The test results show which
test tables passed and which failed. When the imple-
mentation is fixed, all tests can be repeated very effi-
ciently because they are automated.

The result of the sprint is an implementation that
fulfills the selected product backlog ready for shipment.
After this, the whole Scrum life cycle can start again.

4 Related Work

There is already some work on combining model-based
testing with the agility. Katara and Kervinen [5] use a
use-case driven approach, where their methodology is
built around a domain-specific modeling language with
action words and keywords. For behavioral modeling
they use labeled transition systems (LTS) which enable
a comprehensive specification of desired functionality.
Using a coverage language they control the test space.
We believe that Scrum requires more user-friendly mod-
eling notations than LTS and light-weight models in or-
der to involve the customer into the process.

Rumpe [9] proposes using UML models and model
transformation as centric concepts for agile processes
especially for testing activities. However, the proposal
is in a very early stage and introduces no concrete tech-
niques how to handle the challenges of Scrum. The au-
thors say “Neither are the tools ready for major prac-
tical use, nor are semantically useful transformations
understood in all their details. Neither the pragmatic
methodology, nor the underpinning theory are very well
explored yet” [9]. In our paper, we propose very con-
crete techniques for model-based testing. Our proto-

type shows that these techniques are realistic and ap-
plicable.

5 Conclusion and Outlook

We have introduced a model-based approach for im-
proving requirements specification and acceptance test-
ing in Scrum. We use light-weight modeling notations
of UML for specifying user stories from the beginning
of the Scrum process. During Sprint planning the user
stories are enhanced with implementation details thus
serving as a specification for developers. Testers en-
hance them with test data and generate automatically
test tables using a prototype test generator. Test ta-
bles can be then executed by Selenium which is a well-
established tool for acceptance testing.

With our approach, we combine the principles of the
agile manifesto with the techniques of agile modeling
and model-based testing. Our prototype shows that the
introduced concepts can be supported by tools through
the whole Scrum process.

The presented approach is in an early stage. Even if
we believe that the modeling notations are easy-to-use
for the product owner and the customer, this assump-
tion must be proven by an industrial case study. Thus,
the efficiency and the effectiveness of the approach must
be evaluated. Also, the integration of the test generator
into existing tool landscape must be evaluated.

References

[1] Various authors. Manifesto for Agile Software De-
velopment. http://agilemanifesto.org/ (last vis-
ited: 28.04.2010, 2001.

[2] Armin Eberlein, Frank Maurer, and Frauke
Paetsch. Requirements Engineering and Agile Soft-
ware Development. In 12th IEEE International
Workshops on Enabling Technologies (WETICE
2003), pages 308–313, 2003.

[3] John M. Felsing and Stephen R. Palmer. A Prac-
tical Guide to the Feature-Driven Development.
Prentice Hall International, 2002.

[4] Boris Gloger. Scrum. Hanser Verlag, 2008.

[5] Mika Katara and Antti Kervinen. Making Model-
Based Testing More Agile: A Use Case Driven Ap-
proach. In Haifa Verification Conference, pages
219–234, 2006.

[6] Bruno Legeard. MBT for Large-Scale Enterprise
Information Systems Challenges and Quality Is-
sue. In Key-note AMOST&QuoMBaT@ICST2010,
April 6th, 2010.

[7] Robert C. Martin, Micah D. Martin, and Patrick
Wilson-Welsh. FitNesse - Acceptance Testing
Framework. http://fitnesse.org/ (last visited:
28.04.2010, 2008.

[8] OMG. UML 2.0 Superstructure Specification.
Technical report, OMG, July 2005.

[9] Bernhard Rumpe. Agile test-based modeling. In
Software Engineering Research and Practice, pages
10–15, 2006.

[10] Ken Schwaber and Mike Beedle. Agile Software
Development with Scrum. Prentice Hall, Upper
Saddle River, 2002.

[11] ThoughtWorks. Seleniumhq - web application test-
ing system. http://seleniumhq.org/ (last visited:
28.04.2010, 2004.

[12] University of Paderborn, Software En-
gineering Group. Fujaba4eclipse,
September 2009. http://wwwcs.uni-
paderborn.de/cs/fujaba/projects/eclipse/index.html.

[13] Mark Utting and Bruno Legeard. Practical Model-
Based Testing: A Tools Approach. Morgan Kauf-
mann, 2007.

[14] VersionOne. State of Agile Development Survey
2009. Technical report, November 2009.

